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Abstract: Pathogenic microorganisms account for large production losses in the agricultural sector.
Phytophthora capsici is an oomycete that causes blight and fruit rot in important crops, especially those
in the Solanaceae family. P. capsici infection is difficult to control due to genetic diversity, arising from
sexual reproduction, and resistant spores that remain dormant in soil. In this study, the metabolomics
of tomato plants responding to infection by P. capsici were investigated. Non-targeted metabolomics,
based on liquid chromatography coupled to mass spectrometry (LC-MS), were used with multivariate
data analyses to investigate time-dependent metabolic reprogramming in the roots, stems, and leaves
of stem-infected plants, over an 8 day period. In addition, phytohormones and amino acids were
determined using quantitative LC-MS. Methyl salicylate and 1-aminocyclopropane-1-carboxylate
were detected as major signalling molecules in the defensive response to P. capsici. As aromatic
amino acid precursors of secondary metabolic pathways, both phenylalanine and tryptophan showed
a continuous increase over time in all tissues, whereas tyrosine peaked at day 4. Non-targeted
metabolomic analysis revealed phenylpropanoids, benzoic acids, glycoalkaloids, flavonoids, amino
acids, organic acids, and fatty acids as the major classes of reprogrammed metabolites. Correlation
analysis showed that metabolites derived from the same pathway, or synthesised by different
pathways, could either have a positive or negative correlation. Furthermore, roots, stems, and leaves
showed contrasting time-dependent metabolic reprogramming, possibly related to the biotrophic vs.
necrotrophic life-stages of the pathogen, and overlapping biotic and abiotic stress signaling. As such,
the targeted and untargeted approaches complemented each other, to provide a detailed view of key
time-dependent metabolic changes, occurring in both the asymptomatic and symptomatic stages
of infection.

Keywords: aromatic amino acids; correlation; metabolomics; Phytophthora capsici; phytohormones;
tomato; time-dependent metabolic reprogramming

1. Introduction

Phytophthora capsici is an oomycete pathogen with a broad host range, and regarded as one of
the 10 most important plant pathogens. P. capsici infects more than 45 plant species (e.g., cucurbits,
pepper, eggplant, and tomato, etc.), causing damage (crow-, root-, and fruit-rot) to many economically
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important crops. In this regard, disease occurrence and severity has escalated in recent years, leading
to economic losses worldwide. P. capsici is a hemibiotrophic pathogen, with an initial biotrophic phase
followed by a switch to a necrotrophic lifestyle. Depending on environmental conditions, infection of
tomato plants can occur via the roots, crown and foliage, or even the fruit [1–3].

In general, plants are continuously exposed to attack by pathogenic microorganisms, both above
and below ground. In defence, multi-layered mechanisms consisting of constitutive and inducible
responses are employed [4,5]. The initial stages of a plant–pathogen interaction include the perception of
microbe/pathogen-associated molecular patterns (M/PAMPs) or damage-associated molecular patterns
(DAMPs) by specialised pattern recognition receptors (PRRs) [6–8], activation of intracellular signalling
(mostly the mitogen-activated protein kinase (MAPK) pathway), generation of reactive oxygen species
(ROS), and production of defence-associated phytohormones [9–12]. The latter play a pivotal role
in plant biochemical processes, including defence responses [4,13,14], and accumulate in varying
amounts in response to attempted infection or insect attacks, thereby leading to reprogramming of the
transcriptome, activation of defence genes, and production of phytoalexins [4,15,16]. To minimise the
fitness costs of unnecessary activation of defence genes, and to launch a specific immune response,
plants produce a mixture of hormones that are specific to the stress detected. Salicylic acid (SA)-induced
resistance is more effective against biotrophic pathogens [17], while jasmonic acid (JA)- and/or ethylene
(ET)-induced resistance is operative against necrotrophic pathogens and herbivore attack. Different
plant species can employ different signal transduction pathways to specify the immune response. Other
phytohormones, including cytokinins, auxins, abscisic acid (ABA), gibberellins, and brassinosteroids,
have been reported to play a role in plant resistance; however, knowledge regarding the significance of
these molecules is limited [4,14,18,19]. These hormones interact either antagonistically or synergistically
with the SA-JA-ET signalling backbone, and reprogram the defence output [19–21].

Following perception and signalling, plants modify their cell walls through lignin synthesis and
callose deposition, as well as the biosynthesis of antimicrobial phytoalexins [4,22,23]. The ability of
plants to mount an immune response under stress conditions is associated with a high probability
of survival under such conditions. However, these responses are energy demanding and have
high fitness costs. For plant defence execution, energy is critical, and plays an important role in
defence gene expression in support of various metabolic pathways [24]. Thus in the past, attempts
have been made to understand the underlying metabolic pathways involved in plant physiological
processes (energy regulation, growth and development of tissue, and reproduction) and defence
response regulation [25]. Amino acids are molecules used as sources of carbon and nitrogen, and are
precursors of the molecular skeletons of compounds to be synthesised. Upon infection, synthesis
of these metabolites can be supported by energy-generating pathways such as the tricarboxylic
acid (TCA) pathway, glycolysis, and the pentose phosphate pathway [25,26], which then drives
immune defence responses. The 20 amino acids can be converted by various enzymatic reactions to
seven precursors and intermediates (α-ketoglutarate, acetoacetate, acetyl-CoA, fumarate, oxaloacetate,
pyruvate, and succinyl-CoA) for energy generation [27]. In turn, the aromatic amino acids (Phe and Tyr)
provide the phenolic group for the production of various phenolic molecules via the phenylpropanoid
pathway, and these molecules have direct and indirect effects on pathogens [28–31]. Aromatic amino
acids (Trp and Tyr) can also be converted to various amines such as serotonin and tyramine [32].
Trp also serves as a precursor for the production of indole-3-acetic acid, a phytohormone playing a
pivotal role in plant growth and resistance [33,34].

Under stressed conditions plants are known to sacrifice some energy required for physiological
processes, which is then channelled towards defence activation [27,35], and is associated with primary
metabolite modification. Using metabolomics, one can obtain a “snapshot-in-time” of these events,
and to deduce metabolic reprogramming taking place during plant defence responses. By definition,
this omics approach is an unbiased analysis of the whole metabolome in a living system [36].
However, chemical diversity of metabolites is a major challenge, making whole metabolome analysis
difficult [36,37]. Depending on the chosen analytical platform, the extraction method will favour
certain metabolites in the said scenario.
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P. capsici is a broad-host-range pathogen, and disease initiation and progression will depend on
the site of infection, the initial inoculum, the physiological condition of the plants, and the inherent
ability of the cultivar to withstand the infection/counter the actions of the pathogen [1–3]. Previous
studies have investigated plant defences to P. capsici, with no/very few metabolic studies that included
looking at the metabolic reconfiguration correlated to the defensive state of the plant to the pathogen.
Thus, in the present study, both non-targeted and targeted analyses were used to investigate the
time-dependent metabolic reprogramming in tomato plants responding to P. capsici infection.

2. Results

2.1. Symptom Development

At the outset, we monitored the symptom progression in the tomato plants (S. lycopersicum
“Moneymaker”) inoculated with P. capsici spores in time-course experiments (Figure S1). As observed
in previous studies [38], disease symptoms were observed 4 to 8 d post-inoculation (d.p.i.), with day 8
showing a complete diseased state. Symptoms included wilting and crown rot, and, in some instances,
the lower stem collapsed (stem rot due to stem inoculation), leading to rapid wilting of the canopy and
plant death (Figure S2). Phytophthora spp. are destructive pathogens with a hemi-biotrophic lifestyle
(this features a biotrophic phase which then switches to a necrotropic phase) [39]. Thus, P. capsici
infection involves a biotrophic phase in which the host plant appears healthy and unharmed, lasting
for 0–2 d (Figure S1). Following successful infection, the pathogen switches to the necrotrophic phase
(4–8 d), accompanied by wilting and subsequent plant collapse (Figure S1).

2.2. Aromatic Amino Acid Quantification

In order to investigate the involvement of aromatic amino acids (Phe, Trp, and Tyr) in the
tomato plant response to P. capsici inoculation, 50% methanol extracts of roots, stems, and leaves were
analysed using an multiple reaction monitoring (MRM) method, based on ultra-high-performance
liquid chromatography triple quadrupole mass spectrometry (UHPLC-QqQ-MS). The content of Phe
(Figure 1A) was found to be differentially modulated by P. capsici inoculation, where significantly
increased accumulation in stems (1.8–8 µg/g) and leaves (3.8–17 µg/g) from 2 to 8 d.p.i. were found,
while a decrease (1.5–0.4 µg/g) over the same time period was observed in the roots when compared to
non-treated (NT) plants. The Trp (Figure 1B) content followed the same trend as Phe (accumulation
from day 2 to 8) in both stems and leaves of infected plants, with a range increase of 1.3–2.5 µg/g and
2.5–5.5 µg/g, respectively. However, the content in roots increased from 1.3–3.2 µg/µg between day 2
and 4 post-inoculation, and then decreased to ~1.3 µg/g thereafter (day 6 and 8) (Figure 1B). Lastly,
the quantities of Tyr increased in both stems and leaves (similar trend to Phe and Trp) (Figure 1C),
from 0.1–1.8 µg/g and 1.5–3.8 µg/g, from 2 to 8 d.p.i., respectively. However, in leaves, a slight decrease
from 3.8–3.0 µg/g was observed on day 8 (Figure 1C). In roots, the Tyr content in P. capsici-treated plants
increased from days 2 to 4, followed by a slight decrease on days 6 to 8, but remained significantly
higher than that of the NT plants (Figure 1C).

2.3. Quantification of Methyl Salicylic Acid and 1-Aminocyclopropane-1-Carboxylic Acid

Six phytohormones (SA and methyl salicylate, MeSA; indole acetic acid, IAA; ABA; JA,
and methyl jasmonate, MeJA) as well as the ET precursor, 1-aminocyclopropane-1-carboxylic acid
(ACC), were targeted for quantification. However, only two (MeSA and ACC) are presented here,
as they showed differential regulation during pathogen progression, and were found to be above the
LOQ for the different time points. In root tissues, the MeSA content significantly decreased with time,
followed by a sharp increase on day 8 (PC day 8) (Figure 2A). In stem tissue, the MeSA content was
significantly higher than both controls on days 2 and 8, whereas at day 4 a significant difference was
observed between NT day 2 and PC day 4 plants. On day 6 no significant difference was observed when
compared to both controls (NT day 2 and NT day 8) (Figure 2A). The ACC content showed increased
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accumulation in roots from day 2 to day 4 post-infection, after which a decrease was observed; however,
it remained significantly higher than the NT plants over time (Figure 2B). In stems, significantly higher
contents of ACC were observed from 4 to 8 d.p.i. (Figure 2B). A similar trend was observed in leaves
where the ACC content was significantly higher from 4 to 8 d.p.i. (Figure 2B).Metabolites 2020, 10, x FOR PEER REVIEW 4 of 21 
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Figure 1. Changes in aromatic amino acid content in tomato plant tissue harvested at different
time points following Phytophthora capsici (PC) inoculation in stems vs. non-treated (NT) plants.
(A): Phenylalanine, (B): Tryptophan, (C): Tyrosine. Upon harvesting, the plants were divided into root,
stem, and leaf tissue. Values are means ± SD (n = 3 independent sampling). Extracts were prepared
from 200 mg of pulverised tissue, and all concentrations are expressed as µg/g fresh weight (FW).
An asterisk (*) or a dot (•) indicates the statistical significance with a p-value < 0.05 compared with the
non-treated plants, with • indicating a comparison between NT day 2 and the PC infection on days 2–8
post-infection, and * a comparison between NT day 8 and the PC infection on days 2–8 post-infection.
The results show a time-dependent differential reprogramming of aromatic amino acids levels in the
various tissues.
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Figure 2. Changes in phytohormone levels in tomato plant tissues harvested at different time points
following P. capsici (PC) inoculation in stems vs. non-treated (NT) plants. (A): Methyl salicylic acid and
(B): 1-Aminocyclopropane-1-carboxylic acid. Extracts were prepared from 200 mg of pulverised tissue,
and all concentrations are expressed as µg/g fresh weight (FW). An asterisk (*) or a dot (•) indicates the
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statistical significance with a p-value < 0.05 compared with the non-treated plants, with • indicating a
comparison between NT day 2 and the PC infection on days 2–8 post-infection, and * a comparison
between NT day 8 and the PC infection on days 2–8 post-infection. The results show a time-dependent
differential reprogramming of MeSA and ACC in the various tissues.

2.4. Metabolic Profiling of P. capsici-Induced Changes in Tomato Plants

2.4.1. Multivariate Data Analysis

Various studies have shown that plant–pathogen interactions lead to the activation of different
metabolic pathways and the concomitant accumulation of defence metabolites. In order to gather
such metabolic information, a non-targeted approach was used to analyse the methanol extracts of
non-treated (NT) and P. capsici (PC)-infected tomato plants with the aid of ultra-high-performance
liquid chromatography, quadrupole time-of-flight mass spectrometry (UHPLC-qTOF-MS) analysis.
Plant samples are known to contain thousands of highly diverse molecules (both chemically and
structurally diverse); as such it is important to first resolve the sample constituents by chromatographic
separation, followed by electrospray ionisation (ESI)-MS to detect the eluents. Base peak intensity
(BPI) chromatograms (Figures S3–S5) of the tomato plant extracts following treatment with P. capsici
showed some variation in peak intensities, accumulation of new peaks, and disappearance of some
peaks. This is an indication that P. capsici altered cellular metabolism, resulting in time-dependent
metabolic changes.

Metabolomic analyses generate huge data sets that are difficult to visually explore, and it is
difficult to explain all differences observed in an MS chromatogram. As such, statistical analyses
are used to mine the collected multidimensional data, and to pinpoint signatory biomarkers that
provide valuable biological information [36,40,41]. Principal component analysis (PCA) is a tool
used to explore the data (identification of trends and patterns within the data), leading to the
generation of predictive models [40,42]. PCA models were computed from both ESI positive and
negative data to provide a visual evaluation of the tomato plant tissues (roots, stems, and leaves)
responding to P. capsici inoculation. This showed time-related clustering of the various samples
(Figure 3A and Figures S6A–S10A), equating to metabolic reprogramming. Furthermore, the pooled
biological quality control (BPQC) samples clustered in the middle of the PCA scores plot, reflecting
the UHPLC-MS stability, reliability, and reproducibility of the data acquired. The PCA-extracted
trends and patterns were further examined by hierarchical clustering (HC) analysis to build clusters.
The HC models were computed with Ward’s linkage method considering “between” and “within”
cluster distances, and the trees were sorted based on size [43–45]. The computed HC models displayed
time-dependent sub-clustering (Figure 3B and Figures S6B–S10B). Both PC and HC analyses thus
revealed the overall structure of the data, showing underlying trends and patterns in the acquired data
sets. These observations clearly indicate the time-dependent metabolic reprogramming in the various
tomato tissues in response to P. capsici inoculation.

To complement the exploratory data provided by PCA (Figure 3A and Figures S6A–S10A) and HC
analysis (Figure 3B and Figures S6B–S10B) models, a predictive model, orthogonal-partial least square
discriminant analysis (OPLS-DA), was used to evaluate and explain the metabolic reprogramming
occurring in tomato plants in response to P. capsici infection. The computed OPLS-DA models
(Figure 4A and Figures S11A–S15A) show a clear separation of control plants (NT day 8) from the
treated samples (PC day 6), thus indicating different metabolic profiles. PC day 6 was chosen based on
the development of the symptoms; on day 8 the plants were already dying, and to avoid responses not
related to the infection, day 6 was chosen. The OPLS-DA models were validated using the R2 and
Q2 metrics, and the analysis of variance testing for cross-validated predictive residuals (CV-ANOVA,
p-value < 0.05 indicates a good model) [41,46].
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scores scatter plot of all the samples, including the quality control (QC) samples, coloured according to
time points. The PCA model presented here was a 7-component model, with R2 of 0.801 and Q2 of
0.737. (B): The hierarchical clustering (HC) dendrogram corresponding to (A). Unsupervised statistical
analysis was used to generate subgrouping of samples based on similar observations in (A), while the
HC dendrogram shows the hierarchical relationship between samples (B). Similar figures (both for
ESI− and ESI+ modes) were generated for stem and root tissue and are presented as Figures S6A–S10A.
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Figure 4. Orthogonal-partial least square discriminant analysis (OPLS-DA) modelling and variable/feature
selection of tomato plants infected with Phytophthora capsici; leaf data acquired in ESI− mode.
(A): A typical OPLS-DA score plot separating non-treated (NT) day 8 plants vs. P. capsici (PC)-treated
day 6 plants (1 + 1 + 0) components, R2X = 0.802, Q2 = 0.999, CV-ANOVA p-value = 1.3 × 10−19).
(B): An OPLS-DA loadings S-plot for the same model in A; only variables with the correlation [(p(corr)]
≥ |0.6| and covariance (p1) ≥ |0.05| were chosen as discriminating variables, and identified using the m/z
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to generate an elemental composition. (C): A variable importance in projection (VIP) plot for the
same model, pointing mathematically to the importance of each variable in contributing to group
separation in the OPLS-DA model. (D): A typical variable trend plot (of the selected variable in VIP and
S-plots), displaying the changes of the selected variables across the samples (NT day 8 vs. PC day 6).
This shows that the selected features significantly discriminated the treated from the control samples.
Similar figures (both ESI− and ESI+) were generated for stem (site of inoculation) and root tissue,
presented as Figures S11–S15.

For extraction of the signatory biomarkers responsible for the observed sample separation on
OPLS-DA, the loadings S-plot (a selection method for variables) (Figure 4B and Figures S11B–S15B) was
used for feature selection. To validate the significance of the latter, variable importance in projection
(VIP) plots (Figure 4C and Figures S11C–S15C) were used, and variables with a score of >1 were
considered as significant (and subsequently selected for compound annotation). VIP plot evaluation
prevents bias in the selection of variables, and helps to describe the importance of the variables to the
model [41]. Lastly, a variable trend plot (Figure 4D and Figures S11D–S15D) of the S-plot and VIP plot
selected variable (highlighted in red) was computed to evaluate the change of the selected feature across
the samples (NT vs. PC). Various models (both PCA and OPLS-DA), comparing the metabolomes from
different days (PC day 2–8) against controls (NT days 2 and 8) were generated. Due to the large number
of graphs generated, not all can be shown. The features found to distinguish NT from PC were then
selected for compound annotation. Owing to the lack of commercially available authentic standards,
annotations represent putative identifications with assigned features at a metabolite identification
(MSI) level-2 annotation [47,48], and are summarised in Table S1, according to retention time (Rt),
ESI mode, m/z, empirical formula, and diagnostic fragments.

2.4.2. Correlation Analysis of OPLS-DA-Derived Features from Control and Infected Tomato Plants

Following the annotation of significant features highlighted by OPLS-DA, Pearson correlation
coefficient analysis was used to analyse the metabolite–metabolite correlation among identified
molecules in NT day 8, and PC day 6 plants (Figure 5). Correlation measures the direction and strength
of a linear relationship in bivariate data. Variables can be either positively/negatively correlated or
not show any correlation. The former is a relationship where two variables move tandemly (one
variable increases or decrease, and so does the other) and negative correlation is an inverse relationship
between bivariate data (higher values of one variable are associated with lower values of the other).
Thus, it allows identification of related metabolites in extracts from NT day 8 and PC day 6 plants.
Fifty five significant metabolites were annotated in the different tissues (root, stem, and leaf) and
metabolite–metabolite correlation of these significant biomarkers between NT day 8 and PC day 6
showed a unique profile in different samples (Figure 5).

Notably, positive and negative correlation was observed between metabolites derived from
the same biochemical pathway, but also between metabolites in entirely different pathways.
For example in root tissue (Figure S17) the amino acids Phe and Pro have a strong positive correlation
(r = 1). Furthermore, these amino acids have a positive correlation with dehydro-tomatine I and
dihydro-benzoic acid pentose, but a negative correlation with acetyl Trp (Figure S17). In stem
tissue, Pro and Trp have a positive correlation, but have a strong negative correlation with Phe
and N-Acetyl-Asp (Figure S16). In addition, chlorogenic acids (cis-4-CQA and trans-3CQA) have
a strong positive correlation. However, these molecules have a strong negative correlation with
two other hydroxycinnamic acid (HCA) conjugates, (feruloyl-tyramine and feruloyl-agmatine II)
(Figure S16). A similar trend was also observed in leaf tissue (Figure 6). Here, flavonoids,
kaempferol-3-O-B-rutinoside and quercetin-3-O-trisacharide, are positively correlated (r = 1) but
are negatively correlated with salicylic acid glycoside and Phe (Figure 6). These results are in
accordance with the notion that plants fine-tune their immune response based on the perceived
stimulus. Furthermore, the metabolomics data reflects a complex/dynamic feedback mechanism caused
by modulation (inhibition/activation) of enzymes involved in the production of metabolites in the
same pathway or in different pathways.
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Figure 5. Correlation matrix among the changes (∆) within/between extracts from leaves of non-treated
(NT) day 8 tomato plants and Phytophthora capsici (PC)-treated plants at day 6 post-inoculation.
Metabolite–metabolite correlations among identified molecules were obtained by deriving a Pearson
correlation coefficient. Red indicates a positive correlation, and blue indicates a negative correlation.
Abbreviations are explained in Table S1. Dendrograms are shown on the top and left of the correlation,
indicating clustering of positive and negative correlations. The equivalent matrices for extracts from
stems (site of inoculation) and roots are shown in Figures S16 and S17 respectively.

2.4.3. Time-Course of Comparative Metabolite Reprogramming in P. capsici-Infected Tomato Plants

To further mine the data, and in order to derive greater biochemical insights into the underlying
biochemistry of the host response to infection, PLS-DA was computed to investigate time-dependent
metabolic reprogramming of infected plants. To determine the response of each feature to P. capsici
infection, measurements of selected metabolites (VIP score ≥ 0.5) in infected plants were compared to
those in control plants at the given time point, and observed a differential metabolic reprogramming
(Figure 6). This resulted in pinpointing a total of 30 reprogrammed metabolites over a time period
of 8 days. These belonged to the classes of flavonoids, fatty acids, amino acids, TCA intermediates,
glycoalkaloids, and HCA derivatives, representing the core metabolome responsive to P. capsici
infection. These discriminant molecular features of Figure 6 are in accordance with the ions depicted
in the S-plots derived from the OPLS-DA models (Figure 4A and Figures S11A–S15A), and further
explain the time-dependent clustering observed in the PCA (Figure 3A and Figures S6A–S10A) and
HC analysis (Figure 3B and Figures S6B–S10B) models.
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Differential Reprogramming in Primary Metabolism

The host response of the tomato plant to P. capsici treatment exhibited a contrasting metabolic
reprogramming in the different tissues and in the regulated pathways (Figures 5 and 6, Figures S16
and S17). Using the MS and MS/MS spectra, three amino acids (Pro, Phe, and Trp), two amino acid
derivatives (N-acetyl-tryptophan and N-acetyl-aspartic acid), and two organic acids (citric acid I/II and
malic acid), derived from the TCA cycle, were annotated (Figure 6). The two citric acids were found
in all tissues and decreased with disease progression in root and stem tissue, whereas in leaf tissue,
citric acid I increased with disease progression, and citric acid II decreased. In addition, the TCA cycle
led to the production of fatty acids, and one oxygenated fatty acid (octadecanoic acid derivative) was
annotated. C18H36O3 was found in all tissues (Figure 6). In both leaf and stems C18H36O3 was found
to increase with disease progression, with maximum content on day 6 (Figure 6), whereas the opposite
was observed in roots.

Differential Reprogramming of Phytohormones and Signalling Molecules

Azelaic acid (Aza)-glycoside was identified in both stem and leaf tissue on day 6 post-inoculation
(Figure 6). However, the VIP score was 0.5 in both tissues, hence no time-trend was observed.
One salicylic acid-glycoside (SAG) was found in stems, while in leaves two SAGs and methyl salicylic
acid glycoside (MeSAG) were annotated. Furthermore, a time-trend could only be observed in leaf
tissue, and all three molecule showed an increase during disease progression. SA is a well-documented
phytohormone responsible for resistance induction following pathogen infection, and MeSA is the
volatile derivative, able to move systemically and trigger distal responses [11,13].

Differential Reprogramming of Flavonoids and Hydroxycinnamic Acid Derivatives

The results revealed flavonoids as signatory biomarkers during P. capsici infection, and were
shown to be reduced in infected plants (Figure 6). Flavonoids are phenolic molecules that play
various functions in plants (e.g., signalling, antioxidant, biotic, and abiotic stress resistance) and
their occurrence in plants during plant defences is geared toward protective and defence activities.
HCA derivatives were annotated as discriminant biomarkers, and found to be conjugated to sugars,
polyamines, and quinic acids (Figure 6). Furthermore, these molecules showed a contradicting content
(decrease or increase) during pathogen infection.

Differential Reprogramming of Glycoalkaloids

Glycoalkaloids were identified among the annotated significant features/discriminatory
biomarkers, and time-differential accumulation was observed (Figure 7). For example in roots,
the content of these molecules was found to be high at different time points, or high on day 2, and then
decreased thereafter. Similar trends were observed in both stem and leaf tissues.Metabolites 2020, 10, x FOR PEER REVIEW 12 of 21 
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to those in control plants at the given time point. Blue boxes indicate down regulated metabolites/
associated with the control, while red boxes indicate up regulated metabolites/associated with the
treatment. Solid lines with an arrow indicate a single reaction, dotted lines with an arrow indicate
multiple reactions, and dotted lines with no arrows indicate conjugation. NT = non-treated and
PC = P. capsici (stem-inoculated).

3. Discussion

P. capsici is a hemibiotrophic pathogen with an initial biotrophic phase, followed by a switch to a
necrotrophic lifestyle [1–3]. It is not known what triggers this switch (e.g., stress signals originating from
the host). Following establishment of a successful biotrophic infection at the initial site of inoculation,
localised defense responses are triggered, which may elicit further/subsequent systemic responses.
While biotrophy is associated with SA-mediated plant defense, the switch to necrotrophy (depending
on penetration into the endodermis and vasculature and movement along the xylem) leads to cell death,
and production of ethylene and jasmonic acid, and derivatives [2,3,49]. Moreover, cell death of the
roots and stems will limit or prevent transfer of water and solutes to the foliage. The observed wilting
symptoms of the leaves may therefore be associated with abiotic stress responses, superimposed on the
biotic stress responses. It is therefore conceivable that the differential perturbations to the metabolomes
of the roots, stems, and leaves are the refection of different stimuli, and that the tissue-specific changes
in the leaves might be due to a combination of biotic and abiotic stresses.

Plant primary metabolism plays an important role in plant–pathogen interactions. Previous studies
have shown that primary metabolites are “energy-reservoirs” for plant defence, and serve as precursors
for secondary metabolite biosynthesis [25,27,50]. Among the different primary metabolites known to
be involved in plant–pathogen interactions, amino acids are the most well-documented, and have been
shown to be significantly modulated [27,51]. In the context of defence, aromatic amino acids synthesised
from chorismate through the shikimate pathway, are especially important (Figure 1). These amino acids
serve as a link to secondary metabolism as a source of important precursors, with regard to phenolic
compound biosynthesis and lignin accumulation [51–53]. Metabolite profiling in Arabidopsis thaliana
inoculated with an avirulent strain of Pseudomonas syringae pv. tomato DC3000 (hrp- mutant) revealed
an increase in Trp, Tyr, Lys, Val, and Leu content, and a decrease in Glu, whereas inoculation with the
virulent strain showed an increase in Ileu, Thr, Ala, Phe, Tyr, and Gln accumulation [54]. In addition,
amino acids were found to be significantly affected by Rhizoctonia solani infection on various rice
lines [55], as well as in tomato basal resistance and priming against Botrytis cinerea and Ps. syringae [56].

Pro is known to accumulate in plants in response to water and salt stress, where it functions as an
osmolyte and protein stabiliser [57]. However, in this study, control plants had a high(er) content of
Pro than infected plants (Figure 6), thus suggesting that Pro could be playing a different role than that
under abiotic stresses. In this instance, Pro is used as a precursor for the biosynthesis of other molecules
(providing both carbon and nitrogen) or is metabolised [58]. Phe belongs to the aromatic amino acid
group and serves as a precursor for the phenylpropanoid pathway. Trp and its derivative (acetyl Trp)
are involved in biosynthesis of indoles such as auxin [32,51], serotonin, and its HCA amides [59],
which are known to play various functions during plant defence responses. This pathway produces
numerous metabolites known to play major roles in plant defence response [52,60,61]. N-acetyl-Asp
was only found in leaves and showed an increase during pathogen progression. In this regard,
amino acid conjugation to other molecules is well documented; these can conjugate to phytohormones,
and this has been found to be the regulatory hub of plant defence response [58].

Organic acids are carbon providers for the biosynthesis of metabolites and are intermediates of
the TCA cycle [62]. In this study, citric, and malic, acids were annotated as biomarkers. Interestingly,
tricarboxylates, like citric acid and fumaric acid, were reported to induce defense priming against
bacteria in Arabidopsis thaliana [63]. The TCA cycle is a central metabolic pathway for aerobic processes,
and is responsible for a major portion of carbohydrate, fatty acid, and amino acid oxidation, and which
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produces energy and reducing power [64,65]. The involvement of fatty acids in plant defence responses
is still poorly understood. However, the molecules could be related to lipid signalling or precursor
synthesis for later lipid peroxyl radical production, or membrane destruction accompanied with plant
cell death infection [66]. In this context, an oxygenated fatty acid (octadecanoic acid derivative) was
annotated. C18H36O3 was found in all tissues (Figure 6), and increased with disease progression in
both leaf and stems.

Plant defence responses are highly regulated by phytohormones and the related signalling
molecules [67,68]. SA and its derivative MeSA (Figure 2A), are key phytohormones, especially relevant
for local and systemic acquired resistance (SAR) [11,13]. Due to its volatility, MeSA deserves special
attention, as it can diffuse through membranes, thus activating systemic responses [67,69,70]. Similarly,
ET is readily diffusible in plant tissues, exerting effects at very low concentrations. The gaseous
state of ET makes it difficult to quantify, however, quantification of the precursor, ACC (Figure 2B),
has been used to study ethylene perturbation by microbes or environmental stresses [71–75]. Moreover,
some studies suggest that ACC also regulates plant development and defence responses [76,77].
Upon infection, these phytohormones accumulate at the site of ingress and are transported to
non-infected plant parts where they activate defence responses [68,70]. It is of interest that MeSA
concentrations were the highest in the stems (the site of inoculation, and where initial biotrophic growth
will occur), while those of ACC (associated with necrotrophic growth) were the highest in the leaves.
Previous studies have demonstrated that plant infection leads to reprogramming of phytohormone
homeostasis (decrease or increase phytohormones) [21,72,73]. Infection of A. thaliana plants by three
fungal pathogens Alternaria brassicicola, Colletotrichum higginsianum, and Botrytis cinerea caused minor
effects on MeSA and ACC levels [73]. Moreover, studies have shown the ability of fungal pathogens
such as Botrytis cinerea, Ustilago maydis, P. sojae, and Magnaporthe oryzae to suppress phytohormone
signalling by different mechanisms. These include conversion of phytohormones to inactive products
or degradation of precursors [78].

Chemometric analyses revealed a significant accumulation of the phytohormones azelaic
acid-glycoside, salicylate-glucoside, and methyl salicylic acid glucoside (Figure 6) as a differentiating
characteristic of the defence responses of tomato plants to P. capsici infection. Phytohormones
coordinate multiple physiological and biochemical processes, such as plant growth and development,
gene regulation, and responses to abiotic and biotic stresses [4,79]. Aza is an emerging plant signalling
molecule involved in SAR induction and regulation, and acts to confer resistance in both local and
distal plant tissue [80]. The accumulation of various Aza derivatives including Aza-glycoside in
lipopolysaccharide (LPS)-treated tobacco cell suspensions was reported [81], and the presence of
Aza-glucosyl transferase(s), involved in Aza glycosylation, was proposed. The accumulation of
Aza-glycoside in stem (site of infection) and leaf (distal) tissue, emphasises the link between local and
distal signalling. Glycosylation of aglycones could serve both a regulatory and transport function.
SA can be methylated to produce the mobile form MeSA, which can be transported to distal tissues,
where it is demethylated to SA [13,81,82]. Studies have indicated that, after successful defence, the free
active SA is glycosylated into inactive SAG, and the less abundant SA-derivative salicyloyl glucose
ester (SAGE) by SA glucosyl transferases for storage [81,83].

Flavonoid compounds may accumulate in high quantities during pathogen infection [84].
Some metabolic studies have shown that tomato plants infected with B. cinerea had a higher content
of flavonoids compared to non-infected plants [56]. In addition, in potato plants, accumulation of
flavonoids was associated with resistance against late blight caused by P. infestans [85]. However,
the results for P. capsici infected tomato showed a general decrease in flavonoid content during pathogen
progression (Figure 6); an unexpected phenomenon that has not been well-described in the literature.
This decrease in flavonoid content could be associated with defence response specificity (plants use
similar pathways to defend against pathogens, albeit differently), re-channelling of HCA precursors for
biosynthesis of other molecules such as phytoalexins or incorporation to the cell wall [2,61,84]. If not
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replenished, levels of flavonoids can also exhibit a decrease, if degraded by the pathogen, or chemically
altered due to oxidative environments and antioxidant reactions.

Relatedly, the differential accumulation of HCA derivatives vs. flavonoids is an indication that the
metabolic pools change with disease progression, as reported in a study of tomato cultivars responding
to Ralstonia solanacearum infection [61]. Defence-related accumulation of HCA derivatives has been
well-documented [61]. Ferulic-, caffeic-, p-coumaric-, and sinapic-acids are functional antimicrobial
compounds, and precursors to the synthesis of both inducible and constitutive defence metabolites.
They are also key in structural defences, as monolignol precursors of lignin, and by participating
in cross-linking primary cell wall polysaccharides. Furthermore, HCA amides derivatives, such as
4-coumaroylagmatine and feruloylserotonin, annotated in this study, are also known in the context of
cell wall strengthening, as well as antimicrobial compounds [86].

Glycoalkaloids occur naturally in tomato plants [66]; however, studies have shown that these
molecules have antimicrobial properties against various plant pathogens, suggesting a major role
in disease resistance [2,61]. Tomatidine is an interesting biomarker (Figure 7) because of the ability
of bacteria and fungi to remove one or more sugar residues, thus rendering it less toxic. It is a
well-known fact that microbes have evolved to suppress plant defence responses. Genes encoding
glycoside hydrolases with potential activity against glycoalkaloids have been proposed in P. infestans,
while evidence of deglycosylation has been reported [2].

4. Materials and Methods

4.1. Plant Growth Conditions and Treatment with P. capsici

A virulent strain of Phytophthora capsici (PRRI 20101) was obtained from the Plant Protection
Institute, Agricultural Research Council (ARC), Pretoria, South Africa. Tomato (Solanum lycopersicum
var. Moneymaker) seeds were germinated and grown in potted, washed, and autoclaved playpen sand
under controlled conditions [87]. The greenhouse conditions were as follow: min temperature 15 ◦C
and max temperature 28 ◦C, light/dark cycle of 12/12 h, and light intensity of 60 µmol/m2/s. Watering
and fertiliser application were done on a weekly basis. The fertiliser consisted of: 650 mg/L CaNO3,
400 mg/L KNO3, 300 mg/L MgSO4, 90 mg/L mono-ammonium phosphate, 90 mg/L mono-potassium
phosphate, 150 mg/L Soluptase, 20 mg/L Microples, and 40 µL/L Kep-P-Max, obtained from Shiman
(Olifantsfontein, South Africa) [88]. The plants were grown for 8 weeks before infection. P. capsici
was grown on potato dextrose agar in Petri dishes at 28 ◦C for 5 d. Small triangular pieces were cut
from the 5 d old culture and used to inoculate oatmeal agar. Spores were harvested from 2 week
old cultures by cold shocking at −20 ◦C for 20 min followed by sonication in a sonicating bath for
2 min and filtration through two layers of Miracloth. Zoospores were microscopically counted using
a hemocytometer and adjusted to 1 × 106/mL for inoculation with sterile water. The plants were
inoculated by pipetting 500 µL of the spore solution onto a clean Ventti filter wrapped around a
wounded stem. Stems were wounded by cutting a small section with a scalpel blade. Control plants
were also wounded and wrapped with a Ventti filter; however, sterile water was used instead of the
spore solution. The plants were kept in the growth room, and harvested every second day until the
8th day (PC 2, 4, 6, 8). Since there were no major differences observed in the control plants, control
(non-treated) plants were harvested at day 2 and day 8 (NT 2 and NT 8). Three plants were harvested
per condition, and each plant was treated as a biological replicate. Together with the three analytical
replicates per biological replicate, this generated n = 9 as required for metabolomic analysis. Following
harvesting, the plant tissue (roots, stems, and leaves) were snap-frozen in liquid nitrogen to quench
metabolic activity and stored at −80 ◦C.

4.2. Targeted Metabolomics Analysis

Extraction of Amino Acids and Phytohormones, and UHPLC-QqQ-MS (Ultra High-Performance
Liquid Chromatography Triple Quadrupole Mass Spectrometry) Analysis.
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Following homogenisation of roots, stems, and leaf tissues, extraction was carried out as previously
described [87]. The filtered 1.5 mL samples were analysed on a Nexera UHPLC (Shimadzu Corporation,
Kyoto, Japan), fitted with a Restek Ultra AQ C18 column (100 mm × 2.1 mm × 3 µm) thermostatted at
40 ◦C, and coupled to a Shimadzu triple quad mass spectrometer (QqQ-MS) (Shimadzu Corporation,
Tokyo, Japan). Chromatographic and mass spectrometry conditions were as previously described [87].
An internal standard of 1 ng/µL prednisolone (Pred) was included in the samples to monitor the
instrument reliability and data acquisition reproducibility. LC-MS data acquisition was carried out
in triplicate, and the results were expressed as mean values ± standard deviation (SD). Univariate
analysis of variance (ANOVA) was performed as 2-tailed complete randomised blocks, and used
to compare the non-infected vs. P. capsici-inoculated plants at different time points. ANOVA was
followed by the Tukey post-hoc test, where differences between the means were considered significant
at p < 0.05, indicated in graphs with an asterisk (*) or a dot (•). The summarised outputs are presented
in Tables S2 and S3.

4.3. Non-Targeted Metabolomics Analysis

4.3.1. Metabolite Extraction and Data Acquisition on an UHPLC-ESI-qTOF-MS (Ultra High-Performance
Liquid Chromatography, Electrospray Ionisation, Quadrupole Time-of-Flight Mass Spectrometry)

Metabolite extraction and sample preparation were carried out as described [87]. The final filtered
extracts were reconstituted to 300 µL (stems and leaves) and 250 µL (roots) in 50% methanol. A pooled
biological quality control (PBQC) sample was prepared by pipetting and mixing aliquots of equal
volumes from the samples. The samples were analysed in triplicate on an UHPLC system (Waters
Acquity HSS T3 C18 column, 150 mm × 2.1 mm × 1.8 µm, thermostatted at 60 ◦C), coupled to
high-definition MS (UHPLC-HD-MS), controlled and operated by MassLynx XSTM software (Waters,
Milford, MA, USA). Both LC and MS conditions were as previously described [87] with minor MS
setting modifications as follows: desolvation temperature, 450 ◦C; source temperature, 120 ◦C; capillary
voltage, 2.0 kV; sample cone, 35 V; extraction cone, 4.0 V; desolvation gas (Nitrogen) flow, 550 L/h;
cone gas (Nitrogen) flow, 50 L/h; detector voltage, 1700 V; scan speed, 0.1 sec; and interscan time, 0.02 s.
PBQCs were used to assess the reliability and reproducibility of the LC-MS system. The samples were
randomised and PBQC samples analysed every 10 injections. The MS settings were set to perform
unfragmented and five fragmenting experiments (MSE) simultaneously, by ramping in-source collision
energy from 3 to 30 eV [53,89–91].

4.3.2. Multivariate Data Analysis

The acquired UHPLC-qTOF-MS raw data were pre-processed using MarkerLynx XS™ software
(Waters, Milford, MA, USA), and raw data from both negative and positive modes of electrospray
ioninsation (ESI) were analysed. For multivariate modelling the data matrices were created using
the following parameters: Rt range, 2.5–25 min; Rt difference, 0.2 min; mass to charge ratio (m/z)
range, 100–2000; m/z difference, 0.05; mass tolerance, 0.5; intensity threshold count, 10; and noise level,
3. The pre-processing parameters were adjusted (if needed) depending on visual inspection of the
chromatograms. The resultant data matrixes obtained from MassLynx XS were imported into SIMCA-P
version 14.0 (Umetrics, Umeå, Sweden), and Pareto scaling was applied for multivariate statistical
analysis. Principal component analysis (PCA), an unsupervised method, was used to summarise the
information content in the datasets, thus providing “smaller indices” that could be easily visualised
and analysed. Orthogonal-partial least square discriminant analysis (OPLS-DA), a supervised method,
was used to extract maximum information of significant variables from the datasets. Method validation
and variable selection were as described [87].

4.3.3. Metabolite Annotation

Significant/discriminant features identified from the multivariate data analysis were annotated
as described [87]. In short, a single ion chromatogram for each significant feature was extracted,
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its accurate mass determined, and its corresponding spectrum used to calculate an empirical formula to
search in databases such as the Dictionary of Natural Products [92] and ChemSpider [93]. In addition,
the spectra were compared with published data.

4.3.4. Metabolite- Metabolite Correlation and Time-Dependent Reprogramming

Following annotation of discriminatory markers, the identified metabolites were extracted
from the MarkerLynx XS™ generated matrixes and saved as .csv files. These were uploaded to
MetaboAnalyst 4.0 [94] for further statistical analysis. The files comprised a list of experimental
conditions, compound names, and intensities. MetaboAnalyst data processing performs checks on
data integrity and missing values, and data filter and normalisation, prior to statistical analysis [95,96].
Correlation analysis was performed on non-treated (NT, day 8) and P. capsici (PC)-treated day 6
(based on OPLS-DA observations) samples to investigate the linear relationship between the annotated
metabolites. Subsequently, partial least square-discriminant analysis (PLS-DA) (a supervised method)
was applied to investigate time-dependent metabolic reprogramming in NT vs. PC-treated plants.

5. Conclusions

LC-MS targeted analysis showed a time-dependent regulation of aromatic amino acids as part of the
host response of tomato plants in response to infection by P. capsici. The Phe and Trp content increased
upon infection, while Tyr increased up to day 4 and gradually decreased thereafter. These findings
show the importance of primary metabolites, mainly aromatic amino acids, which are involved in the
biosynthesis of phenylpropanoids, flavonoids, and indoles. The increases indicate the demand for
phenolic precursors, in comparison to the Tyr decrease, which suggests that the consumption is higher
than synthesis. Furthermore, untargeted LC-MS metabolomics analysis showed time-dependent
metabolic changes in the non-treated vs. P. capsici-infected plant tissues. The annotated metabolites
included phenylpropanoids, benzoic acids, glycoalkaloids, flavonoids, amino acids, and TCA cycle
organic acids, as well as oxygenated octadecanoic acids. Metabolite–metabolite correlations showed
that there was a dynamic regulation of the programmed metabolites, as evidenced by positive and
negative correlation among the significant biomarkers. Lastly, tissue-specific reprogramming was
also observed, which demonstrated that various plant tissues (i.e., roots, stems, and leaves) undergo
differential metabolomic changes in response to infection. Here, intrinsic tissue-specific profiles would
also be influenced by localised infection in the stem, the biotrophy to necrotrophy switch, and the
balance between generated signalling molecules, able to trigger systemic responses, as well as possible
abiotic stress responses linked to wilting. Regardless, the perturbations of the metabolomes can be
interpreted as due to the activation of chemical defences against the pathogen, in an attempt to ward
off the infection or limit the cellular damage caused by the infection. The relative importance of
the identified metabolic pathways cannot be judged with the available data; however, the identified
biomarkers could pave the way for further studies in the tomato response to P. capsici infection.
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