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a b s t r a c t

We previously introduced the LASER database (Learning Assisted Strain EngineeRing, https://bitbucket.
org/jdwinkler/laser_release) (Winkler et al. 2015) to serve as a platform for understanding past and
present metabolic engineering practices. Over the past year, LASER has been expanded by 50% to include
over 600 engineered strains from 450 papers, including their growth conditions, genetic modifications,
and other information in an easily searchable format. Here, we present the results of our efforts to use
LASER as a means for defining the complexity of a metabolic engineering “design”. We evaluate two
complexity metrics based on the concepts of construction difficulty and novelty. No correlation is ob-
served between expected product yield and complexity, allowing minimization of complexity without a
performance trade-off. We envision the use of such complexity metrics to filter and prioritize designs
prior to implementation of metabolic engineering efforts, thereby potentially reducing the time, labor,
and expenses of large-scale projects. Possible future developments based on an expanding LASER da-
tabase are then discussed.
& 2016 The Authors. Published by Elsevier B.V. International Metabolic Engineering Society. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The core of engineering is the development, modification, and
maintenance of complex systems to satisfy design constraints and
achieve desired system behavior. Metabolic engineers, in parti-
cular, focus on producing energy, medicine, and chemical feed-
stocks using engineered biocatalysts (Jullesson et al., 2015). Ab-
stracting this complexity away to simplify common design activ-
ities through the development of new methodologies, empirical
design rules, and computational design tools has been a significant
contributor to more effective engineering practices in a range of
disciplines. Metabolic engineering has begun a similar transition
into a more standardized field with the development of effective
metabolic modeling techniques (King et al., 2015; Long et al.,
2015), improved experimental tools (Pines et al., 2015), as well as
nascent standards to disseminate strain designs (Hucka et al.,
2003; Galdzicki et al., 2014; Woodruff et al., 2013). The push to-
wards standardization will be a key focus in metabolic engineering
and synthetic biology for the foreseeable future, especially as
strain engineering capabilities continue to improve (Dietrich et al.,
r B.V. International Metabolic Engi
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2010; Rogers and Church, 2016).
Development of these modeling and analytical tools requires

data sources that provide insight into the motivations, methods,
and genetic targets of a variety of engineered strains. The in-
troduction of the LASER database (Winkler et al., 2015), containing
hundreds of curated metabolic engineering designs along with
associated analysis tools, provides one of the first platforms
amenable to field-wide investigation. In combination with a range
of other data sources that support metabolic engineering efforts
(Caspi et al., 2014; McCloskey et al., 2013), LASER can provide a
foundation for rigorous analysis of current metabolic engineering
practices. Analogous to the efforts of software engineers to un-
derstand what makes large software projects maintainable
(Weyuker, 1988), one of the first steps towards developing a
standard process for strain design is to develop a definition of
design complexity, as defined by metabolic engineers, that relates
to metrics of design success, such as yield, titer, productivity, and
ease/cost of implementation. Summarizing the difficulty of im-
plementation and optimization of a design into a single value has
allowed software engineers to analyze programs and reduce
complexity as needed (Zuse, 1991); metabolic engineers may be
able to leverage a similar process to quickly build biocatalysts that
perform more predictably under production conditions. This need
is becoming more pressing as our ability to construct strains
continues to exponentially expand (Jakočiūnas et al., 2015; Zalatan
et al., 2015; Horwitz et al., 2015), necessitating the development of
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a filtering mechanism to avoid screening of more complex designs
that may not perform better than simpler alternatives.

In this study, we utilize the expanded LASER database to de-
velop methods for evaluating the complexity of metabolic en-
gineering designs. The Winkler-Gill complexity (WGC) metric,
which estimates complexity in terms of the number and variety of
mutations and techniques used to construct a design, and Fre-
quency complexity (FC), which estimates complexity from the
frequency at which mutations and methods are used in LASER
designs. In order to demonstrate the applicability of WGC to
common metabolic engineering problems, WGC is subsequently
applied to aid in the design and filtering of libraries of distinct
target complexities. Finally, we conclude by examining possible
future applications for these complexity metrics in the context of
increasing standardization in the metabolic engineering field.
2. Methods and materials

2.1. Data sources

The LASER database (https://bitbucket.org/jdwinkler/laser_re
lease) contains 622 curated metabolic engineering designs, where
the growth conditions, product of interest, yield and titer, and
genetic modifications to the strain are recorded. Each LASER paper
is associated with a perceived complexity score (1–6 scale, 6 being
the most complex), based principally on the authors description of
their designs and approach in the paper abstract, during the
curation process. LASER records also include information regard-
ing engineering methodology and the intent associated with par-
ticular mutations, among other pertinent design aspects (Winkler
et al., 2015). Metabolic models were generated from LASER records
using a combination of Biocyc backing databases (Caspi et al.,
2014) to associate genes with reactions and cobrapy for metabolic
model manipulation (Ebrahim et al., 2013). Regulatory models
were generated directly from the published Escherichia coli and
Saccharomyces cerevisiae networks (Salgado et al., 2013; Teixeira
et al., 2013). All software was implemented in Python 2.7 unless
stated otherwise. Statistical and numerical analysis was performed
using the scipy 0.16.0b1 and numpy 1.9.2 packages.

2.2. Network representation

Both metabolic and regulatory networks are represented as a
directed graph G(N,E), where N and E represent sets of vertices
and edges connecting them, respectively. While regulatory net-
works are typically provided as directed networks, in this case, we
generated metabolic networks directly from the corresponding
metabolic model after excluding well-connected currency meta-
bolites (Guimera and Amaral, 2005; Ravasz et al., 2002). A bi-
partite network consisting of metabolite-reaction links was used
for metabolic network analysis (Jeong et al., 2000). The Python
NetworkX 1.9.1 and igraph 0.7.1 packages were used for network-
related computations, such as centrality, clustering, and
visualization.

2.3. Synthetic library generation and analysis

For examination of high-complexity design filtering, the ran-
dom library of mutated regulators was generated by identifying
the 20 regulators with the highest out-degree (i.e. regulate the
most proteins) in the E. coli and S. cerevisiae transcriptional net-
works. Once identified, every possible pairwise regulator combi-
nation was generated, and the Winkler-Gill complexity score
generated by calculating the number of genes and regulatory
clusters affected by simultaneous modification of both proteins.
The type of mutation applied and their intent were assumed to be
the same for calculating design complexity. The resulting heatmap
is the calculated complexity due to genetic interactions arising
from simultaneous mutation of both regulators.

Demonstration of low-complexity filtering used designs pro-
vided by Yang et al. (2011). The provided designs identify reactions
that are deleted or have their minimum or maximum flux bounds
altered; these specifications were converted into LASER designs by
assuming each reaction alteration is due to mutation of a single
gene meant to increase flux to succinate formation or reduce by-
product formation. The complexity scores for the designs were
then plotted alongside the predicted theoretical yield of each de-
sign to determine the yield-complexity correlation to enable li-
brary filtering.
3. Results and discussion

3.1. LASER updates

Since the initial release of LASER in 2015 (Winkler et al., 2015),
our principal focus has been including additional metabolic en-
gineering design data, developing improved visualization and
analysis tools to understand where, how, and why researchers are
creating these designs, and developing new metrics to guide ex-
perimentation. As a result of these efforts, LASER now contains
622 curated designs obtained from the metabolic engineering lit-
erature, split between 433 E. coli and 190 yeast (S. cerevisiae)
strains. A total of 139 papers were added to the database, bringing
the total to 450 curated metabolic engineering studies. This da-
tabase update represents an approximate 50% increase in the size
of LASER, both in terms of curated papers and deposited designs,
compared to the initial release of the database (Winkler et al.,
2015). The trend in papers per year along with mutations per
design can be seen in Fig. 1A.

3.2. Complexity from design volume

Software engineers developed a wide-range of topological
(program structure) and volume (program content) derived com-
plexity metrics for various purposes (Zuse, 1991), mainly to limit
difficulties in long-term maintenance and reduce the number and
impact of errors on the desired functionality. The driving force
behind these questions is the practical importance of a complexity
metric and how it translates into quantifiable changes in software
design, maintainability, and reusability in the future (Weyuker,
1988). Since there is no universally agreed-upon definition of
complexity (Liu and Li, 2012), the most critical property of a LASER
guided complexity metric is that it conforms to the perception of
difficulty held by the metabolic engineering community. Volume-
based metrics based on easily measurable code properties such as
operator use, such as the original Halstead metric (Halstead, 1975),
have been employed by software engineers for decades in an at-
tempt to identify complexity within programming projects. Vo-
lume metrics are particularly tractable for adaptation by metabolic
engineers, as they measure values with readily identifiable analogs
in most designs: the number of genes mutated in an organism
(η1), the variety of methods used to introduce these mutations
(η2)), how the manipulated components of the metabolic and
regulatory networks interact (η3), and the intended effect of each
mutation (η4).

The principal challenge then is to convert these properties into
a score that describes . One reasonable way to assess complexity of
building one strain is to calculate the expected number of effects
per gene modification (Eq. (1), Fig. 1B), under the assumption that
modifications that affect gene or cellular physiology more severely
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Fig. 1. (A). Trends in number of metabolic engineering papers published per year,
along with the average number of mutations per strain (red line) in their designs.
Years 1983–1997 and 2001 contain only a single datapoint. B). Calculation of η η−1 4,
along with the WGC score, for a single mutant. Node clusters are denoted by color.
In this case, there is one mutation type (deletion, X; η = 11 ), two mutated genes
η( = )22 , one edge between a cluster containing a modified gene and a non-mod-
ified gene η( = )13 , and one intended effect of increasing the flux through part of the
metabolic network η( = )14 . The resulting WGC score is η η η η( + + ) =/ 1.51 3 4 2 . For
study duration, these properties are calculated from all mutants described in the
papers LASER record. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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are difficult to optimize. At the level of an entire study, it is ne-
cessary to holistically use the mutant properties to estimate the
time needed to complete the entire study. One common approach
to similar problems in the social sciences is to use multilinear
regression to use a collection of independent variables to predict
some dependent outcome of interest (King, 1986); rather than
explicitly imitating the form of the original Halstead equation, we
instead represent complexity as a linear function of these variables
computed from all mutants described in a LASER record. (Eq. (2)).
Standard regression procedures can be used to determine the va-
lues of the constants αi if the time required to complete a subset of
LASER studies is known.
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3.3. Complexity from modification frequency

Complexity is not only conceptualized as a function of how
challenging it is to implement a design. Well-trodden experi-
mental lines of thought, though they at times may be involved and
require extensive strain re-engineering and long periods of time to
complete, have the backing of experience from the field and prior
technique optimization to simplify the engineering process.
Leveraging new experimental approaches lacking decades of
widespread use for metabolic engineering poses unique demands
that are not capture by only examining the properties of the final
strains but also how frequently a given technique is used for strain
engineering over the entire LASER corpus. Intuitively, frequently
used modifications or techniques should be considered simpler as
they become increasingly refined following their introduction to
the field. Defining a complexity metric based on how frequently
particular modifications and approaches to metabolic engineering
problems are used in the LASER dataset (Cf, Eq. (3)) is quite
straightforward. The frequency of the ith mutation ( )fmut i, and jth
method ( )fmet j, are computed by dividing the count of each mu-
tation or method by the total number of mutations or methods
(respectively) used in the entire LASER database. The complexity
of a given design is then calculated by calculate the sum of inverse
frequencies for both sets, on the hypothesis that less frequently
employed strain engineering approaches are complex compared to
commonly employed methods or mutation types.
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One property of this metric that distinguishes it from the vo-
lume-based WGC approach is that Cf will decrease for each over
time as additional designs are deposited into LASER, rather than
being an immutable product of the design genotype and design
approach. New ways of controlling gene function and methodol-
ogies for introducing mutations will form the “bleeding” com-
plexity edge in the dataset, which will then decrease in complexity
over time. It should be an effective adjunct to the more effort-
focused WGC metric when estimating the complexity of im-
plementation or the anticipated research impact of the design on
the metabolic engineering field.

3.4. Volume-based analysis

With two candidate definitions of design complexity in hand,
the entire LASER dataset can be analyzed to determine trends in
complexity over time and by product classification. In the case of
WGC, the distribution of complexity (Fig. 2A) is highly skewed
towards the low complexity ends, due to existence of many de-
signs with few mutations and limited interaction with native
regulatory and metabolic networks. The papers containing the
most complex designs generally use techniques that can result in
gross modifications of large genomic regions (Utrilla et al., 2012)
or involve wide-ranging modification of multiple metabolic and
regulatory modules (Santos et al., 2012; Raman et al., 2014). In
general, designs that require many effects and mutation types, or
interact with a large number of clusters in host regulatory and
metabolic networks should have the highest complexity scores.

Complexity, as measured by WGC, does not predict design
performance: WGC is not significantly correlated with product
yields (P¼0.08, Spearman) for the 109 designs that include this
information. The lack of an observable relationship between these
properties suggests that yield improvements are generally in-
cidental to academic metabolic engineering projects, which may
instead be focused on validating new technologies, pathways, or
particular mutational targets. There is a very weak correlation



Fig. 2. The complexity distribution for (A) WGC and (B) frequency (Cf) metrics for the entire LASER dataset. Values greater than five times the median complexity are placed
in the final bin for each histogram. Median WGC complexity is 1.79, while median frequency complexity is 137.4; both distributions indicate LASER is highly skewed towards
low complexity designs.
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between WGC and the perceived complexity (as recorded by the
original LASER record curator, see Methods and Materials) of each
study (P¼0.025, r¼0.09), which follows the idea that experi-
menters rarely judge the complexity of a design or paper using the
raw number or type of mutations used for engineering. WGC may
be taken to represent the diversity of approaches required to
modify a strain to perform as needed, so that strains with high
WGC are more likely to require significant efforts to optimize. In
the absence of a large experimental library of strains to test this
hypothesis, we can apply this metric to sets of strains generated
through computational means to determine which strains will
presumably require more effort to construct.

3.5. Frequency-based trends

Unlike WGC, Cf has no dependence on the underlying metabolic
or regulatory topology of an organism; the complexity of a design
is derived purely from the frequency that the mutation types and
methods are used in the LASER database. Due to the design of the
metric, we also observe a similarly skewed distribution towards
the bulk of studies using well-worn metabolic engineering ap-
proaches, with a leading edge of projects introducing new ap-
proaches to strain design (Fig. 2B). One possible conceptualization
of this metric is that it attempts to capture the difficulty of uti-
lizing new, less mature approaches to strain engineering than
classical methods, while WGC is more focused on describing the
engineering complexity of the desired strain design. However,
there is still little correlation between complexity and yield
(P¼0.81, Spearman), again indicating that additional complexity,
as measured using both of these metrics, does not necessarily
translate into better design performance in academic research. We
expect a significantly different complexity-yield tradeoff for in-
dustrial designs, but we cannot test this hypothesis due to the
paucity of publicly available data.

Given that Cf is explicitly designed to quantify the concept of
novelty, it is encouraging that we observe a significant and rela-
tively large correlation between perceived complexity and Cf
( < −P 10 11, r¼0.28). The presumable key to being perceived as
highly complex is the use of innovative new techniques to ac-
complish challenging metabolic engineering goals, which is the
essential core of the frequency complexity metric. Interestingly,
there is also a significant positive correlation between Cf and the
estimated time required to complete a study ( = * −P 4.2 10 14, see
below), implying that additional time is needed on account of the
novel techniques employed. Overall, frequency complexity
efficiently describes the novelty of designs, allowing researchers to
quickly estimate if they are on well-trodden ground in their
research.

3.6. Harnessing complexity for experimental design

Due to the advent of increasingly inexpensive DNA synthesis
and sequencing technology, it is now possible to routinely gen-
erate genome-scale libraries that modify many genomic loci or
saturate a small number of sites with mutations. However, the cost
of these DNA libraries remains high, as do many subsequent
screening strategies, and so the selection of optimal targets for
mutagenesis remains critical for achieving the desired phenotypic
outcomes. The complexity metrics developed here provided a
metric for assessing how physiologically disruptive particular
combinations of mutations are, allowing researchers to estimate
the impact of the library on the host strain. This ability is parti-
cularly useful when manipulating global regulatory genes by en-
abling the identification of genotypes that lead to the maximum
amount of wide-ranging gene expression changes so that if a
suitable selection is available, evolutionary optimization can be
applied to identify strains with the desired production or tolerance
phenotype. A similar procedure can also be used to examining
variants meant to achieve a common phenotypic goal, such as
succinic acid production.

3.7. Library design

In order to test how our complexity metrics functioned for
design discrimination, a synthetic random library of strains was
created by mutating (in silico) pairs of regulators in E. coli and S.
cerevisiae that regulate the largest number of genes in each or-
ganism. This procedure is analogous to making a random library
meant to identify phenotypes arising from mutating global reg-
ulators, and has proven to be an effective strategy for improving
both tolerance and production phenotypes in the past (Santos
et al., 2012; Huang et al., 2015). A total of 20 regulators in each
organism were targeted for in silico mutation, and the WGC score
for each design in the synthetic library was computed. In the case
of E. coli, many pairs of regulatory mutations that have wide-
ranging effects on gene expression, especially those involving
RpoD mutations. Mutations in this particular sigma factor have
been used in the past for enhancing L-tyrosine yield (Santos et al.,
2012) due to its role in the expression of genes required for ve-
getative growth. Other potential high-complexity mutation pairs
involving other sigma factors, CRP (Geng and Jiang, 2015), and FNR
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could be candidates for more thorough mutagenesis. Although
these results are intuitive based on current knowledge of the re-
spective regulatory networks in each organism, the addition of
WGC permits quantifying the level of transcriptional disruption
associated with each mutational combination so that the appro-
priate perturbations can be selected.

3.8. Design properties to study duration

In order to estimate how the properties measured by WGC
translated into the amount of time needed to complete a given
study, we contacted metabolic engineering groups whose strains
had been curated in LASER to determine the amount of time re-
quired from conceptualization to initial submission of the pub-
lication and obtained 19 data points. Since the estimates were
highly sensitive to the number of clusters affected by strain ma-
nipulations (η3, we applied a binary filter that converted η3 to zero
if no cross-cluster edges were affected, and incremented by per
mutant otherwise. We also included another variable η5 in the
regression to represent the total library or strain set size used,
since time to completion should depend on the number of strains
that must be built. In order to estimate full-time effort from the
provided data, we estimated the contribution of each author using
the sum of a harmonic series out to Nauthors to account for the
presumably decreasing effort on the part of contributors beyond
the first author. Detailed analyses of author-effort correlations are
not available, but this approximation should help to account the
benefits and costs of collaboration among increasingly large
Fig. 3. The (A) correlation between LASER-extracted topological properties and experim
estimates), and (B) distribution of LASER study time estimates generated using the correl
Eq. (2). C). The Winkler-Gill design complexities of E. coli proposed succinic acid produc
y-axis). Each proposed design was converted into a LASER design as discussed in Metho
working groups.
Linear regression of the sum of η η–1 5 properties for each paper

with the provided 19 estimates yields the final correlation shown
in Fig. 3A, which accounts for a large proportion of the observed
variance in full-time effort required for study completion.
( = )R 0.772 . Applying the correlation to the LASER dataset reveals
that the median study requires approximately 4 years of effort to
complete (Fig. 3B, with a maximum of 10 years effort. To our
knowledge, this correlation between properties of the engineered
strains constructed in each study and estimated time to study
completion the first of its kind for metabolic engineering, and
should be able to provide general guidance to researchers in the
planning phases of their projects.

The most important question concerning these time estimates
is whether the additional effort translates into a tangible im-
provement in the implemented designs. In this case, no significant
correlation between estimated completion time and yield
(P¼0.18) was detected, perhaps due to the fact that yield max-
imization is rarely the only goal in most researcher projects. In-
terestingly there is a relatively strong negative correlation
( = * = − )−P 3.9 10 , r 0.4025 between frequency complexity and time
to completion, implying that more complex studies require less
time to complete; this surprising finding suggests novel studies
use a lower diversity of modifications compared to others in order
to validate new technologies. The simplest explanation for this
phenomenon is that new techniques require significant effort to
validate, so it is conceivable that researchers will choose the
minimal test case required for their new approach. More
enter-reported study lengths (dashed lines denoted the 90% confidence interval for
ation. Multilinear regression was performed using the scipy optimize package using
tion strains, along with their predicted theoretical yields from glucose (right-hand
ds and Materials and analyzed using the same analysis pipeline.
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traditional approaches can be applied on a larger-scale due to prior
method derisking. If greater amounts of data were available con-
cerning researcher effort, funding, and the probability of un-
expected delaying events known, a superior correlation account-
ing for these factors as well could be constructed to provide im-
proved results.

3.9. Library filtering

On the other end of the complexity spectrum, complexity
metrics can be applied to proposed strains identified by compu-
tational strain design algorithms to identify the least complex
designs achieving the desired performance (yield). In one such
study, the EMiLIO algorithm was used to generate 234 designs
with enhanced succinate yield under aerobic and anaerobic con-
ditions, compared to wild-type E. coli (Yang et al., 2011). Com-
plexity arises both from the number of reactions to be manipu-
lated and their effect on multiple metabolic clusters within the E.
coli metabolic network; since the method for implementing these
mutations was not specified, the complexity scores here represent
the minimal complexity possible when implementing the pre-
scribed models. In this case, low-complexity designs usually have
fewer mutations.

Analyzing the complexity of proposed models reveals the ex-
pected lack of correlation between WGC score and the corre-
sponding predicted theoretical yield from EMiLIO (Fig. 3C). Given
that the low complexity designs are predicted to achieve ap-
proximately the same theoretical yield as those at the high com-
plexity end of the model distribution, a large proportion of the 234
designs can be eliminated outright from the pool of designs for
experimental implementation without impacting the maximum
achievable succinate yields. This filtering step has obvious ad-
vantages for individual laboratories and larger-scale organism
foundries, as it reduces both the number of strains and required
number of mutations to achieve the desired yield. This approach
works best when evaluating a collection of designs with different
combinations of gene mutations; in cases where a set of genes are
modified in different ways, such as site-directed mutagenesis of
coding sequences, all of the models would have identical com-
plexities. However, the vast majority of modifications in LASER
remain deletion, overexpression, genomic integration, or plasmid
cloning, so in practice this difficulty is negligible. Overall, the
combination of the LASER analysis pipeline and existing strain
design tools would enable rapid implementation of a design-filter-
build cycle that more tractable with current metabolic engineering
capabilities.
4. Conclusions

In this study, we present two formal complexity metrics for
metabolic engineering designs as part of an effort quantify current
metabolic engineering practices using the LASER database. The
expanded database has been improved significantly since its initial
publication, and now contains 622 strain designs for E. coli and
yeast, along with myriad software improvements. We have used
these data to develop two distinct ways of assessing the com-
plexity associated with metabolic engineering designs: the
Winkler-Gill complexity metric captures the effort required to
actually generate a given design, while the frequency complexity
metric measures the novelty of a particular design compared to
the rest of the metabolic engineering field. As metabolic en-
gineering practices become more formalized and process en-
gineering data more readily available, it will be possible to directly
correlate design complexity with expected cost of research and
implementation. Even with the currently limited dataset, we were
able to estimate the time required to complete all LASER studies by
correlating the properties measured by WGC with time estimates
provided from practicing metabolic engineers; time and data will
only improve the accuracy of these metrics and correlations, as
was the case for other engineering fields.

More immediately, we expect complexity metrics to play an
important role in the filtering of potential designs generated by
large-scale organism foundries to avoid unnecessary strain con-
struction and screening. This sieving process, demonstrated here
using both random libraries and computationally generated strain
designs, would enable significantly higher throughput through the
foundry until advances in supporting technologies have bridged
the gap between construction and evaluation capabilities. As the
desired scale of organism engineering becomes ever larger, com-
plexity-based approaches for reducing experimental workload will
become key parts of the metabolic engineering design cycle.
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