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The history of pain measurement
in humans and animals
Jeffrey S. Mogil*

Department of Psychology and Anesthesia, McGill University, Montreal, QC, Canada

Pain needs to be measured in order to be studied and managed. Pain
measurement strategies in both humans and non-human animals have
varied widely over the years and continue to evolve. This review describes
the historical development of human and animal algesiometry.
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Introduction

A common adage, variously attributed to management consultants Peter Drucker or

W. Edwards Deming, asserts that “if you can’t measure it, you can’t manage it.” This is

obviously true for pain, which can neither be managed nor even studied without being

measured. The measurement of pain in humans and animals—algesiometry—has been a

continuing focus of pain researchers since the late 1800s, coinciding with the

development of psychophysics (1). Methods for estimating the intensity of a stimulus,

applied to human skin, required to evoke the perception of pain were developed using

noxious electrical (2), mechanical (3), and heat (4, 5) stimuli. In the first few decades

of the 20th century, such methods were used to establish analgesic dose-response

curves of opioids and aspirin (6–8), investigate intra- and inter-individual variability

(5), circadian rhythmicity (7), spatial summation (9), counter-irritation (5), and even

to demonstrate the effect of modulatory factors such as distraction (5). The first

algesiometric techniques for laboratory animals were based on these human methods,

with noxious stimuli aimed at easily accessible body parts such as the tail (10, 11) and

plantar hind paw (12, 13). The von Frey filament test of mechanical sensitivity is used

identically in human and non-human animals, with the exception of the range of

filament force employed and the nature (verbal or non-verbal) of the response. Of

course, refinements of these procedures have been made over the years and continue

to this day (e.g., 14–16).

One might ask why any further developments in algesiometry were (and are) required.

I would argue that these historical methods, though useful, fail to suffice for a number of

reasons best thought of in terms of the dimensions, continua, and categories shown in

Figure 1. Likely the most important of these is duration (see Figure 1A). All

algesiometric methods introduced prior to the mid-1900s are measurements of acute

pain, in which the time elapsing from stimulus onset to pain threshold can be

measured in seconds, and also in seconds from pain threshold to pain tolerance (or, in

animals, to withdrawal from the stimulus). The stimuli need to be of sufficient intensity

to potentially cause tissue damage, and Woodworth & Sherrington (17) suggested that

“pain” was mediated by higher-order systems driven by these stimuli. Although such

stimuli clearly produce an aversive condition that is valid as a painful state (e.g., picking
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FIGURE 1

Different ways to think about different types of pain, all with implications for algesiometry in humans and non-human animals. Pain can be
dissociated based on its duration (A), locus (B), modality (C), and response type (D).
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up a hot coffee cup), the pain states that researchers and

clinicians are most interested in studying and managing,

respectively, occur on a much longer time scale: hours to years.

Whether mechanisms and treatment strategies applicable to

pain measured in seconds are also applicable to pain measured

in months is hardly a given. A second dimension of pain

highly relevant to algesiometry is its locus (see Figure 1B). The

historical algesiometric techniques described above involve

noxious stimuli being applied by an experimenter to the skin

of the pain-perceiving subject. Again, it’s real pain, but

different in character from clinical pain, which is usually not

superficial but deep (e.g., muscle pain, joint pain, visceral pain)

(18), if it can be precisely localized at all, and not evoked by a

stimulus external to the body but rather arising within the

body itself. The type of pain we really want to understand is

spontaneous pathological pain (19, but see 20), which may or

may not share underlying mechanisms with evoked pain. As

already well appreciated in the 1800s, different noxious
Frontiers in Pain Research 02
stimulus modalities (see Figure 1C) exist. Pain can be caused

by mechanical force, electric shock, heat, and cold. But it can

also be evoked by irritant chemicals applied to the skin or

otherwise introduced into the body. Much clinical pain arises

via the presence of inflammation or nerve damage, which are

both associated with the release of chemical messengers in the

immune and nervous systems. The generation of nociplastic

(previously known as functional or idiopathic) pain remains a

mystery. The transduction of different pain modalities by

nociceptors is dissociable, mediated by different proteins, and

there exists considerable evidence that the processing of

different modalities of pain is dissociable at more rostral levels

of the neuraxis as well. Especially in the context of pain

questionnaires, pain associated with different clinical entities

may need to be measured in different ways; this is pain’s

version of the lumping/splitting problem. Finally, the type of

response (see Figure 1D) can have serious consequences in

algesiometry in both humans and animals. In humans, one can
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choose to measure pain threshold, pain tolerance, or to elicit

quantitative ratings of suprathreshold stimuli. Alternatively, one

might eschew quantitative measurement and elicit qualitative

descriptors of pain via questionnaires, or try to avoid self

report entirely in favor of an “objective” biomarker. Animals, of

course, cannot be instructed to respond at threshold, cannot

easily be motivated to hold off responding until tolerance, and

are incapable of verbal report. For them, nocifensive and other

behaviors are necessary for experimenters to interpret the

presence of pain. This is often held as a disadvantage of

preclinical pain research, although a human subject rating their

back pain “an 8” is equally a behavior requiring interpretation.

The history of algesiometry is the story of attempts by pain

researchers to broaden available tools so that they cover more of

these continua, into the range that more typifies the clinical

problem at hand. This review will attempt to briefly

summarize developments over the years in humans and non-

human animals, with respect to the dimensions described above.
Pain measurement in humans

The measurement of experimental pain in humans using

controlled noxious stimuli delivered to the skin (superficially

or subdermally), muscles, joints, or viscera has continued

unabated since the pioneering psychophysical work in the

1800s. In general, regardless of the noxious stimulus

employed, attempts are made to quantify either pain

threshold, pain tolerance, ratings of pain on structured scales,

magnitude estimation (e.g., by cross-modality matching), or

measurement of performance (21). Beyond the many issues

surrounding confounds and inter- and intra-individual

differences, the obvious limitation is that these are ways to

measure sensitivity to the particular noxious stimuli delivered,

with no obvious relation (except perhaps in certain pain

syndromes such as fibromyalgia) to the clinical pain of a

patient, although attempts were often made to compare the

magnitude of the experimental pain to a patient’s clinical pain.

The first major proponent of abandoning the “dolorimeter”

approach to measuring clinical pain was Beecher (22), who

advanced the notion of measuring clinical pain by its relief, via

subjective ratings. But how exactly to provide such ratings?

Solutions to this problem include the use of numerical rating

scales (NRS) with descriptive “pegs” at the ends (e.g., from 0, no

pain, to 10, the worst pain imaginable), verbal rating scales (VRS)

of category judgments (e.g., mild, distressing, excruciating), and

visual analog scales (VAS) (23), in which pain is indicated by

marking a spot along a 10-cm continuum. These have been

modified for use in pediatric and elderly populations (24, 25), and

categories and pegs translated into different languages. As it

became increasingly clear that pain was multidimensional—

consisting of sensory/discriminative, motivational/affective, and
Frontiers in Pain Research 03
cognitive components—research subjects and patients were

increasingly asked for multiple ratings (e.g., 26).

A rather different approach to the problem was developed

by Melzack and Torgerson (27, 28) with the McGill Pain

Questionnaire, in which pain is rated qualitatively via sensory,

evaluative, and affective descriptors (e.g., burning, shooting,

troublesome, agonizing). Questionnaires are currently used

not only to measure different aspects of pain itself, but also

to: (1) more thoroughly characterize disease states featuring

pain, and their impact on functioning and quality of life (29,

30); (2) help diagnose the presence of particular types of pain,

such as neuropathic pain (31); and (3) quantify putative risk

factors for chronic pain, such as catastrophizing (32).

Finally, a whole host of observational methods have been

developed in which pain is quantified by others. Such

methods, valuable especially for use in non-verbal

populations, include the FLACC scale for young children (33),

in which facial expression, leg position, activity, crying, and

consolability are rated on a 0–2 scoring scale, and the

Neonatal Facial Coding System (34), in which pain expression

is quantified via judgments of facial musculature (e.g., brow

bulging, eye squeezing). Other observational methods attempt

to bypass patient self-report via the measurement, for

example, of visible behaviors (e.g., guarding, limping, rubbing,

sighing) by clinicians (35) or changes in a child’s daily

behaviors (e.g., playing less, complaining more) by parents

(36). Such techniques are obviously susceptible to bias,

although individuals are likely biased self-observers as well.

Recently, the use of modern versions of venerable acute pain

measures has been enjoying a renaissance, more for the purpose

of patient stratification (e.g., 37) than pain quantification per se.

Known as quantitative sensory testing (QST), the most

comprehensive effort has been by a German consortium

involving the QST profiling—using 13 different measures of

gain and loss of sensory function—of over a thousand

patients and non-patients (38, 39). Although different

frequencies of sensory abnormalities were observed in

different pain disorders (38), it has more recently been shown

that QST batteries are far better at quantifying neuropathy

itself than neuropathic pain (40, 41).

Ultimately, although the validity and usefulness of self-

reported pain, especially by VAS, has been amply demonstrated

(42), researchers and clinicians have always longed for an

objective measure, or biomarker, that could be used for

diagnostic, prognostic, and/or drug development purposes.

Although we are counseled to always “trust the patient”, there

are obvious (if not necessarily frequent) incentives for both

exaggerated and minimized self-reporting. Putative biomarkers

over the years have included physiological measurements, blood

protein levels, genetic variants, and nervous system electrical

(e.g., microneurography, electroencephalography) and metabolic

activity [e.g., positron emission tomograph, functional magnetic

resonance imaging (fMRI)]. The leading contender as a pain
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biomarker is likely fMRI, although pain imagers have cautioned

against its over-credulous use (43). It seems likely that useful

pain biomarkers will need to be composites of many different

types of measures (44).
Pain measurement in non-human
animals

Despite developments in human pain research such as fMRI,

animal models of pain have always been and continue to be

necessary for ethical reasons and to obtain causal, mechanistic

explanations of pain pathophysiology (45). As described in a

prior, comprehensive review (46), algesiometry in laboratory

animals has featured several waves of development. The classical

assays featured the application of electrical, mechanical, or

thermal stimuli to conveniently located body parts, producing

pain for as long as it took for the stimulus to reach noxious

intensity and the animal to reflexively or consciously withdraw.

In the 1950s, several groups demonstrated that intraperitoneal

injection of irritants (e.g., weak acids, phenylquinone) produced

abdominal constriction (i.e., “writhing”) behavior (47–51) lasting

20–60 min, and that these assays appeared to have higher

sensitivity to non-opioid analgesics like aspirin. In addition to

lasting longer than the acute assays, these were tests of

inescapable, suprathreshold pain (like clinical pain), and the

endpoints (i.e., dependent measures) represented total time

spent performing a behavior positively correlated with stimulus

intensity rather than latency to a first response. Drawbacks

included an uncertain location of the pain (visceral? muscle

wall?), a non-linear stimulus-response relationship, and concerns

over selectivity. An interesting advance occurred in 1977, when

Dubuisson and Dennis (52), working in the laboratory of Ron

Melzack (who in service of Stephen Dennis’ career declined to

take an authorship), reported that formalin (i.e., diluted

formaldehyde) injected into the forepaw of cats and rats

produced guarding and licking/biting/shaking of the affected

paw (In a classic footnote, they described the results of such an

injection into their own finger.) In rats, a biphasic time course

was noted, with early/acute (0–10 min) and late/tonic phases

(>20 min) of pain behavior being interrupted by “a significant

dip” lasting for about 10 min, and the two phases and

“interphase” or “quiescent period” of the formalin test

engendered voluminous study over the next few decades (see 53).

However, even the 60–90-min duration of the formalin test

was clearly too short to properly model human chronic pain. A

number of longer-lasting assays were developed, by injecting

immune system-activating substances used previously to study

inflammation—such as carrageenan (54), complete Freund’s

adjuvant (CFA) (55), zymosan (56), and urate crystals (57, 58)

—into the hind paw or knee joint. A curious observation

arising from the use of these assays was that the longer lasting

the inflammation and the more time elapsed since injection, the
Frontiers in Pain Research 04
less likely was the observation of any obvious nocifensive

behaviors (i.e., licking, biting, shaking). For example, in the first

paper reporting the effects of hind paw-injected CFA, Stein and

colleagues (55) observed changes in body weight, food intake,

core temperature, locomotion, defecation, and paw-pressure

thresholds over 30 days post-injection, but no nocifensive

behaviors. Thus, the advantage of a longer-lasting assay was

paired with the disadvantage of needing to employ endpoints of

questionable specificity to pain (e.g., hypolocomotion) or

endpoints corresponding to comparatively minor human

chronic pain symptoms, such as thermal or mechanical

hypersensitivity (18, 38, 59).

A similar situation developed in the quest for longer-lasting

animal models of neuropathic pain. The first such behavioral

model was developed by Wall and colleagues (60), featuring a

bizarre endpoint known as autotomy, whereby the animal

progressively bites off the digits of the denervated paw. A

credible model of phantom limb pain, this assay is almost

never used because of its disagreeable aesthetics, controversial

interpretation (61), and the fact that most human neuropathic

pain is caused by partial, not complete injury to a nerve (62).

In appreciation of this, Bennett and Xie (63) in 1988

developed an assay of peripheral mononeuropathy in which

the sciatic nerve is slowly strangled by the placement of

constrictive ligatures. Other strategies for producing partial

disruptions of afferent input from the hind paw soon followed

(64–66), and today there exist an alphabet soup of surgically

and chemically induced nerve injuries (see 67). Although

these differ in their symptom profile (e.g., only some featuring

heat hypersensitivity), as with the inflammatory assays apart

from (species-specific) guarding behavior there are no overt

nocifensive behaviors to measure (68), and very little effect on

activities of daily living (69, 70).

As measured by mechanical hypersensitivity, the most

robust and thus most-used endpoint (71), the duration of

pain varies in these assays. For example, hypersensitivity in

the chronic constriction injury (CCI) assay is entirely

resolved within 30–90 days post-surgery (63), whereas

mechanical hypersensitivity in the spared nerve injury (SNI)

lasts an entire lifetime (72). Bonica (73) defined chronic pain

as that persists past normal healing time, but the need for a

clearer cut off led Merskey (74) to propose (an arbitrary) 3

months as the definition of chronic, and this has been

retained (75), although not without controversy (76). The

SNI is suited for longer investigations, but 80% of extant

preclinical pain studies are completed in less than 4 weeks

post-injury (71). The wisdom of this status quo is called into

question by two recent mouse studies showing important

pathophysiological changes that do not occur until many

months after injury (77, 78). It remains quite possible that

3 months in a mouse is…3 months.

Perhaps the strongest and most enduring criticism of the

status quo in preclinical pain testing is the continued reliance
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on reflexive withdrawals to experimenter-delivered stimuli as an

endpoint (e.g., 19, 79, 80). The most recent wave of

development, therefore, has been to identify new endpoints.

As described in recent, comprehensive reviews (81, 82), these

can be broadly classified as pain-stimulated behaviors, pain-

depressed behaviors, conditioned/motivated behaviors,

measures of disability or quality of life, and biomarkers.

Notable among these are: (1) operant conditioning to produce

place avoidance (83); (2) conditioned place preference to

analgesics as a way to infer pain during the classical

conditioning (84, 85); (3) depression of previously favored

activities such as wheel running (86), nest building (87),

burrowing (88, 89), feeding (90), and cage-lid hanging (70);

(4) measures of pain-related disability in, for example, grip

strength (91); and (5) facial grimacing (92). Each of these

have advantages and disadvantages compared to legacy

endpoints, and many of these procedures are much more

labor-intensive than their predecessors, although automation

is proceeding apace (93). In some contexts, instead of

behavioral endpoints one can employ non-behavioral proxies

of nociceptive activity using powerful electrophysiological or

calcium imaging techniques.

Finally, a recent development in preclinical algesiometry,

especially at later stages of preclinical research, is to consider

assessing new treatments via their effect on clinical pain states

(e.g., arthritis, cancer pain) in companion animals (see 94,

95). Combined with more valid endpoints, such as automated

measurement of grimacing in cats (96), this might represent a

powerful way to predict clinically efficacy in human trials.
The future of algesiometry

It can be argued that algesiometry in both humans and non-

human animals have largely failed thus far in their respective

aims. The continuing quest for objective biomarkers of pain

in humans suggests that self-reported ratings are still not fully

trusted, and many pain physicians increasingly avoid soliciting
Frontiers in Pain Research 05
such ratings in favour of broader (but less selective) measures

of functional disability and quality of life. Other dimensions

of pain are being given more attention as well, including

cognitive and social aspects (97), and there is likely to be

much more study of “social pain”, aversive states not

associated with physical injury and independent of somatic/

visceral input (98). The repeated translational failures of

analgesic development over the past decades have often, fairly

or not, been blamed on the inadequacy of preclinical models

(e.g., 99). Whether useful biomarkers and modern preclinical

methods can improve the situation will be interesting to

monitor over the next few decades. As ever, solutions to the

measurement problem are critical for both the understanding

and better management of pain.
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