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Abstract: The Leggett-Garg inequalities serve to test whether or not quantum correlations in time
can be explained within a classical macrorealistic framework. We apply this test to thermodynamics
and derive a set of Leggett-Garg inequalities for the statistics of fluctuating work done on a quantum
system unitarily driven in time. It is shown that these inequalities can be violated in a driven two-level
system, thereby demonstrating that there exists no general macrorealistic description of quantum
work. These violations are shown to emerge within the standard Two-Projective-Measurement
scheme as well as for alternative definitions of fluctuating work that are based on weak measurement.
Our results elucidate the influences of temporal correlations on work extraction in the quantum
regime and highlight a key difference between quantum and classical thermodynamics.
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1. Introduction

Much like the celebrated Bell inequalities, which shed light on the deeply non-classical properties
of spatial correlations encountered in entangled systems, quantum mechanics posseses a rich temporal
structure that distinguishes it from classical physics. In 1985 Leggett and Garg explored this structure
by introducing the concept of macrorealism [1]. In essence, macrorealism can be condensed into
two main assumptions about the temporal properties of physical observables within any classical
description of physics [1–8];

1. Macrorealism per se: physical observables take on well-defined values at all times independent of
the act of observation.

2. Non-invasive measurability: in principle it is possible to measure the value of an observable without
changing the subsequent evolution of the system.

Assumptions (i) and (ii) can be used to derive mathematical inequalities, the so-called
Leggett-Garg inequalities, that serve to test the macrorealism of physical observables. Violations
of these inequalities subsequently rule out what would be expected in a classical system, and this
quantum behaviour has now been confirmed experimentally in a variety of settings [9–14].

In the quantum regime, thermodynamic quantities such as fluctuating work and heat cannot
be represented by hermitian observables, but are conventionally defined via multi-time projective
measurements performed on the system [15–17]. For a closed quantum system, one way of defining
the fluctuating work done on the system driven out of equilibrium is by the difference in energy
eigenvalues observed at the start and end of its evolution. This framework is commonly referred to
as the two-projective-measurement scheme, and serves as a route to many of the known fluctuation
theorems such as the Jarzynski equality [15,16] and Tasaki-Crooks relation [18]. Given that these results
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mirror the corresponding classical fluctuation relations [19,20], it is often assumed that work is simply
a classical stochastic variable even within the quantum regime. However, the influence of non-classical
temporal correlations that arise from two-time quantum measurements on the statistics of fluctuating
work have yet to be fully understood. One aspect of this is the fact that work measurements remove
coherences in the energy basis and can affect the future evolution of the quantum system, modifying the
average work done during the process [21,22]. Alternative definitions of quantum work related to weak
measurement have been proposed in order to circumvent this effect of measurement disturbance on the
statistics of work [22–24]. However, it has been shown that the resulting quantum work distributions
are not generally positive-definite [25]. The emergence of negative quasi-probabilities is a signature
of quantum behaviour, and hints at a link to violations of the Leggett-Garg inequalities [6,26,27].
In a similar vein, violations of macrorealism have also been related to the presence of anomalous
weak values in quantum systems [8]. Recent work by Blattmann and Mølmer [28] has successfully
linked violations of macrorealism to quantum work in the standard TPM approach by utilising the
entropic Leggett-Garg inequalities. In their approach one compares the Shannon entropy of the work
distribution over different intervals of time. However, the Shannon entropy is not well-defined if the
work distribution fails to be positive, and so the entropic Leggett-Garg inequalities cannot be applied
to situations in which the work distribution becomes a quasi-probability.

In this paper we will utilise the assumptions of Leggett and Garg to demonstrate that there
exists no general macrorealistic description of work for quantum systems driven out of equilibrium.
In particular, we show that quantum temporal correlations between energy measurements performed
at different times influence the statistical moments of the fluctuating work done on the system during
a non-equilibrium process. This result is shown to hold for three different definitions of quantum
work: the two-projective measurement (TPM) scheme [15], the full-counting statistics (FCS) [24] and
the Margenau-Hill (MH) work distribution [23]. Crucially the inequalities that we derive can be used
to test for violations of macrorealism in both strong and weak measurement schemes, regardless of
whether or not the work distribution is positive or not.

The paper is organised as follows: we first introduce a set of Leggett-Garg inequalities for
the moments of fluctuating work, and then consider a driven two-level system and show that the
inequalities can be violated. Following that we introduce an alternative set of Leggett-Garg inequalities
for the moment-generating function, and apply these inequalities to alternative definitions of quantum
work that are based on weak measurement, namely the FCS and MH definitions, subsequently showing
that violations of macrorealism can also occur. Finally we conclude with a discussion of our results.

2. Inequalities for Moments of Work

We first recall the setup for the original Leggett-Garg inequalities [1]. First consider performing
three protocols in which the spin S(ti) = Si = ±1 of a qubit is projectively measured at two
times within a set of three times t0 < t1 < t2. For each of the three protocols one can obtain
the temporal correlation function for the values of the spin at times t = ti and t = tj, denoted
Cij = 〈SiSj〉. The macrorealism assumptions (i) and (ii) imply that there exists a three-time probability
distribution P(S0, S1, S2) such that the distributions describing the statistics of each individual protocol
can be obtained as marginals of this three-time distribution, eg. P(S0, S2) = ∑S1

P(S0, S1, S2) and
so on [4]. Note that while assumption (i) implies the existence of a three-time probability with
the correct marginals, assumption (ii) guarantees that this distribution is the same for all three
separate experiments [4]. Finally, using the marginal properties of P(S0, S1, S2) yields the following
Leggett-Garg inequality relating the correlation functions for the three protocols [1];

C01 + C12 − C02 ≤ 1. (1)
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This inequality holds for any dichotomic observable. For a simple qubit, the spin at time
ti can be represented by a combination of Pauli matrices; Ŝi = si · σ̂. By performing successive
projective measurements of the spin, the correlation functions can be obtained for each of the three
protocols. This leads to a violation the RHS of Equation (1) which can take a maximum value of 3

2 [4].
This example illustrates the failure of macrorealism for quantum systems.

It is also possible to derive a set of Leggett-Garg inequalities reminiscent of Equation (1) for the
moments of fluctuating work in a closed quantum system driven in time. For simplicity we consider a
system that can occupy one of two fixed energy states, which we denote by ε

2 and − ε
2 , at three points

in time t = t0 < t1 < t2 during the driving process. For the statistics of work measured during a
particular time interval t ∈ [ti, tj], the k’th moment of fluctuating work is defined as

〈Wk(ti, tj)〉 = ∑
εi ,εj

P(εi, εj)(εj − εi)
k. (2)

Here the energies occupied by the system at time ti are denoted by εi and we assume that the
possible work values are given by the energy changes Wij = εj − εi. The probability P(εi, εj) governs
the statistics of energy at times ti and tj, and we make no assumptions about the exact definition of
P(εi, εj) aside from assuming it is normalised and non-negative. As with the standard Leggett-Garg
experiment described above, the aim is to compare the work statistics observed within different time
intervals along the driving process, as shown in Figure 1. Thus in analogy with Equation (1) we will
consider the following quantity;

Mk = 〈Wk(t0, t1)〉+ 〈Wk(t1, t2)〉 − 〈Wk(t0, t2)〉. (3)

This quantity can be measured over many runs of the driving process during each of the three
time intervals, where the system is prepared in same state at time t0 for each experiment. For example
M1 is obtained by measuring the average work done on the system sequentially during intervals
t ∈ [t0, t1] and t ∈ [t1, t2], and then subtracting the average work done during the total time interval
t ∈ [t0, t2]. We now seek to bound Equation (3) through the assumption that the fluctuating work is a
macrorealistic variable, as defined by (i) and (ii).

These assumptions imply the existence of a global probability distribution P(ε0, ε1, ε2) describing
the energy statistics at all points in time along the driving process, where each two-time distribution
can be obtained as a marginal;

P(εi, εj) = ∑
m 6=i,j

P(ε0, ε1, ε2) ∀i, j. (4)

We can show that this condition immediately leads to the following Leggett-Garg inequality for
the moments of work (see Appendix A);

Mk ≥ 0, even k,

Mk = 0, odd k. (5)

For k = 1 this implies 〈W(t0, t1)〉 + 〈W(t1, t2)〉 = 〈W(t0, t2)〉. This makes intuitive sense;
in classical thermodynamics one would not expect to observe any difference between the sum of
each intermediate average amount work done and the total average work done between the initial and
final points in time. However, we will subsequently show that this does not generally hold for quantum
systems, as the bounds in Equation (5) can be violated for certain driving processes. It should also be
noted that while we have assumed a discrete energy spectrum for the time-dependent Hamiltonian,
this is not crucial to the derivation of Equation (5). Indeed, so long as one assumes that the energy
moments are always finite then inequalities of the form Equation (5) can be derived. However, we will
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restrict our attention to a two-dimensional quantum system throughout the paper for simplicity, as this
is sufficient to demonstrate violations of macrorealism in the statistics of fluctuating work.

Figure 1. Schematic diagram for detecting non-classical work statistics. An observer performs three
separate experiments, (a–c), in which the fluctuating work done on the system is measured between
the time intervals shown in the diagram. To test the validity of the Leggett-Garg inequality for work,
Equation (5), one compares the statistics of the three experiments, with the same initial state chosen at
time t0. Note that in experiment (c) no measurement is made at t0, thus the system evolves unitarily up
to time t1.

3. Violations of the Leggett-Garg Inequalities for Work Moments

We will now utilise the inequalities Equation (5) to show that fluctuating work can not generally
be described by a macrorealist theory for quantum systems. The relevant situation that we consider is
a standard setup for the thermodynamics of work extraction; an isolated system is initially thermalised
and then driven out of equilibrium via changing its Hamiltonian in time, extracting work in the
process [15–17]. Suppose that we have a two-level system described by a time-dependent Hamiltonian
ĤH(t) in the Heisenberg picture with initial state ρ̂ such that;

ĤH(ti) =
ε

2
ai · σ̂; ρ̂ =

1
2
( Î + r · σ̂), (6)

where |r| ≤ 1 and |ai| = 1 are vectors. Note that the time-dependence of the Hamiltonian is attributed
only to each vector ai. In an experimental setup Equation (6) describes a spin-1/2 particle coupled to an
external classical magnetic field, with the direction of the applied field adjusted by the experimenter in
time. Without loss of generality we will set the initial Hamiltonian along the z-axis of the Bloch sphere,
i.e., a0 = {0, 0, 1}, and choose an initial thermal state with respect to Ĥ(t0) at inverse temperature β;
ρ̂ ∝ exp(−βĤ(t0)). This in turn implies that r = {0, 0,−tanh(βε/2)}. To obtain the moments of work
in Equation (3) two projective energy measurements are performed at the start and end of the driving
process within the fixed time intervals shown in Figure 1. This method is commonly referred to as the
two-projective measurement scheme (TPM) [15,16,29]. The joint probability to observe energy εi at
t = ti and then εj at t = tj is given by

P

(
εi = ±

ε

2
, εj = ±

ε

2

)
= Tr

[
ρ̂P̂±ai

]
· Tr
[
P̂±aj

P̂±ai

]
. (7)
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Here we have denoted P̂±ai
as the projector onto the relevant energy state of the Hamiltonian

at time ti. Substituting Equation (7) into Equation (2) gives the moments of work from successive
projective energy measurements (see Appendix B):

〈Wk(ti, tj)〉 =


(1− aj · ai)

εk

2 , even k,

−(r · ai)(1− aj · ai)
εk

2 , odd k.
(8)

To identify the conditions under which fluctuations in work violate Equation (5), we substitute
the above expression into Equation (3) and parameterise the driving process by introducing
cos(θij) = aj · ai. For even k we have the following quantum bound for Mk after minimising over all
normalised vectors {ai} for i = 0, 1, 2 (see Appendix B);

min
{ai}

[
Mk

]
= − εk

4
; (even k). (9)

which is saturated by choosing θ10 = θ21 = π/3. Secondly, for odd k we find that maximising over
{ai} gives

max
{ai}

[∣∣Mk
∣∣] = ∣∣∣∣ εk

2
tanh(βε/2)

∣∣∣∣; (odd k), (10)

where the bound is saturated by choosing θ10 = θ21 = π/2. From Equations (9) and (10) it is now
apparent that there exists unitary protocols that violate the bounds in Equation (5). Given that the
bounds Equation (5) necessarily follow from assumptions (i) and (ii), we conclude that quantum
fluctuating work generally lacks a macrorealistic description. Let us note that Equation (5) cannot be
violated for odd k in the high temperature limit. However, Equation (8) shows that the even work
moments are independent of β, and so Equation (5) can indeed be violated for even k regardless of
temperature. This is not surprising, as the standard Leggett-Garg inequality can be violated in the case
of an initially maximally mixed qubit [4]. Violations of the work Leggett-Garg inequality, Equation (5),
can still occur at all temperatures since the system may acquire coherences in energy at intermediate
times due to the unitary driving.

4. Inequalities for the Characteristic Function of Work

While the inequalities Equation (5) provide a simple identification of non-classicality for the
moments of work, we will show in this section that it is possible to condense this information
into two inequalities related to the characteristic function for work rather than the moments
themselves. A similar method has previously been applied to investigate the non-classical properties
of electron-transport through conductors [30]. The benefit of this approach is two-fold. While the
projective energy measurements used to obtain the moments in Equation (2) may be difficult to
implement in practice, measurements of the characteristic function for work can be performed via
ancilla-assisted measurement as shown in [31–34]. Secondly, inequalities for the characteristic function
allow us to consider alternative non-invasive measurement schemes such as the full-counting statistics
approach to the quantum work distribution proposed in [24], as we later show in the next section.

The characteristic function uniquely defines the probability distribution for work in a unitarily
driven system, and is obtained through the Fourier transform of the work distribution;

Gλ(ti, tj) = ∑
εi ,εj

P(εi, εj)e
iλ(εj−εi), (11)



Entropy 2018, 20, 200 6 of 14

with work values εj − εi. Assuming the same protocol given by Equation (6), we can consider a linear
combination of characteristic functions for the three intervals of time shown in Figure 1;

Lλ = Gλ(t0, t1) + Gλ(t1, t2)− Gλ(t0, t2). (12)

The assumptions (i) and (ii) for macrorealism imply the following upper bound on the real part of
Equation (12) for the qubit system (see Appendix C);

Re(Lλ) ≤ 1, (13)

whilst the imaginary part of Equation (12) becomes an equality;

Im(Lλ) = 0. (14)

The bounds Equations (13) and (14) now constitute a pair of Leggett-Garg-type inequalities for
any classical characteristic function for fluctuating work, assuming that the energy is given by either ε

2
or − ε

2 at all times along the driving protocol.
Within the TPM scheme the characteristic function for work is given by [15,16];

GTPM
λ (ti, tj) = Tr

[
η̂i eiλĤH(tj)e−iλĤH(ti)

]
, (15)

where η̂i is the initial state ρ decohered in the basis of Ĥ(ti). The quantum upper bound for the real
part of Equation (12) is as follows (see Appendix D);

max
{ai}

[
Re(Lλ)

]
=

5
4
− 1

4
cos(λε), (16)

Consequently the upper bound exceeds the classical inequality Equation (13) for all λ. Secondly,
the upper bound for the imaginary part of Equation (12) is

max
{ai}

[∣∣Im(Lλ)
∣∣] = ∣∣∣∣12tanh(βε/2)sin(λε)

∣∣∣∣, (17)

with a maximum violation of Im(LG
λ ) = 1

2 tanh(βε/2) for λ = π/2ε. As one would expect,
the quantum bounds Equations (16) and (17) are obtained by choosing the same protocol-dependent
parameters used to obtain Equations (9) and (10) respectively.

To summarise this section we have presented a Leggett-Garg inequality for the characteristic
function of fluctuating work, and shown that the non-classicality observed in the moments of work is
also exhibited in the characteristic function itself for the TPM scheme.

5. Generalisation to Weak Measurements of Work

In the previous section we simply recast the original violations of the Leggett-Garg inequality
Equation (5) into the form relevant to the characteristic function for the work statistics of a qubit. While
this was applied to the TPM protocol, the inequalities Equations (13) and (14) apply to any qubit with
a fixed energy spectrum, and this ultimately allows us to investigate alternative measurement schemes
and their resulting non-classical violations. Due to the invasive nature of projective measurements,
some have argued that the definition of fluctuating work is thermodynamically inconsistent when
applied to states with initial coherences in energy [21,23–25]. In turn this has inspired formulations of
non-invasive work statistics that remain consistent with energy conservation in closed systems [22–24].
In particular, we will consider the full-counting statistics for fluctuating work [24,26,30,35–37].
To obtain the full-counting statistics for work, one couples the system’s Hamiltonian to the momentum
of an external detector, and subsequently measures the phase change acquired by the detector’s
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momentum during the driving process given by the system’s time-dependent Hamiltonian H(t) [36].
In turn this allows one to reconstruct a characteristic function of the following form [24,38];

GFCS
λ (ti, tj) = Tr

[
ρ̂e−i λ

2 ĤH(ti)eiλĤH(tj)e−i λ
2 ĤH(ti)

]
. (18)

For example, as shown in [24] the first moment of Equation (18) yields 〈W(ti, tj)〉 = 〈H(tj)〉 − 〈H(ti)〉;
in other words the average work done on the system is simply the difference in average energy evaluated
in the Heisenberg picture. Consequently one can easily see that the first moment in this measurement
scheme still obeys the Leggett-Garg inequality Equation (5). However, we demonstrate that the same is not
true for the higher order moments contained in the characteristic function Equation (18). Considering again
the quantum two-level system described by Equation (6), it can be shown that the real part of Equation (18)
is equal to the real part of Equation (15) obtained via the TPM scheme (see Appendix E);

Re
(

GFCS
λ (ti, tj)

)
= Re

(
Tr
[
η̂i eiλĤH(tj)e−iλĤH(ti)

])
, (19)

This is a surprising result, as it suggests that the same violations of Equation (13), i.e., the upper
bound Equation (16), can be obtained non-invasively. It is only the imaginary part of GFCS

λ (ti, tj) that
differs from the TPM scheme, in which we find the following upper bound for Equation (12);

max
{ai}

[∣∣Im(LFCS
λ )

∣∣] = ∣∣∣∣2sin2(λε

4
)
sin
(λε

2
)
tanh

( βε

2
)∣∣∣∣, (20)

which is again obtained by choosing θ10 = θ21 = π/2.
The full-counting statistics are not the only way to characterise non-invasive measurements of

work. As proposed by Allahverdyan [23], an alternative characteristic function describing the statistics
of work derived from the Margenau-Hill distribution for successive energy measurements [39,40] is as
follows (see Appendix F):

GMH
λ (ti, tj) = Tr

[
ρ̂eiλĤH(tj) ? e−iλĤH(ti)

]
, (21)

where Â ? B̂ = 1
2 [ÂB̂ + B̂Â] denotes the symmetric Jordan product. Notably the corresponding

probability distribution can be obtained via sequential weak measurement [41]. While the first and
second moments, 〈W〉 and 〈W2〉, are the same as those obtained from the full-counting statistics,
in general higher order moments differ. However, for the isolated driven qubit we again find precisely
the same violations of Equation (13) because the real part of GMH

λ (ti, tj) is also equivalent to the real
part of GFCS

λ (ti, tj). On the other hand the inequality for the imaginary term, Equation (14), cannot be
violated in our setup (Appendix F).

6. Discussion

In the paper we have demonstrated a violation of macrorealism in the statistics of fluctuating work
for a quantum system unitarily driven out of thermal equilibrium for three different characterisations
of the work statistics. As with the original Leggett-Garg inequalities, these violations stem from the
absence of a global three-time probability distribution of the form Equation (4) for both strong and weak
measurement schemes. This emphasises the fact that quantum fluctuations in work are manifestly
different from the stochastic fluctuations encountered in classical non-equilibrium thermodynamics
due to the influence of temporal correlations on the work moments. These findings compliment recent
results showing that fluctuating work cannot always be assigned a well-defined probability distribution
when quantum coherence is taken into account [22–25,42,43]. Ultimately our analysis shows that the
Leggett-Garg inequalities provide a useful tool for understanding the difference between quantum and
classical thermodynamics, and the inequalities Equations (5), (13) and (14) may find an application in
identifying quantum behaviour in thermal machines [44].
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Appendix A. Derivation of Equation (5)

By using the condition Equation (4) for the marginal probabilities describing the statistics of the
three experiments displayed in Figure 1, one can express the following linear combination of work,
Equation (3) as;

Mk = ∑ε0,ε1,ε2
P(ε0, ε1, ε2)

[
(ε2 − ε1)

k + (ε1 − ε0)
k − (ε2 − ε0)

k
]

,

=

(
εk + (−1)kεk

)
.
[
P(+,−,+) + P(−,+,−)

]
.

(A1)

Note here that P(+,−,+) refers to the sequence
{

ε0 = +ε/2, ε1 = −ε/2, ε2 = +ε/2
}

and
similarly for P(−,+,−). The last line in Equation (A1) is reached by using the fact εi = ±ε/2, ∀i and
that all other sequences drop out of the above summation regardless of the probability. Given that
one is free to choose any arbitrary distribution P(ε0, ε1, ε2), we arrive at a Leggett-Garg inequality for
fluctuating work;

0 ≤ Mk ≤ εk + (−1)kεk, ∀k. (A2)

where the lower bound is achieved by choosing P(+,−,+) = P(−,+,−) = 0 and the upper bound
by setting P(+,−,+) = P(−,+,−) = 1

2 .

Appendix B. Derivation of Equation (8)

We begin with the standard formula for the joint probability to observe energy εi = ± ε
2 at time ti

and then energy εj = ± ε
2 at time tj from projective measurements of the Hamiltonian;

P

(
εi = ±

ε

2
, εj = ±

ε

2

)
= Tr

[
ρ̂P̂±ai

]
.Tr
[
P̂±aj

P̂±ai

]
. (A3)

The above formula can be simplified by using the fact that each projector can be written as
P̂±ai

= 1
2 ( Î ± ai · σ̂), and then applying the identity Tr[(a · σ̂)(b · σ̂)] = 2a · b. This leads to

P

(
εi = − ε

2 , εj = + ε
2

)
= 1

16 Tr
[
( Î + r · σ̂).( Î − ai · σ̂)

]
.Tr
[
( Î + aj · σ̂).( Î − ai · σ̂)

]
,

= 1
4

[
(1− r · ai).(1− aj · ai)

]
,

(A4)

and similarly

P

(
εi = +

ε

2
, εj = −

ε

2

)
=

1
4

[
(1 + r · ai).(1− aj · ai)

]
. (A5)
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Finally from the definition of the moments for work, Equation (2), we arrive at Equation (8);

〈Wk(ti, tj)〉 = ∑εi ,εj
P(εi, εj)(εj − εi)

k,
= εk[P(−,+

)
+ (−1)kP

(
+,−

)]
,

=
(1−aj ·ai)

4 εk
[

1− r · ai + (−1)k(1 + r · ai)

]
.

(A6)

Now the moments can be substituted into Equation (3). For even k the inequality is
state independent and can be rewritten in terms of the angles between each Bloch vector,
denoted ai · aj = cos(θij);

Mk =
εk

2

[
1 + cos(θ10 + θ21)− cos(θ21)− cos(θ10)

]
. (A7)

where we have used the trigonometric relation θ10 + θ21 = θ20. The lower bound, Equation (9) is
obtained by setting the angles to θ10 = θ21 = π/3. To bound Equation (3) for odd k we note the
following relation; r · a1 = tanh(βε/2)cos(θ01). In this case Equation (3) can be be written as follows;

Mk =
εk

2
tanh(βε/2)

[
cos(θ01)cos(θ12)− cos(θ01 + θ12)

]
. (A8)

The bound Equation (10) is obtained by setting θ10 = θ21 = π/2.

Appendix C. Derivation of Equations (13) and (14)

The characteristic function for work done by a system driven unitarily in time between t = ti and
t = tj is given by the following;

G(λ, ti, tj) = 〈eiλW(ti ,tj)〉, (A9)

= ∑
εi ,εj

P(εi, εj)e
iλ(εj−εi), (A10)

where P(εi, εj) is some arbitrary joint probability governing the statistics of energy at two separate
times. Under the assumptions (i) and (ii) for macrorealism this again implies the existence of a
three-time distribution of the form Equation (4), meaning that Equation (12) can be rewritten as

Lλ = G(λ, t1, t2) + G(λ, t0, t1)− G(λ, t0, t2), (A11)

= ∑
ε1,ε2

P(ε1, ε2)eiλ(ε2−ε1) + ∑
ε0,ε1

P(ε0, ε1)eiλ(ε1−ε0) − ∑
ε0,ε2

P(ε0, ε2)eiλ(ε2−ε1), (A12)

= ∑
ε0,ε1,ε2

P(ε0, ε1, ε2)

[
eiλ(ε2−ε1) + eiλ(ε1−ε0) − eiλ(ε2−ε0)

]
. (A13)

Defining θij = λ(εj − εi), the real and imaginary parts of Equation (12) are then

Re(Lλ) = ∑ε0,ε1,ε2
P(ε0, ε1, ε2)

[
cos(θ12) + cos(θ01)− cos(θ01 + θ12)

]
,

Im(Lλ) = ∑ε0,ε1,ε2
P(ε0, ε1, ε2)

[
sin(θ12) + sin(θ01)− sin(θ01 + θ12)

]
.

(A14)

To obtain bounds on the real and imaginary terms in Equation (A14) we use the fact that εi = ± ε
2

at all times and consider the various combinations of θ01 and θ12 shown in Table A1. Given that we are
free to choose any P(ε0, ε1, ε2), the bounds in Equations (13) and (14) follow immediately.
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Table A1. Displays the various combinations of θ01 and θ12 in Equation (A14).

θ01 θ12 cos(θ12) + cos(θ01)− cos(θ12 + θ01) sin(θ12) + sin(θ01)− sin(θ12 + θ01)

0 0 1 0
0 −λε 1 0
0 λε 1 0
−λε +λε 2cos(λε)− 1 0
λε −λε 2cos(λε)− 1 0
−λε 0 1 0
λε 0 1 0

Appendix D. Maximal Violations for the Characteristic Function

Here we derive the quantum bounds for Equation (12). The moments of work obtained by
successive projective measurements are given by Equation (8), and can be substituted into Equation (15)
by using

Gλ(ti, tj) = 〈eiλW(ti ,tj)〉 =
∞

∑
k=0

(iλ)k

k!
〈Wk(ti, tj)〉. (A15)

where we have used the series expansion for the complex exponential function in terms of the work
moments. This leads to an expression for the real part of the characteristic function;

Re(Gλ(ti, tj)) = ∑∞
k=0

(−1)k

(2k)! λ2k〈W2k(ti, tj)〉,

= 1 +
(1−aj ·ai)

2 ∑∞
k=1

(−1)k

(2k)! (λε)2k,

= 1 +
(1−aj ·ai)

2
[
cos(λε)− 1

]
.

(A16)

Substituting Equation (A16) into Equation (12) yields the following;

Re(Lλ) = Re
(

Gλ(t1, t2) + Gλ(t0, t1)− Gλ(t0, t2)

)
,

= 1 +
(

cos(λε)−1
)

2

[
1 + a2 · a0 − a2 · a1 − a1 · a0

]
,

(A17)

To bound Equation (A17) we denote ai+1 · ai = cos(φi) and use the trigonometric relation
a2 · a0 = cos(φ0 + φ1). This leads to the following inequality;

Re(Lλ) ≤
5
4
− 1

4
cos(λε), (A18)

where the upper bound is obtained by choosing θ10 = θ21 = π/3, as with the Leggett-Garg inequality
for even moments of work in Equation (9).

Turning to the imaginary part of Equation (15) and using the expression Equation (8) for the work
moments we find the following;

Im(Gλ(ti, tj)) = ∑∞
k=0

(−1)k

(2k+1)! λ
2k+1〈W2k+1(ti, tj)〉,

=
(r·ai)(aj ·ai−1)

2 sin(λε).
(A19)

For the bounds on the imaginary term, we substitute Equation (A19) into Equation (12) and
choose the same set of parameters that were applied to Equation (10), namely θ10 = θ21 = π/2, ending
with Equation (17).
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Appendix E. Maximum Violations for Full-Counting Statistics

In this section we provide a derivation of Equations (19) and (20). We first begin with the
characteristic function Equation (18) for a two-level system described by the Hamiltonian Equation (6);

GFCS
λ (ti, tj) = Tr

[
ρ̂e−i λ

4 ai ·σ̂ei λ
2 aj ·σ̂e−i λ

4 ai ·σ̂
]
. (A20)

We now expand the exponential operators using e−iλai ·σ̂ = cos(λ) Î − isin(λ)ai · σ̂;

e−i λ
4 ai ·σ̂ei λ

2 aj ·σ̂e−i λ
4 ai ·σ̂ = cos2(λε/2) Î − i

2 sin(λε)(ai · σ̂) + isin(λε/2)cos2(λε/4)(aj · σ̂)

− 1
2 sin2(λε/2)

{
(ai · σ̂), (aj · σ̂)

}
− isin2(λε/4)sin(λε/2)(ai · σ̂)(aj · σ̂)(ai · σ̂).

(A21)

Now we substitute this expansion back into GFCS
λ (ti, tj) above, along with ρ̂ = 1

2 ( Î + r · σ̂),
and apply the identity Tr[(a · σ̂)(b · σ̂)] = 2a · b;

GFCS
λ (ti, tj) = cos2(λε/2) − i

2 sin(λε)(r · ai) + isin(λε/2)cos2(λε/4)(r · aj) + sin2(λε/2)(ai · aj)

+ 1
4 sin2(λε/2)Tr

[
(r · σ̂)

{
(ai · σ̂)(aj · σ̂)

}]
− i

2 sin2(λε/4)sin(λε/2)
(

Tr
[
(ai · σ̂)(aj · σ̂)(ai · σ̂)

]
+ Tr

[
(r · σ̂)(ai · σ̂)(aj · σ̂)(ai · σ̂)

])
.

(A22)

To simplify Equation (A22) we make use of the identity (ai · σ̂)(aj · σ̂) = (ai · aj) Î + i(ai × aj) · σ̂.
This leads to the following set of relations;

Tr
[
(r · σ̂)

{
(ai · σ̂)(aj · σ̂)

}]
= 2i

[
(ai × aj) · r + (aj × ai) · r

]
= 0, (A23)

Tr
[
(ai · σ̂)(aj · σ̂)(ai · σ̂)

]
= 2i(aj × ai) · ai = 0, (A24)

Tr
[
(r · σ̂)(ai · σ̂)(aj · σ̂)(ai · σ̂)

]
= 2(r · ai)(aj · ai)− 2(r× ai) · (aj × ai). (A25)

Substituting these into Equation (A22), collecting the real and imaginary terms and simplifying
leads to Equation (19);

Re
(

GFCS
λ (ti, tj)

)
= 1 +

(1− aj · ai)

2
[
cos(λε)− 1

]
, (A26)

and similarly

Im
(

GFCS
λ (ti, tj)

)
= sin(λε/2)cos2(λε/4)(r · aj) − 1

2 sin(λε)(r · ai)

− sin(λε/2)sin2(λε/4)
[
(r · ai)(aj · ai)− (r× ai) · (aj × ai)

]
.

(A27)

Noting that one can rewrite (r× a1) · (a2 × a1) = tanh(βε/2)
[
cos(θ01 + θ12)− cos(θ01)cos(θ12)

]
,

substituting Equation (A27) into Equation (12) leads to the following;

Im(LFCS
λ ) = 2sin2(λε/4

)
sin
(
λε/2

)
tanh

(
βε/2

)[
cos(θ01 + θ12)− cos(θ01)cos(θ12)

]
, (A28)

with the upper bound Equation (20) given by setting θ10 = θ21 = π/2.

Appendix F. Maximum Violations for the Margenau-Hill Distribution

In this section we provide details of Leggett-Garg violations found from the characteristic function
Equation (21). As noted in the main text, a work distribution based on the Margenau-Hill distribution
was proposed in [23] to extend the definition of fluctuating to states with initial energy coherences.
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Firstly, note that the Margenau-Hill distribution can be used to define a joint probability for the
successive energy outcomes εi, εj at times ti and tj respectively [40];

P

(
εi = ±

ε

2
, εj = ±

ε

2

)
= Tr

[
ρ̂P̂±ai

? P̂±aj

]
. (A29)

The corresponding characteristic function of work is then as follows;

GMH
λ (ti, tj) = 〈eiλW(ti ,tj)〉,

= ∑εi ,εj
P(εi, εj)e

iλ(εj−εi),

= Tr
[
ρ̂eiλaj ·σ̂ ? e−iλai ·σ̂

]
.

(A30)

Taking the expansion e−iλai ·σ̂ = cos(λ) Î − isin(λ)ai · σ̂, we obtain the following
operator expression;

eiλaj ·σ̂ ? e−iλai ·σ̂ = cos2(λε/2) Î + isin(λε)(aj − ai) · σ̂ + sin2(λε/2)(aj · σ̂). (A31)

Substituting this into Equation (A30) and applying the same identities used throughout
Appendix E gives an expression for the characteristic function;

GMH
λ (ti, tj) = cos2(λε/2) + sin2(λε/2)(aj · ai) + isin(λε)(aj − ai) · r. (A32)

We can immediately see that the real part of GMH
λ (ti, tj) is again equivalent to Equation (19). As for

the imaginary term, a straightforward substitution of Equation (A32) into Equation (12) reveals that

Im(LMH
λ ) = 0, (A33)

for all choices of θij.
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