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Hepatocellular carcinoma (HCC) is one of the leading causes of tumor-associated deaths
worldwide. Despite great progress in early diagnosis and multidisciplinary tumor
management, the long-term prognosis of HCC remains poor. Currently, metabolic
reprogramming during tumor development is widely observed to support rapid growth
and proliferation of cancer cells, and several metabolic targets that could be used as
cancer biomarkers have been identified. The liver and mitochondria are the two centers of
human metabolism at the whole organism and cellular levels, respectively. Thus,
identification of prognostic biomarkers based on mitochondrial-related genes (Mito-
RGs)—the coding-genes of proteins located in the mitochondria—that reflect metabolic
changes associated with HCC could lead to better interventions for HCC patients. In the
present study, we used HCC data from The Cancer Genome Atlas (TCGA) database to
construct a classifier containing 10 Mito-RGs (ACOT7, ADPRHL2, ATAD3A, BSG,
FAM72A, PDK3, PDSS1, RAD51C, TOMM34, and TRMU) for predicting the prognosis
of HCC by using 10-fold Least Absolute Shrinkage and Selection Operation (LASSO)
cross-validation Cox regression. Based on the risk score calculated by the classifier, the
samples were divided into high- and low-risk groups. Gene set enrichment analysis
(GSEA), gene set variation analysis (GSVA), t-distributed stochastic neighbor embedding
(t-SNE), and consensus clusterPlus algorithms were used to identify metabolic pathways
that were significantly different between the high- and low-risk groups. We further
investigated the relationship between metabolic status and infiltration of immune cells
into HCC tumor samples by using the Cell-type Identification By Estimating Relative
Subsets Of RNA Transcripts (CIBERSORT) algorithm combined with the Tumor Immune
Estimation Resource (TIMER) database. Our results showed that the classifier based on
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Mito-RGs could act as an independent biomarker for predicting survival of HCC patients.
Repression of primary bile acid biosynthesis plays a vital role in the development and poor
prognosis of HCC, which provides a potential approach to treatment. Our study revealed
cross-talk between bile acid and infiltration of tumors by immune cells, which may provide
novel insight into immunotherapy of HCC. Furthermore, our research may provide a novel
method for HCC metabolic therapy based on modulation of mitochondrial function.
Keywords: hepatocellular carcinoma, mitochondria, prognosis, bile acid, tumor microenvironment
INTRODUCTION

Hepatocellular carcinoma (HCC) is one of the most common
malignant cancers and is currently the fifth and seventh leading
cause of cancer-related deaths worldwide in females and males,
respectively (1). Despite the great progress that has been made in
early diagnosis and multidisciplinary tumor management, the
long-term prognosis remains poor. Therefore, novel and effective
prognostic models are needed to improve clinical management by
identifying patients at high risk of a poor prognosis. Conventional
models use clinical TNM (Tumor, Node, Metastases) stage,
vascular invasion, and other parameters to help predict the
prognosis of HCC patients. However, considering the high
morphological and biological heterogeneity of HCC, the efficacy
of these predictive models remains unsatisfactory.

Mitochondria are centers of cellular metabolism that regulate
metabolite and energy flow essential for cell growth, proliferation,
differentiation, and death (2). Therefore, mitochondria are deeply
involved in various cancer-related biological processes, including
cancer initiation, growth, invasion and metastasis, recurrence, and
resistance to drugs (3). Mutation and epigenetic modulation of
mitochondrial DNA, reprogramming of energy metabolism, and
changes in mitochondrial channels have been found to play vital
roles in cancer biology (3). Recent studies have demonstrated that
mitochondrial metabolism is a potential target for cancer therapy
(4) since various mitochondrial metabolic processes are altered in
tumors (5). Thus, it vitally important to take mitochondrial-related
biomarkers into account when developing novel predictive tools.

The liver is the key regulator of whole-body metabolism and
maintains metabolic homeostasis. Recent studies have
demonstrated that substantial metabolic changes are associated
with various types of cancers, including HCC (6). Thus there are
potential advantages of mitochondrial-related genes (Mito-RGs)
as prognostic biomarkers for HCC. Therefore, exploration of
underlying metabolic changes in HCC may bring new insights
that could improve the prognosis of HCC patients.

In the present study, we constructed a classifier containing 10
Mito-RGs for HCC cell survival by utilizing Least Absolute
Shrinkage and Selection Operation (LASSO) Cox regression.
Based on the risk score calculated by the classifier, the samples
were divided into low- and high-risk groups. We further
investigated changes in metabolism and metabolic subgroups of
HCC samples by Gene Set Variation Analysis (GSVA), t-
distributed Stochastic Neighbor Embedding (t-SNE), and
consensus clusterPlus. Additionally, we used the Cell-type
Identification By Estimating Relative Subsets Of RNA
2

Transcripts (CIBERSORT) algorithm and the Tumor Immune
Estimation Resource (TIMER) database to investigate the
relationship between metabolic status and infiltration of HCC
samples by immune cells. Our results demonstrate that the Mito-
RGs-based classifier can be used as a reliable predictor of HCC
patient survival. The suppression of metabolic processes governing
bile acid biosynthesis may play a vital role in the development and
poor prognosis of HCC, providing a potential approach to
treatment. Moreover, our research reveals cross-talk between
bile acid and infiltration of tumors by immune cells, which may
provide novel insight into immunotherapy of HCC. Therefore, our
research may provide a novel method for HCC metabolic therapy
based on modulation of mitochondrial function.
MATERIALS AND METHODS

Data Source and Pre-Processing
Bioinformatics analyses were performed using the procedure
shown in Figure 1. HCC cohorts with survival data were
obtained from several databases, including GEO (Gene
Expression Omnibus), TCGA (The Cancer Genome Atlas),
and ICGC (International Cancer Genome Consortium). The
Cancer Genome Atlas-Liver Hepatocellular Carcinoma
(TCGA-LIHC) and ICGC-Liver Cancer-RIKEN-Japan (LIRI-
JP) cohorts were also used for the analysis. Cohort GSE76427
from the GEO database was excluded because there was
significant censoring in the survival data: 14.8% of patients
were censored within 1 month, 35.7% within 1 year, and 47.8%
within 2 years. GSE10143 was also excluded because of a lack of
expression data for many Mito-RGs.

An RNA-seq dataset and the corresponding clinical
parameters of HCC tissues (n = 374) and normal liver tissues
(n = 50) were downloaded from UCSC-Xena (https://
xenabrowser.net/datapages/) based on information in the
TCGA database. For validation, RNA-seq data and clinical
information of an additional 232 HCC tumor samples were
obtained from the ICGC portal (https://dcc.icgc.org/projects/
LIRI-JP). HCC patients with complete survival data and RNA-
seq data were included in the subsequent analysis. HCC data
were annotated by the Homo_sapiens.GRCh38.84.chr.gtf (ftp.
ensembl.org) file in this study.

Mito-RGs in the present study were defined as the coding-
genes of mitochondrial-located proteins, including all proteins
located in the mitochondrial membrane, matrix, cristae, and
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mitochondrial associated endoplasmic reticulum membranes.
Depending on subcellular localization, all the genes were
divided into 1001 Gene Ontology (GO) cellular component
gene sets in the molecular signatures database (MSigDB)
database (http://software.broadinstitute.org/gsea/msigdb). A
total of 23 cellular component gene sets related to
mitochondria and 1571 unique genes were ultimately screened
as Mito-RGs (Supplementary Table 1).
Frontiers in Oncology | www.frontiersin.org 3
Weighted Gene Co-Expression Network
Construction and Detection of a Module
of Interest
Weighted gene co-expression network analysis (WGCNA) for all
Mito-RGs in the HCC dataset was performed according to the
protocols of WGCNA (7, 8), as described previously (9, 10).
Briefly, we initially performed a hierarchical clustering analysis
on the expression profile to exclude outliers. Subsequently, a
FIGURE 1 | Flowchart of the construction of the Mito-RGs-based prognostic classifier. Mito-RGs, mitochondrial-related genes; ROC, receiver operating
characteristic; WGCNA, weighted gene co-expression network analysis; TCGA, The Cancer Genome Atlas; LASSO, The least absolute shrinkage and selection
operation; GSVA, Gene set variation analysis; GSEA, Gene set enrichment analysis.
April 2021 | Volume 11 | Article 587479
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gene co-expression similarity measure (absolute value of
Pearson’s product moment correlation, Sij = |cor(i, j)|) was
used to relate every pairwise gene-gene relationship. An
adjacency matrix was then constructed using a “soft” power
adjacency function aij = Power(sij, b) = |sij|

b where sij is the co-
expression similarity, and aij represents the resulting adjacency
that measures connection strengths. The adjacency matrix was
then used to define a network distance measure, or more
precisely, a measure of node dissimilarity based on a
topological overlap matrix. Specifically, the topological overlap
matrix is given by

wij =
lij + aij

min ki, kj
� �

+ 1 − aij

where, lij = Su≠iaiuauj denotes the number of nodes to which
both i and j are connected, and u indexes the nodes of the
network. The topological overlap matrix (TOM) is given by W =
[wij], where wij is a number between 0 and 1 and is symmetric
(i.e., wij = wji). The rationale for considering this similarity
measure is that nodes that are part of highly integrated
modules are expected to have high topological overlap with
their neighbors. Clusters of genes with high topological overlap
were identified as “gene modules”, utilizing a measure of
dissimilarity (=1−TOM).

Correlations between modules and clinical characteristics
were calculated by Pearson’s correlation tests to identify
modules with significant clinical meanings. The modules that
exhibited high correlations with HCC clinical characteristics
were selected as modules of interest for further study.

Identification of Prognostic Mito-RGs
A univariate Cox regression was performed for all Mito-RGs in
modules of interest and the genes with P < 0.05 were identified as
prognostic Mito-RGs.

Establishment of Prognostic Classifiers
Since only the TCGA cohort was enrolled in the present study, the
10-fold LASSO cross-validation Cox regression analysis was
applied to all prognostic Mito-RGs for selection of the most
useful prognostic biomarkers and to construct a survival-
predicting classifier. LASSO is a popular method of regression
with multiple dimensional parameters (11). LASSO is a penalized
regression approach that estimates regression coefficients by
maximizing the log-likelihood function (or the sum of squared
residuals) with the constraint that the sum of the absolute values of
the regression coefficients is less than or equal to a positive
constant. One interesting property of LASSO is that LASSO
automatically deletes unnecessary covariates, only retain the
most important variables in the final model. In 10-fold cross-
validation, the samples are divided into 10 subsets (folds), each
time, nine subsets are used to train the model, and then the
remaining subset is used as the validation set. Finally, the 10 results
are combined to determine the final coefficients. The prognosis
risk scores were calculated based on a formula as follows:

RiskSocre = S (GenesCox coefficient � Genesexpression levels)
Frontiers in Oncology | www.frontiersin.org 4
We then used the cutoff of the median risk score to divide the
HCC patients into low- and high-risk groups. The predictive
ability of the model for the training and validation cohorts,
which was randomly split in a 1:1 ratio, as well as for the total
cohort, was evaluated using the Kaplan-Meier log-rank test.
Furthermore, the application value of the model was tested by
Receiver Operating Characteristic (ROC) curve analysis, and by
univariate and multivariate Cox regression analysis.

Pathway Enrichment Analysis
In order to investigate any changes in mitochondrial function
and metabolic pathways between high- and low-risk groups, we
performed Gene Set Enrichment Analysis (GSEA) and Gene Set
Variation Analysis (GSVA).

GSEA is a method for determining whether a given gene set is
significantly enriched in a list of gene markers ranked by their
correlation with a phenotype of interest. The first step of GSEA is
to sort genes according to the degree of differential expression in
the two sample phenotypes (normal and tumor tissues in this
study). Then, the GSEA method calculates an Enrichment Score
(ES) by proceeding through the list, increasing a cumulative sum
when a gene is in the gene set and decreasing it if a gene is not.
According to the ES, we can estimate the degree of enrichment of
a gene set for the phenotype. Furthermore, GSEA normalizes the
ES for each gene set to account for the variation in gene set sizes,
yielding a normalized enrichment score (NES) (12). The
clusterProfiler R package (13) was used to perform GSEA
analysis based on the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database between high- and low-risk
groups. KEGG analysis used a cutoff value of P < 0.05.

GSVA is a gene set enrichment method that estimates variation
of pathway activity over a sample population in an unsupervised
manner (14). GSVA transforms a gene expression matrix into a
gene set enrichment matrix, facilitating the identification of
differentially activated gene sets for each sample. We selected
C2.CP.KEGG.V7.1.symbols.gmt file consisting of 186 KEGG gene
sets as the reference gene set file. Then, the GSVA package was
used to obtain GSVA scores for each gene set of each sample,
which yielded their degree of absolute enrichment. After that, we
used the limma and pheatmap packages to display distinct
pathways between the high- and low-risk groups.

Metabolic Subgrouping
T-SNE is one of themost effectivemethods to reduce dimensionality
while maintaining the similarity between low-dimensional
descriptors and high-dimensional data. In the t-SNE method, the
low-dimensional spacemaintains thepair-wise similarity to thehigh-
dimensional space, leading to a clustering in the embedding space
close to the clustering in the high-dimensional space without losing
significant structural information (15, 16). Consensus clustering is a
method for unsupervised clustering that provides evidence of
quantitative and visual stability for estimating the number of
unsupervised classes in a dataset (17).

To deduce the metabolic status of a sample, we used the
t-SNE and Consensus ClusterPlus R packages (parameters:
reps = 1000, pItem = 0.8, pFeature = 1) to cluster HCC
samples into different metabolic subgroups.
April 2021 | Volume 11 | Article 587479
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Estimating Immune Cell Infiltration
In order to further explore the relationship between metabolic
status and immune cell infiltration, the CIBERSORT algorithm
(18) was used to estimate the fraction of 22 immune cell types in
the HCC samples from gene expression data. In addition, the
correlation between gene expression and tumor-infiltrating
immune cells was analyzed using the TIMER database (19), a
comprehensive resource for systematic analysis of immune
infiltrates across multiple cancer types.

Statistical Analysis
All statistical analyses were conducted by R version 3.6.1 (http://
www.R-project.org) and GraphPad Prism 8.0 statistical software
(GraphPad Software, Inc., La Jolla, CA, USA). The correlation
between risk score and clinicopathological characteristics was
analyzed by the chi-square test. The statistical significance of
normally distributed variables of the two sample groups was
estimated by the two-tailed unpaired t-test. P<0.05 were
considered statistically significant.
RESULTS

Co-Expression Network Construction and
Prognostic Module Detection
WGCNA was conducted on 1519 Mito-RGs in the 374 HCC
samples. When the soft-threshold power b was set to 8, a scale-
free network distribution was formed of the connectivity between
genes in the gene network (Figure 2A). Then, seven co-expressed
modules were identified (Figure 2B). The correlations between
modules and clinical features, such as gender, age, Child-Pugh
grade, BMI, histologic grade, pathologic T, pathologic N,
pathologic M, tumor stage, vital status, and days to death were
calculated. The red module was highly correlated with histologic
grade (r = 0.24, P = 3 × 10−6), pathologic T (r = 0.24, P = 5 ×
10−6), tumor stage (r = 0.23, P = 1 × 10−5), vital status (r = 0.21,
P = 4 × 10−5), and days to death (r = −0.21, P = 5 × 10−5) (Figure
2C). Thus, the red module was selected as a prognostic module of
interest to be studied in subsequent analyses.

Identification of Prognostic Mito-RGs
in a Prognostic Module
Univariate Cox regression was conducted for all Mito-RGs in the
red module (n = 63) (Supplementary Table 2). The results
showed that 50 of the 63 genes were significantly associated with
overall survival (OS) of HCC patients (P < 0.001) and were
therefore identified as prognostic Mito-RGs. All 50 genes
(ABCC8, ACOT7, ADPRHL2, ANKZF1, ATAD3A, ATAD3B,
BAK1, BMF, BSG, CAPN10, CCNB1, CDK1, COA1, COX19,
DLGAP5, DTYMK, E2F1, FAM72A, FANCG, FEN1, FLVCR1,
FUNDC1, FUNDC2, GARS, HJURP, HKDC1, KCNJ11, LIG1,
MRM2, MRPL18, MRPL53, MTFR2, NDUFA4L2, NUDT1,
OGG1, PDK3, PDSS1, PIF1, PRELID2, RAD51, RAD51C,
SLC25A45, TOMM34, TOMM5, TRMU, TYMS, VAT1,
XRCC3, YKT6, AC006538.1) were found to be associated with
Frontiers in Oncology | www.frontiersin.org 5
unfavorable prognosis of HCC with hazard ratios (HRs) > 1
(Supplementary Figure 1).

Construction of a Prognostic Mito-RGs–
Based Classifier
10-fold LASSO cross-validation Cox regression analysis was
conducted to choose the most useful prognostic biomarkers for
constructing a prognostic classifier based on the training cohort
(Figure 3A). A total of 10 Mito-RGs (ACOT7, ADPRHL2,
ATAD3A, BSG, FAM72A, PDK3, PDSS1, RAD51C, TOMM34,
and TRMU) were identified as the most useful prognostic
biomarkers, based on the minimum criteria to construct risk
characteristics, and used the coefficients derived from the LASSO
algorithm to determine risk scores for each sample (Table 1).

The risk scores were calculated using the formula: risk
scores = (0.562 * expression level of ACOT7) + (0.767 *
expression level of ADPRHL2) + (0.211 * expression level of
ATAD3A) + (1.226 * expression level of BSG) + (0.369 *
expression level of FAM72A) + (0.202 * expression level of
PDK3) + (0.419 * expression level of PDSS1) + (0.128 *
expression level of RAD51C) + (0.028 * expression level of
TOMM34) + (1.033 * expression level of TRMU). Patients in
every cohort were further divided into high- and low-risk groups
at the cutoff value of the median risk score. Expression levels of
every biomarker in different groups were analyzed. The results
showed that the levels of all 10 biomarkers were much higher in
the high-risk group than in the low-risk group (Figure 3B)

Additionally, the levels of ACOT7, ADPRHL2, ATAD3A,
BSG, FAM72A, PDSS1, RAD51C, and TOMM34 in the classifier
were much higher in HCC than in normal liver tissues (Figure
3C). Besides, the correlation between these genes and clinical
characteristics showed that these genes were positively correlated
with the tumor stage of HCC and negatively correlated with
HCC prognosis (Figure 3D).

Correlation Between the Classifier and
Clinicopathologic Characteristics
As shown in Table 2, the clinical characteristics of gender, age,
Child-Pugh grade, and pathologic M (pM) showed no significant
differences between the high- and low-risk groups in the training,
validation, or total cohorts (P>0.05). However, BMI in the validation
(c2 = 6.798, P = 0.009) and total (c2 = 5.822, P = 0.016) cohorts,
histologic grade in the training (c2 = 14.321, P = 0.000), validation
(c2 = 10.951, P = 0.001), total (c2 = 13.755, P = 0.000) cohorts,
pathologic T (pT) in the training (c2 = 6.376, P = 0.012) and total
(c2 = 4.779, P = 0.029) cohorts, pathologic N (pN) in the total (c2 =
4.047, P = 0.044) cohort, and tumor stage in the training (c2 = 5.176,
P = 0.023) and total (c2 = 6.925, P = 0.012) cohorts showed
significant differences between the two groups.

Prognostic Value of the Classifier for
Assessing Overall Patient Survival
As shown in Figures 4A–C, survival time of patients decreased
as risk score increased, and the number of HCC deaths also
increased in the high-risk group.
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To further assess the prognostic value of the classifier, a
Kaplan-Meier test was conducted. As shown in Figures 4D–F,
patients in the high-risk group had a very poor prognosis.

In addition, in the time-dependent ROC curve analysis, the
Area Under The Curve (AUC) for overall survival rates for 1, 3,
and 5 years were, respectively, 0.838, 0.771, and 0.834 in the
training cohort, 0.716, 0.627, and 0.608 in the validation cohort,
and 0.787, 0.696, and 0.705 in the total cohort (Figure 5).
Moreover, the predictive capability of the classifier seemed
superior to histologic grade and tumor grade, which previous
studies have identified as two major risk factors for
tumor prognosis.

Furthermore, the results of univariate Cox regression
analysis in the training, validation, and total cohorts further
validated the prognostic value of the classifier (Table 3).
Moreover, multivariate analysis suggested that the classifier
Frontiers in Oncology | www.frontiersin.org 6
included the independent risk factors for survival for HCC
patients (Table 3).

In addition, we compared the predictive capability of our
classifier with other previously published classifiers. As shown in
Figure 6A, the AUC of our classifier for overall survival in year 1
was higher than classifiers based on genes related to HIF-1
signaling (20), RNA binding protein (RBP) (21), metabolism
(22), immune response (23), ferroptosis (24), and a six-gene–
based classifier (25). For 3-year overall survival, the AUC of our
classifier was higher than classifiers related to metabolism,
immune response, ferroptosis, and a six-gene–based classifier.
Furthermore, for 5-year overall survival, the AUC of our
classifier was higher than classifiers related to RBP, metabolism,
immune response, ferroptosis, and a 6-gene-based classifier.

Furthermore, to test the robustness of the classifier, the
HCC patients from the ICGC cohort were also categorized into
A B

C

FIGURE 2 | WGCNA network and module detection. (A) Selection of the soft-thresholding powers. Power 8 was chosen because the fitted index curve flattened
out upon reaching a high value (>0.9). (B) Cluster dendrogram and module assignment for modules from WGCNA. The colored horizontal bar represents the
modules. (C) Correlation matrix for Eigengene values and clinical features. Each cell includes the corresponding correlations and the p-values.
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high- or low-risk groups using the median value calculated from
the formula described above. As shown in Figure 6B, patients in
the high-risk group had a reduced survival time compared with
those in the low-risk group. In addition, the AUCs of the
classifier were 0.736 for 1-year overall survival and 0.682 for 3-
year overall survival (Figure 6C).

These results indicate that the Mito-RGs-based classifier
provides a useful prognostic tool with clinical value for
appropriately categorizing patients with HCC.
Frontiers in Oncology | www.frontiersin.org 7
The Primary Bile Acid Biosynthesis
Pathway Was Downregulated in
High-Risk HCC Patients

Since bile acid is a liver-specific metabolic substance, we
investigated a possible role for measurements of primary bile
acid biosynthesis in prognosis of HCC. As shown in Figures 7A,
B, primary bile acid biosynthesis was significantly higher in
low-risk HCC, and key regulatory genes were downregulated in
A

B

C

D

FIGURE 3 | Construction of Mito-RGs-based prognostic classifier. (A) Results of the LASSO Cox regression suggested that all 10 genes were essential for the
classifier. (B) Expression levels of all 10 genes of the classifier in the high- and low-risk groups from the training, validation, and total cohorts. (C) Expression of the
10 genes in the classifier between HCC (T) and normal liver tissues (N) in GEPIA (http://gepia.cancer-pku.cn/) based on the TCGA and GTEx databases. *P < 0.05.
(D) Correlation between the 10 genes in the classifier and the clinical features of HCC. RS, risk score.
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high-risk HCC. In addition, GSVA analysis showed that the
primary bile acid biosynthesis pathway was significantly
downregulated in high-risk HCC compared with low-risk HCC
and normal liver tissue (Figure 7C). This pathway was also
downregulated more in stage III+IV than in stage II or stage I
HCC (Figure 7D). Moreover, the levels of bilirubin were also
lower in high-risk compared with low-risk HCC (Figure 7E).

Finally, we conducted Kaplan-Meier analyses to further verify
the value of these processes to the prognosis of HCC. As shown
in Figure 7F, a high level of primary bile acid biosynthesis
correlated with a favorable prognosis.
Frontiers in Oncology | www.frontiersin.org 8
Metabolic Subgrouping
In order to further investigate the role of bile acid metabolism in
HCC, we conducted cluster analysis based on gene expression of the
primary bile acid biosynthesis pathway. As shown in Figures 8A, B,
HCC tissues were clearly divided into two subgroups based on t-SNE
and Consensus ClusterPlus software analysis. We further identified
89 samples in cluster 1 and 160 samples in cluster 2 (Figure 8C). We
found that patients with a higher level of bilirubin in cluster 2 share a
favorable prognosis (Figures 8D, E).

These results further demonstrate that metabolic processes
governing bile acid biosynthesis affect the prognosis of HCC.

Correlation Between Bile Acid
Biosynthesis Pathways and Immune
Cell Infiltration Into Tumors
The bar plots in Supplementary Figure 2A show the proportion
of 22 immune cells in every sample. The five most common
immune cells in HCC were resting CD4 memory T cells (24.6%),
M2 macrophages (20.1%), M0 macrophages (8.3%), naive B cells
(7.2%) and regulatory T cells (Tregs) (6.9%). The heat map of 22
immune cells is shown in Supplementary Figure 2B.

The Wilcoxon rank-sum test revealed that tumor-infiltrating
CD8 T cells (P = 0.023), activated CD4 memory T cells (P =
0.01), Tregs (P<0.001), M0 macrophages (P = 0.005), and
neutrophils (P = 0.004) were significantly higher in cluster 1.
However, resting NK cells (P = 0.031), M1 macrophages
TABLE 2 | Correlations between risk score of the mitochondrial-related genes-based classifier with clinicopathological characteristics in the training cohort, validation
cohort, and total cohort.

Parameters Training cohort Validation cohort Total cohort

High risk Low risk c2 P High risk Low risk c2 P High risk Low risk c2 P

Age (y) 0.908 0.341 0.088 0.766 0.958 0.439
<60 49 42 38 40 89 82
>60 45 51 55 53 98 106
Gender 0.014 0.905 1.328 0.249 0.990 0.320
Male 68 68 55 62 122 131
Female 26 25 39 31 65 56
Child-Pugh grade 0.514 0.473 0.729 0.393
A 33 56 62 68 92 127 0.010 0.921
B and C 4 4 5 9 9 13
BMI 0.625 0.429 6.798 0.009 5.822 0.016
≥28 60 54 79 63 151 130
≥28 22 26 15 30 37 57
Histologic grade 14.321 0.000 10.957 0.001 13.755 0.000
1–2 61 81 34 57 99 134
3–4 32 10 58 36 85 51
pT 6.376 0.012 0.097 0.756 4.779 0.029
1–2 60 73 72 73 131 147
3–4 34 17 22 20 56 37
pN 0.003 0.956 2.026 0.155 4.047 0.044
0 52 48 76 78 125 129
1 1 1 2 0 4 0
pM – – 0.944 0.331 0.953 0.329
0 57 56 77 78 133 135
1 0 0 1 3 1 3
Tumor stage 5.176 0.023 0.773 0.392 6.925 0.012
1–2 53 66 68 73 119 141
3–4 29 16 25 20 55 35
April 202
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Bold values are statistically significant.
TABLE 1 | The mitochondrial-related genes in the prognostic classifier
associated with HCC in the TCGA data set.

Symbol Univariate Cox regression analysis LASSO Coefficient

HR 95% CI P-value

ACOT7 34.213 6.863–170.547 0.000 0.562
ADPRHL2 293.836 41.093–2101.042 0.000 0.767
ATAD3A 51.854 9.832–273.46 0.000 0.211
BSG 60.209 8.929–405.992 0.000 1.226
FAM72A 2.484 1.521–4.056 0.000 0.369
PDK3 4.825 2.099–11.092 0.000 0.202
PDSS1 22.868 6.255–83.603 0.000 0.419
RAD51C 16.936 3.992–71.847 0.000 0.128
TOMM34 61.837 8.836–432.757 0.000 0.028
TRMU 38.376 7.287–202.108 0.000 1.033
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(P<0.001), monocytes (P<0.001), and resting mast cells
(P<0.001) were significantly higher in cluster 2 (Figure 9A).

Additionally, Kaplan-Meier analysis showed that patients
with a high proportion of resting CD4 memory T cells
exhibited greater overall survival (P = 0.006), while patients
with a high proportion of Tregs (P = 0.019), M0 macrophages
(P = 0.013), and neutrophils (P = 0.024) exhibited lower overall
survival (Figure 9B).

To further investigate the relationship between the bile acid
biosynthesis pathway and tumor infiltration by immune cells, the
“edgeR” package of R software was used to detect the
differentially expressed genes (DEGs) between clusters 1 and 2
from the HCC samples. As shown in Figure 9C, almost all genes
in the primary bile acid biosynthesis pathway were
downregulated in cluster 1. Furthermore, CYP7A1, CYP8B1,
SLC27A5, and CYP27A1 there was a significant negative
correlation with infiltration of CD8+ T cells, macrophages, and
neutrophils (Figure 9D).
DISCUSSION

HCC is one of the leading causes of cancer-related deaths
because it is highly malignant, recurrent, metastatic, drug-
resistant, and usually diagnosed late in its progression (26).
Thus, identification of effective biomarkers for HCC-specific
Frontiers in Oncology | www.frontiersin.org 9
prognosis is urgently needed to improve patient management.
Recently, global changes in metabolic pathways were identified
in HCC (27), providing new diagnostic and therapeutic
opportunities (28). Taking into account the importance of
changes in metabolic processes during HCC progression and
the fundamental importance of mitochondria in human
metabolism, it is essential to identify mitochondrial‐related
biomarkers that can be used for prognosis of HCC patients.
Such biomarkers may also help us to clarify underlying metabolic
changes and identify potential therapeutic drugs to improve the
prognosis of HCC patients.

In the present study, a 10 Mito-RGs-based prognostic
classifier for HCC was constructed and validated for prognosis
HCC patients for the first time. The classifier performed well in
predicting the progression of HCC patients in the TCGA
training and ICGC external validation cohorts, supporting the
repeatability and utility of the classifier for prognosis of HCC
overall survival. Furthermore, the prediction efficacy of the
classifier was superior to those of histologic grade and tumor
stage (TNM stage), which are two previously reported major risk
factors for tumor progression (29, 30). Additionally, the
prediction efficacy of the classifier was also superior to other
predictive models of the progression of HCC.

All 10 Mito-RGs of the classifier, ACOT7, ADPRHL2,
ATAD3A, BSG, FAM72A, PDK3, PDSS1, RAD51C, TOMM34,
and TRMU, were risk-associated, and more highly expressed in
A B C

D E F

FIGURE 4 | The prognostic value of the Mito-RGs-based classifier. The distribution of patients’ risk scores, survival states of the patients in the high- and low-risk
groups from the training (A), validation (B), and total (C) cohorts. Kaplan–Meier survival analysis of overall survival between the high- and low-risk patients from the
training (D), validation (E), and total (F) cohorts.
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the high-risk group. Among them, ACOT7, ADPRHL2,
ATAD3A, BSG, FAM72A, PDSS1, RAD51C, and TOMM34
were overexpressed in HCC compared with normal liver
tissues, indicating potential roles of these genes in the
initiation and development of HCC.

ACOT7 is an isoform of the acyl-CoA thioesterase (ACOT)
family, which is responsible for cleaving fatty acyl-CoAs to free
fatty acids (31). High expression of ACOT7 is associated with
unfavorable outcomes in acute myeloid leukemia patients (32). A
previous study found that upregulation of ACOT7 was
Frontiers in Oncology | www.frontiersin.org 10
associated with metabolites that differ among chronic hepatitis
B, liver cirrhosis, and HCC (33). These findings may provide
clues to the mechanism by which ACOT7 affects the
pathogenesis of HCC. ADPRHL2, also known as ADP-
ribosylhydrolase 3 (ARH3), is the main hydrolase for
catalyzing the hydrolysis of ADP-ribosylated serine. ARH3 is
essential in negatively regulating parthanatos, a form of poly
(ADP-ribose) polymerase 1 (PARP1)-mediated regulated cell
death caused by excessive DNA damage (34). Induction of
parthanatos is emerging as a new strategy to kill cancer cells
FIGURE 5 | The time-dependent ROC for 1-, 3-, and 5-year overall survival predictions for the classifier in comparison with clinical features in the training, validation,
and total cohorts of HCC.
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TABLE 3 | Univariate and multivariate Cox regression analyses of clinicopathologic factors for overall survival in HCC from the TCGA database.

Items Training cohort Validation cohort Total cohort

Univariate Cox Multivariate Cox Univariate Cox Multivariate Cox Univariate Cox Multivariate Cox

HR P HR P HR P HR P HR P HR P

Gender 1.313 0.315 1.319 0.269 1.260 0.201
Age 1.015 0.125 1.012 0.245 1.012 0.091
Child grade 1.335 0.619 1.768 0.141 1.543 0.157
BMI 0.963 0.145 1.027 0.123 1.000 0.998
Histologic grade 1.041 0.834 1.276 0.158 1.104 0.410
pT 2.091 0.000 2.809 0.127 1.358 0.020 1.227 0.662 1.683 0.000 1.655 0.213
pN 4.473 0.144 1.274 0.811 2.029 0.324
pM – – 4.190 0.017 2.777 0.151 4.077 0.017 2.131 0.254
Tumor stage 2.158 0.000 0.612 0.495 1.363 0.015 1.019 0.968 1.638 0.000 0.955 0.913
Risk score 6.681 0.000 4.544 0.000 2.390 0.003 2.106 0.031 3.941 0.000 3.218 0.000
Frontiers in Oncology
 | www.frontiersin.org
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A

B C

FIGURE 6 | Comparison and validation of the prognostic value of the Mito-RG-based classifier. (A) The time-dependent ROC for 1-, 3-, and 5-year overall survival
predictions for the classifier in comparison with other classifiers. (B) Kaplan-Meier analysis of overall survival between high and low-risk patients from ICGC cohorts.
(C) The time-dependent ROC for 1- and 3-year overall survival predictions for the classifier in ICGC cohorts.
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(35). However, ARH3-overexpressing cells exhibit decreased
PAR accumulation and PARP1-mediated cell death (35),
indicating the potential carcinogenic role of ARH3. Until now,
there have been few reports of ADPRHL2 in carcinogenesis, and
the role and mechanism of ADPRHL2 in HCC need
further investigation. ATPase family AAA domain-containing
protein 3 (ATAD3A) is a mitochondrial membrane-bound
ATPase involved in various cellular processes, including
mitochondrial dynamics, lipogenesis, development, and
cancer (36). Overexpression of ATAD3A has been observed in
various types of cancer (37). The expression of ATAD3A is
tightly correlated with the disease status, tumor grade, and
lymphovascular infiltration in prostate cancer (38) and uterine
cervical cancer (39). In addition, the high expression of ATAD3A
is correlated with poor prognosis in lung cancer (40) and HCC
(41). However, a recent study found that ATAD3A played
important roles in reversing sorafenib resistance by mediating
hypoxia-induced mitophagy signaling in HCC (42). To date,
Frontiers in Oncology | www.frontiersin.org 12
there are few reports on the carcinogenic effects of ATAD3A in
HCC, and further experiments are needed to confirm its effect on
HCC. Basigin (BSG), designated CD147, is a member of the
immunoglobulin superfamily that is involved in various
physiological functions, including carcinogenesis (43). Previous
studies demonstrated that CD147 is highly expressed in various
cancers, including those of the liver, kidney, colon, lung, breast,
prostate, and esophagus (44). There is emerging evidence
indicating that CD147 plays a central role in the progression
and chemoresistance of many cancers by promoting
proliferation, angiogenesis, migration, invasion, and anti-
apoptosis (43, 45–47). Besides, multiple studies demonstrated
that CD147 is overexpressed and positively correlated with HCC
malignant potential and poor prognosis (48, 49). CD147 plays an
important role in HCC invasion and metastasis, mainly via
modulating fibroblasts and tumor cells themselves to disrupt
the HCC microenvironment (50). FAM72A, also known as p17
or Ugene, is a novel neuronal protein that also exerts
A

E F

B C

D

FIGURE 7 | Changes in primary bile acid metabolic processes between high- and low-risk HCC. (A) The primary bile acid biosynthesis pathway was significantly
enriched in low-risk HCC as revealed by GSEA analysis. (B) Top 5 downregulated genes of the primary bile acid biosynthesis pathway in high-risk HCC samples.
(C) The primary bile acid biosynthesis pathway was significantly downregulated in high-risk HCC compared with low-risk HCC and normal liver tissues as revealed
by GSVA analysis. ***P < 0.001 vs normal group; ###P < 0.001 vs Low risk score. (D) The primary bile acid biosynthesis pathway was significantly downregulated in
stage III+IV compared with stage II and stage I HCC as revealed by GSVA analysis. (E) The levels of bilirubin between low- and high-risk HCC. (F) Kaplan–Meier
survival analysis of the prognostic value of altered metabolic pathways in HCC. GSVA score = 0 was set as the threshold value. *P < 0.05, ***P < 0.001 vs stage I.
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tumorigenic effects in multiple tissues (51). Previous studies
demonstrated that FAM72A is highly expressed in multiple
cancers, including liver cancer (52). In addition, FAM72A
plays a central role in progression by accelerating the G1/S
phase transition in the cell cycle and promoting the survival of
cancer cells (53, 54). RAD51C is one of the paralogs of RAD51
and is essential for homologous recombination, a critical
mechanism for DNA repair (55). Accurate DNA repair and
replication are of importance to genomic stability and cancer
prevention. RAD51C is thus involved in the development and
progression of cancer. Previous studies found that high
expression of RAD51C is associated with a poor prognosis and
correlated with resistance to chemoradiotherapy in lung and
breast cancers (56, 57). TOMM34 is a protein located in the outer
membrane of mitochondria (TOMM), which plays a role in
importing preprotein into the mitochondria (58). A previous
study found that TOMM34 was overexpressed in colon cancer
(59), ovarian cancer (60), and breast cancer (61) and served as a
biomarker of the progression and poor prognosis of ovarian and
breast cancer. However, to date, the role of ACOT7, ADPRHL2,
ATAD3A, FAM72A, PDSS1, RAD51C, and TOMM34 in HCC
almost unclear. Considering their strong relevance to the
Frontiers in Oncology | www.frontiersin.org 13
prognosis of HCC, the roles of these genes in HCC are worthy
of further investigation.

Metabolic changes are a well-founded hallmark of cancers,
including HCC (62). The wide range of metabolic alterations is
strongly associated with the heterogeneity of HCC, providing
challenges for clinical management of HCC patients (6). Bile
acids are liver-specific metabolites derived from cholesterol.
Primary bile acids are synthesized from cholesterol in the liver
by classic and alternative pathways. The classic pathway accounts
for about 90% of total bile acid production in the liver (cholic
acid (CA) and chenodeoxycholic acid (CDCA)), mainly
catalyzed by cholesterol 7a-hydroxylase (CYP7A1) (63). The
alternative pathway is catalyzed by CYP27A1 and CYP7B1,
which produces chenodeoxycholic acid (CDCA) (63).

Early in the 1970s, it was shown that plasma bile acid
concentrations are elevated in HCC patients compared with
healthy individuals (64), indicating that bile acid homeostasis was
disturbed in HCC. However, the role of bile acid in carcinogenesis
remains controversial. In recent years, evidence has accumulated in
support of a crucial role for bile acids in gastrointestinal and hepatic
carcinogenesis. Chronic and advanced-stage cholestasis patients
may be at higher risk of developing HCC and bile duct cancer (65).
A B

D E

C

FIGURE 8 | Metabolic subgroup of HCC based on primary bile acid biosynthesis. (A) Dot plot for two distinct clusters identified by t-SNE. (B) Heat map for two
distinct clusters identified by consensus clustering solution. (C) Venn plot for identifying common samples in the two clusters. (D) Kaplan–Meier survival analysis for
patients in two clusters. (E) The levels of bilirubin between the two clusters. *P < 0.05.
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The knockout of the Farnesoid X receptor (FXR), an endogenous
ligand for bile acids, lead to elevation of bile acid concentration and
resulted in development of liver tumors in mice (66, 67). Bile acids
can directly disrupt the plasma membrane and activate the PKC-
MAPK-NF-kB pathway, increasing TNF-a, IL-1b, and IL-6. These
cytokines activate the JAK-STAT3 and PI3K-MDM2 pathways,
which increase the survival of DNA-damaged cells and can lead to
development of HCC. Besides, membrane injury by bile acids can
also lead to an increase in reactive oxygen species (ROS) in
hepatocytes by activating cytosolic phospholipase A2 (PLA2),
which can directly activate NF-kB and also induce DNA damage
in cells, which might lead to HCC (68). On the contrary, some
studies have indicated that bile acids are tumor suppressors
involved in the pathogenesis of HCC. A high concentration of
bile acids induced cancer cell apoptosis bymembrane disruption or
the activation of caspase signaling (69). In addition, a high
Frontiers in Oncology | www.frontiersin.org 14
concentration of bile acids also inhibited cell proliferation and
regeneration (70), which may slow the progression of HCC. Based
on these findings, multiple synthetic bile acid derivatives have been
designed and found useful for cancer therapy (71). In the present
study, we found that high-risk HCC patients had a lower activity of
the primary bile acid biosynthesis pathway than did low-risk
patients. Furthermore, the primary bile acid biosynthesis pathway
declined with an increase in tumor stage, indicating that activation
of the primary bile acid biosynthesis pathwaymay serve as a tumor
suppressor in HCC. However, further experiments are needed to
validate the role and mechanism of primary bile acid biosynthesis
pathway on HCC progression and prognosis.

A recent study found that bile acids can serve as messengers in
the gut microbiome to control accumulation of hepatic NKT cells
by upregulation of CXCL16 and anti-tumor immunity against
both primary and metastatic liver tumors in the liver (72),
A

C

B

D

FIGURE 9 | The correlation between the bile acid biosynthesis pathway and immune cell infiltration of tumors. (A) The comparison of the fractions of immune cells
between the cluster 1 and cluster 2 HCC samples. (B) Kaplan-Meier survival analysis of overall survival between high and low levels of infiltrating immune cells.
(C) Volcano plot of all genes in the primary bile acid biosynthesis between cluster 1 and cluster 2. (D) The correlation between gene expression and immune cell
infiltration of tumors.
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suggesting the importance of bile acids in modulating the tumor
immune microenvironment. In the present study, we first
investigated the role of bile acids and tumor immune cell
infiltration into tumor tissue and found that the numbers of
tumor-infiltrating CD8 T cells, activated CD4 memory T cells,
Tregs, M0 macrophages, and neutrophils were significantly higher
in patients with low levels of bile acid biosynthesis. However, there
were significantly higher numbers of resting NK cells, M1
macrophages, monocytes, and resting mast cells in patients with
low levels of bile acid biosynthesis. High numbers of infiltrating
Tregs, M0 macrophages, and neutrophils were correlated with a
poor prognosis of HCC, indicating bile acid and its metabolites
play important roles in HCC through regulating infiltration of
tumors by Tregs, M0 macrophages, and neutrophils.

The immune-modulatory effects of bile acids have been
widely researched in the gastrointestinal tract (68) and liver
(73). Bile acid-activated receptors (BARs) including FXR and
Takeda G-protein receptor 5 (TGR5) are highly expressed in
innate immune cells such as dendritic cells (DCs), monocytes,
macrophages, NK cells, and NKT cells (73). Activation of FXR
and TGR5 in macrophages by bile acid leads to a polarization
toward the anti-inflammatory M2 phenotype with IL-10
upregulation and downregulation of IL-6 and INF-g. In the
DCs, bile acid induced the downregulation of TNF-a and IL-
12. In NKT cells, bile acid decreased the expression of IL-1b,
TNF-a, and IFN-g, resulting in a tolerogenic state of innate
immunity in the liver and intestine (74). Furthermore, bile acids
also promote inflammation by disrupting the plasma membrane,
leading to activation of the PKC-MAPK-NF-kB pathway, and
increasing production of TNF-a, IL-1b, and IL-6 (68). As for the
role of bile acid on adaptive immunity, a recent study showed
that the bile acid metabolites, 3-oxo lithocholic acid (LCA)
inhibited Th17 differentiation by directly binding retinoid-
related orphan receptor gt (RORgt), and isoalloLCA enhanced
differentiation of Tregs through the production of mitochondrial
reactive oxygen species (75).

The mechanism of bile acid-mediated immune cell infiltration
of tumors remains unclear. In the present study, we found that the
genes controlling primary bile acid biosynthesis, CYP7A1,
CYP8B1, SLC27A5, and CYP27A1 negatively correlated with
infiltration of CD8+ T cells, macrophages, and neutrophils.
These results provide clues for further investigation. However,
the mechanism by which these genes mediate infiltration of
tumors by immune cells requires further exploration.

Inevitably, the present study has some limitations. Firstly, it
was a retrospective study based on public online databases.
Second, only two cohorts consisting of 606 samples were
included. Therefore, large-scale, multi-center studies are
needed to verify our results before the Mito-RGs-based
classifier can be used in the clinic.
CONCLUSION

In conclusion, we first identified and validated a classifier
containing 10 Mito-RGs with independent prognostic
Frontiers in Oncology | www.frontiersin.org 15
significance for patients with HCC. Based on the classifier, we
showed that the primary bile acid biosynthesis pathway was
correlated with the prognosis of HCC, indicating that this
pathway and related metabolites provide potential targets for
anti-tumor treatments. Moreover, our research reveals cross-talk
between bile acid and immune cell infiltration of tumors, which
may provide novel insight into immunotherapy of HCC. Finally,
our research may provide a novel method for HCC metabolic
therapy based on modulation of mitochondrial function.
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GLOSSARY

ACOT7 acyl-CoA thioesterase 7
ADPRHL2 ADP-ribosylhydrolase like 2
ATAD3A ATPase family AAA domain containing 3A
AUC area under the curve
BSG basigin
CA cholic acid
CDCA chenodeoxycholic acid
CIBERSORT cell type identification by estimating relative subsets of RNA

transcripts
CXCL16 C-X-C motif chemokine ligand 16
CYP27A1 cytochrome P450 family 27 subfamily A member 1
CYP7A1 cytochrome P450 family 7 subfamily A member 1
CYP8B1 cytochrome P450 family 8 subfamily B member 1
DEGs differentially expressed genes
FAM72A family with sequence similarity 72 member A
FXR farnesoid X receptor
GEO gene expression omnibus
GO gene ontology
GSEA gene set enrichment analysis
GSVA gene set variation analysis
HCC hepatocellular carcinoma
HR hazard ratio
ICGC International Cancer Genome Consortium
JAK Janus kinase 2
KEGG Kyoto Encyclopedia of Genes and Genomes
LASSO least absolute shrinkage and selection operation
LIHC liver hepatocellular carcinoma
LIRI-JP Liver Cancer-RIKEN-Japan
MAPK mitogen-activated protein kinase
Mito-RGs mitochondrial-related genes
NES normalized enrichment score
OS overall survival
PDK3 pyruvate dehydrogenase kinase 3
PDSS1 decaprenyl diphosphate synthase subunit 1
PI3K phosphoinositide 3 kinase
PKC protein kinase C
PLA2 cytosolic phospholipase A2
RAD51C RAD51 paralog C
ROC receiver operating characteristic
ROS reactive oxygen species
SLC27A5 solute carrier family 27 member 5
STAT3 signal transducer and activator of transcription 3
TCGA The Cancer Genome Atlas
TGR5 takeda G-protein receptor 5
TIMER tumor immune estimation resource
TOM topological overlap matrix
TOMM34 translocase of outer mitochondrial membrane 34
TRMU tRNA 5-methylaminomethyl-2-thiouridylate methyltransferase
t-SNE t-distributed Stochastic Neighbor Embedding
WGCNA weighted gene coexpression network analysis
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