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Future Prospects of Spectral Clustering Approaches in
Proteomics
Yasset Perez-Riverol, Juan Antonio Vizcáıno,* and Johannes Griss*

In this article, current and future applications of spectral clustering are
discussed in the context of mass spectrometry-based proteomics approaches.
First of all, the main algorithms and tools that can currently be used to
perform spectral clustering are introduced. In addition, its main applications
and their use in current computational proteomics workflows are explained,
including the generation of spectral libraries and spectral archives. Finally,
possible future directions for spectral clustering, including its potential use to
achieve a deeper coverage of the proteome and the discovery of novel
post-translational modifications and single amino acid variants.

Mass spectrometry (MS) based proteomics has become a robust
and unique approach to profile the protein composition of com-
plex biological samples. In the most popular data-dependent ac-
quisition (DDA) approaches, precursor ions are selected accord-
ing to their abundance, and a number of them (the top n ions) are
fragmented into MS/MS spectra for further analysis. In contrast,
data-independent acquisition (DIA) approaches implement a par-
allel fragmentation of all precursor ions, regardless of their inten-
sity or other characteristics, creating a complete digital record of
the sample.[1]

The most common method to identify mass spectra in DDA
approaches is database searching, where the acquired spectra
are compared to generated (theoretical) ones coming from pep-
tide sequences drawn from a given protein sequence database
(e.g., UniProt[2]). Database searching has been invaluable in au-
tomating the characterization of tandem mass spectra and fa-
cilitating proteomics analyses.[3] However, this methodology still
has limitations such as i) spectra remain unidentified due a low
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signal-to-noise ratio of fragment peaks;
ii) the underlying peptide is not present
in the protein sequence database used;
and iii) unanticipated peptide sequences
that can change the fragmentation
pattern or shift the expected mass of
fragment ions, including peptides con-
taining post-translational modifications
(PTMs), artefactual modifications, sin-
gle amino acid variants (SAAVs), or
splicing sites. As a result, on average,
approximately 70–75% of analyzed
DDA spectra can remain uniden-
tified in an average experiment.[4,5]

Multiple alternative methods have been developed that can in-
crease the proportion of assigned spectra, which can be used
alone or in combination: i) the use of multiple sequential
sequenced-based search engines[6]; ii) dependent peptide[7] and
open modification searches[8]; iii) de novo sequencing[9]; and iv)
and spectral library searching.[10] Spectral library searching is the
only one of the mentioned methods that at present does not
dramatically increase the search time and reuses data already
obtained in previous experiments.[10] Spectral library search en-
gines, such as SpectraST[11] or BiblioSpec,[12] use spectral libraries
generated from previously identified spectra to match observed
MS/MS spectra.[10] In addition to providing a complementary
method to database searches in DDA experiments, spectral li-
brary searching has become a central step in DIA approaches,
such as SWATH-MS experiments.[13] Here, precursors within
defined m/z widows are cofragmented, resulting in complex
and convoluted MS/MS spectra. Extracted ion chromatograms
(XICs) of the fragments are generated and the coeluting peaks
of the fragments of each precursor are used in the quantitative
analysis.[14] In themost-usedmethods currently, spectral libraries
generated from previous DDA analyses are utilized in the analy-
sis. Ideally, the spectral library should be generated on the same
MS instrument used to acquire the SWATH-MS data, as the cor-
relation of the fragment intensities for a peptide acquired on dif-
ferent instruments has been shown to be potentially low.[15]

Spectral clustering algorithms aim to accurately and efficiently
group large numbers of spectra based on their similarity, such
that all spectra in a given cluster belong to the same analyte (pep-
tides in this case). The basis of any spectral clustering algorithm
relies on three main components: i) assessing the similarity be-
tween spectra (distance function); ii) creating clusters of related
spectra on the basis of pairwise similarities; and iii) construct-
ing a representative or consensus spectrum for each resulting
cluster.[16] The differences between algorithms and tools depend
on how these principles are implemented and which preprocess-
ing steps are used prior to the actual clustering step (e.g., inten-
sity normalization and peak picking).
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1. Existing Spectral Clustering Algorithms and
Their Applications

The first two spectral clustering algorithms tailored for pro-
teomics approaches were MS2Grouper[16] and Pep-Miner,[17] in-
troduced in 2004–2005. The main focus of these tools was to
group mass spectra from individual experiments prior to the
identification process, in order to decrease the running time (and
computation requirements) of database-based searches. This
process achieved a reduction in the number of spectra searched
by around 20%, with a reasonable trade-off of a 1% reduction
in the number of peptides identified (in datasets of �50 000
spectra).[16] Nevertheless, this methodology was not adopted into
any popular pipeline or search engine. In 2007 Frank et al. in-
troduced the MS-Cluster algorithm with the same main goal in
mind.[18] The algorithm was able to cluster more than 10 million
MS/MS spectra, which led to a tenfold reduction in the amount
of data that had to be analyzed. More importantly, they showed
that the search results were more accurate when spectral cluster-
ing was performed prior to the identification. Additionally, Frank
et al. already formulated the idea that spectral clustering could
furthermore be used to target unidentified spectra of interest.
In 2007, Lam and cols. introduced the spectral library search

engine SpectraST. This tool provides an additional module for
spectral clustering and spectra library building, enabling users to
build custom spectral libraries. The original algorithm was vali-
dated using 1.3 M identified spectra from PeptideAtlas.[11] Spec-
traST was extended in 2013 to build spectral libraries from sets
of unidentified spectra[19] and used to study the source of tick
blood meals. Most importantly, this was, as far as we are aware,
the first time that new biological knowledge was directly derived
from clusters of unidentified MS/MS spectra.
The main focus of algorithm development then moved from

clustering individual (relatively small) experiments to large data
volumes. In 2011, Frank et al. improved MS-Cluster, and man-
aged to cluster over 500 million spectra simultaneously. In this
case, they clustered already analyzed datasets that contained both
identified and unidentified spectra. Some of the identified spectra
were then clustered with similar unidentified spectra, which en-
abled the authors to infer additional peptide identifications. This
phenomenonwas also observed acrossMS runs coming fromdif-
ferent species. Additionally, the authors introduced the concept of
spectral archives, which can keep representative consensus spec-
tra of all spectra (including both identified and unidentified ones)
and act as a data storage and compression mechanism for large
data volumes (including, e.g., public data repositories).
Two years later, in 2013, we introduced the first version of

the PRIDE Cluster algorithm and the corresponding resource.[20]

Based on the concepts formulated by Frank et al., we devel-
oped an adapted version of MS-Cluster, called PRIDE Cluster,
which was able to cluster all publicly available identified spec-
tra at the time in the PRIDE database (�21 million), one of the
most prominent public repositories for MS proteomics data[21]

(Figure 1A). The primary goal was to detect and validate cor-
rect peptide identifications within the very heterogeneous data
stored in PRIDE. This approach followed a simple concept: if the
same spectrum (defined as “being in the same spectral cluster”)
was identified as the same peptide sequence across different ex-
periments, most likely it was a correct identification. We used

validated identifications to automatically create spectral libraries,
including species not yet covered by other resources. Validation
(quality control) of identifications is considered then as another
interesting application of spectral clustering.
In 2016 we extended this approach to cluster all spectra

available in PRIDE, including both identified and uniden-
tified, and developed a new spectrum clustering algorithm
called spectra-cluster, that made use of Apache Hadoop
(http://hadoop.apache.org/), an open source technology
commonly used in “big data” analysis. We clustered 256 million
spectra and recognized three classes of spectra: i) correctly
identified spectra (Figure 1E,F); ii) consistently incorrectly
identified spectra (Figure 1E); and iii) reproducibly unidentified
spectra (Figure 1G). In a targeted reanalysis, we showed that a
significant proportion of the reproducibly unidentified spectra
seemed to originate from spectra with unexpected PTMs and/or
SAAVs. This highlighted the use of spectral clustering as a tool
to achieve a greater depth of the proteome. In fact, the PRIDE
Cluster resource (http://www.ebi.ac.uk/pride/cluster/) currently
provides access to different compiled sets of commonly observed
unidentified spectra, for reanalysis by the community.
Also in 2016, The and Käll introduced the MaRaCluster

algorithm.[22] In contrast to all other approaches, MaRaCluster
uses a rarity-based distance model and complete-linkage cluster-
ing. Thereby, MaRaCluster ignores the actual intensities of frag-
ment ions but focuses on peaks only shared by a few number
of spectra for the clustering process. This approach made MaR-
aCluster less error-prone to chimeric spectra, a common limita-
tion of these approaches.

2. Future Applications of Spectral Clustering

In our opinion, spectral clustering will become more popular
mainly for two of the applications outlined above. The first one
is the generation of accurate and complete spectral libraries (of
identified spectra).[13] We believe that their use will keep increas-
ing both for DDA, but especially for the increasingly popular DIA
approaches. In the case of DDA, the combination of different
database search engines has proven to increase the number of
identifications between 10 and 20% (see, e.g., ref. 6,23), in parallel
to a huge increase in running time. However, when combining
spectral library and database searches (Figure 1H) the compute
time does not increase dramatically, providing a higher sensitiv-
ity than when two sequence-based search engines are combined.
The combination of both approaches is becoming increasingly
popular and has captured the attention of popular tools such as
the Trans-Proteomics Pipeline (TPP)[24] and MASCOT (Matrix
Science, www.matrixscience.com/help/spectral_library.html).
Furthermore, spectral libraries are essential in the design of
spectral assays for the analysis of DIA data (e.g., SWATH-MS).
At the time of writing, at least four tools can be used for
the analysis of SWATH-MS data which are mainly based on
spectral libraries: Spectronaut,[25] OpenSWATH,[26] Skyline,[27]

and PeakView (SCIEX). All of them enable the construction
of spectral libraries using the in-built clustering algorithms
implemented in SpectraST or BiblioSpec.[28] A study by Navarro
et al.[13] observed a strong overlap of identifications provided
by these four spectral library-based software tools, highlighting
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Figure 1. Spectral clustering in proteomics. The input data for any clustering algorithm consists of A) publicly available mass spectra data in proteomics
repositories (unidentified, correctly identified, and/or incorrectly identified spectra); B) identified spectra from small-scale experiments. After the spectral
clustering process onemain output is expected: C) spectral archives. The spectral archives contain two types of clusters: D) clusters with identified spectra
(spectral libraries) and clusters of unidentified spectra. Multiple applications are represented: E) by clustering high-quality peptide identifications with
low-quality ones, quality assessment of possible false positive identifications can be performed. F) Spectral clustering can help to infer identifications
for unidentified spectra, by clustering identified and unidentified spectra together. G) Detection of clusters of unidentified spectra. The resulting clusters
should be analyzed with alternative methods such as de novo or open modification searches. H) The combination of database searches with spectral
library searches can be useful to increase the number of identifications. I) Finally, spectral libraries in DIA analysis algorithms where spectral assays are
designed from previous spectral libraries generated from DDA data.

the big potential of DIA analysis based on spectral searches for
improving reproducibility, for example, in clinical settings.
In our opinion, quality assessment of peptide identifica-

tions is the second main application where spectral cluster-
ing will play a major role. Recently, different studies high-
lighted considerable differences in the performance of search en-
gines for peptide–protein identifications.[6,29] These differences
have been extensively observed in the PRIDE Cluster resource
(http://www.ebi.ac.uk/pride/cluster/).[4] Based on the clustering
results, we provide sets of validated peptide identifications. Pro-
cessing repository-sized datasets is in our opinion a core applica-
tion of spectral clustering algorithms.
However, probably the most exciting current application

of spectral clustering is to recognize reproducibly observed
unidentified spectra. This approach can be applied to both small
(individual datasets) and large-scale data volumes (as explained
above in the case of PRIDE datasets). These commonly observed
unidentified spectra can subsequently be targeted for more

in-depth analysis, by using de novo sequencing or the increas-
ingly popular open modification searches. It is not unreasonable
to assume that a substantial proportion of these unidentified
spectra corresponds to unknown peptide sequence variants or
peptides containing unexpected PTMs. This approach is highly
attractive to increase the depth of the coverage of the human pro-
teome, including the detection of novel peptidoforms and proteo-
forms of biological importance. In this context, we are convinced
that spectral clustering can be an essential tool to reuse and de-
rive new biological knowledge from public proteomics datasets.
The original goal of spectral clustering, to reduce the amount

of data required to be processed by search engines will, in
our view, most likely continue to play a minor role. Nowadays,
computational power is not a limiting factor in most approaches.
However, it has been shown that the resulting consensus spectra
can be of better quality than the best recorded spectrum for a
given peptide,[30] improving the sensitivity of the analysis. In ad-
dition, additional PSMs can be inferred by clustering identified
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with unidentified spectra (Figure 1F). This approach could re-
duce a major bottleneck of spectral library searching, when users
often find existing libraries not suited to their needs, but do not
want to invest the often considerable efforts to build their own
libraries. We also found that this approach can be used to im-
prove the detectability of low-abundant proteins and increase the
accuracy of label-free quantificationmethods (unpublished data).
The efforts to produce massive amounts of spectral data

from synthetic peptides will additionally increase the use of
spectral clustering for validation purposes.[31] ProteomeTools
(http://www.proteometools.org/), aims to synthesize �1.4 mil-
lion individual peptides to cover all human proteins. The first it-
eration of the project has already delivered the synthesis and LC–
MS/MS analysis of>330 000 synthetic tryptic peptides, covering
essentially all canonical human proteins in UniProtKB/Swiss-
Prot. All the MS data has been made publicly available, so re-
searchers are now able to cluster their own experimental data
with these spectra, representing “ground-truth” identifications.
Clusters of these synthetic peptides can then be potentially
used as gold-standard identifications and to validate and quality-
control the identification results. These synthetic peptides are a
very valuable tool to benchmark the accuracy of spectral cluster-
ing algorithms. However, undoubtedly, more research is needed
in this particular domain.

3. Computational Challenges

Despite highly attractive potential applications, the overall use
of spectral clustering algorithms has been so far low. One of
the main limitations is the lack of “user-friendly” software tools
to use them. In fact, all algorithms are currently only accessi-
ble as command line tools, which makes this technique only
available to groups with sound bioinformatics and software de-
velopment skills. Fortunately, this might soon change through
the integration of algorithms into common proteomics software
tools. Work is under way to integrate MaRaCluster into OpenMS
(https://github.com/OpenMS/, accessedMarch 30, 2018) and we
will soon release a Proteome Discoverer node for the spectra-
cluster algorithm. In our view, these two (and related future) de-
velopments will considerably increase the accessibility to spectral
clustering algorithms.
A second challenge is the lack of a standard file for-

mat to exchange MS/MS clustering results. The proteomics
community has recently started the development of a such
spectral library standard format (https://github.com/HUPO-
PSI/SpectralLibraryFormat), which will support the represen-
tation of spectral libraries, spectral archives, and intermediate
clustering results.[32] We envision that the development of such
standard file format will accelerate the development of new
algorithms, tools, and research around spectral clustering.
Two recent studies[33,34] showed considerable differences in the

evaluation of spectral clustering algorithms, with regard to ac-
curacy, and compute performance. There are several unresolved
challenges in this area. In fact, the currentmetrics used to bench-
mark spectral clustering algorithms, namely cluster homogene-
ity (purity), cluster completeness (within-cluster entropy), and
peptide completeness (within-peptide entropy), need to be stan-
dardized. More importantly, new gold-standard datasets have to

be generated, annotated, and deposited in public databases to en-
able unbiased comparisons.
Furthermore, it is important to highlight that spectral clus-

tering represents an attractive platform for the development of
“big data” methodologies in proteomics, including the adapta-
tion or extension of existing algorithms to work with large data
volumes, for instance in the context of public repositories like
PRIDE orMassIVE. During the development of the spectra-cluster
algorithm,we explored for the first time the use of “big data” tech-
nologies (Hadoop)[35] to efficiently handle huge data volumes (see
above).[4,33]

Finally, we believe that spectral clustering can be a valuable tool
in other fields using MS as an analytical platform (for MS/MS
based data). For instance, the spectra-cluster algorithm has already
been applied to MS/MS lipidomics data.[36] The same analogous
principles and possible applications would be applicable there.
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