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Abstract

The scientific method has been guiding biological research for a long time. It not only pre-

scribes the order and types of activities that give a scientific study validity and a stamp of

approval but also has substantially shaped how we collectively think about the endeavor of

investigating nature. The advent of high-throughput data generation, data mining, and

advanced computational modeling has thrown the formerly undisputed, monolithic status of

the scientific method into turmoil. On the one hand, the new approaches are clearly suc-

cessful and expect the same acceptance as the traditional methods, but on the other hand,

they replace much of the hypothesis-driven reasoning with inductive argumentation, which

philosophers of science consider problematic. Intrigued by the enormous wealth of data and

the power of machine learning, some scientists have even argued that significant correla-

tions within datasets could make the entire quest for causation obsolete. Many of these

issues have been passionately debated during the past two decades, often with scant

agreement. It is proffered here that hypothesis-driven, data-mining–inspired, and “allochtho-

nous” knowledge acquisition, based on mathematical and computational models, are vec-

tors spanning a 3D space of an expanded scientific method. The combination of methods

within this space will most certainly shape our thinking about nature, with implications for

experimental design, peer review and funding, sharing of result, education, medical diag-

nostics, and even questions of litigation.

The traditional scientific method: Hypothesis-driven deduction

Research is the undisputed core activity defining science. Without research, the advancement

of scientific knowledge would come to a screeching halt. While it is evident that researchers

look for new information or insights, the term “research” is somewhat puzzling. Never mind

the prefix “re,” which simply means “coming back and doing it again and again,” the word

“search” seems to suggest that the research process is somewhat haphazard, that not much of a

strategy is involved in the process. One might argue that research a few hundred years ago had

the character of hoping for enough luck to find something new. The alchemists come to mind

in their quest to turn mercury or lead into gold, or to discover an elixir for eternal youth,

through methods we nowadays consider laughable.
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Today’s sciences, in stark contrast, are clearly different. Yes, we still try to find something

new—and may need a good dose of luck—but the process is anything but unstructured. In

fact, it is prescribed in such rigor that it has been given the widely known moniker “scientific

method.” This scientific method has deep roots going back to Aristotle and Herophilus

(approximately 300 BC), Avicenna and Alhazen (approximately 1,000 AD), Grosseteste and

Robert Bacon (approximately 1,250 AD), and many others, but solidified and crystallized into

the gold standard of quality research during the 17th and 18th centuries [1–7]. In particular,

Sir Francis Bacon (1561–1626) and René Descartes (1596–1650) are often considered the foun-

ders of the scientific method, because they insisted on careful, systematic observations of high

quality, rather than metaphysical speculations that were en vogue among the scholars of the

time [1, 8]. In contrast to their peers, they strove for objectivity and insisted that observations,

rather than an investigator’s preconceived ideas or superstitions, should be the basis for formu-

lating a research idea [7, 9].

Bacon and his 19th century follower John Stuart Mill explicitly proposed gaining knowl-

edge through inductive reasoning: Based on carefully recorded observations, or from data

obtained in a well-planned experiment, generalized assertions were to be made about similar

yet (so far) unobserved phenomena [7]. Expressed differently, inductive reasoning attempts to

derive general principles or laws directly from empirical evidence [10]. An example is the 19th

century epigram of the physician Rudolf Virchow, Omnis cellula e cellula. There is no proof

that indeed “every cell derives from a cell,” but like Virchow, we have made the observation

time and again and never encountered anything suggesting otherwise.

In contrast to induction, the widely accepted, traditional scientific method is based on for-

mulating and testing hypotheses. From the results of these tests, a deduction is made whether

the hypothesis is presumably true or false. This type of hypotheticodeductive reasoning goes

back to William Whewell, William Stanley Jevons, and Charles Peirce in the 19th century [1].

By the 20th century, the deductive, hypothesis-based scientific method had become deeply

ingrained in the scientific psyche, and it is now taught as early as middle school in order to

teach students valid means of discovery [8, 11, 12]. The scientific method has not only guided

most research studies but also fundamentally influenced how we think about the process of sci-

entific discovery.

Alas, because biology has almost no general laws, deduction in the strictest sense is difficult.

It may therefore be preferable to use the term abduction, which refers to the logical inference

toward the most plausible explanation, given a set of observations, although this explanation

cannot be proven and is not necessarily true.

Over the decades, the hypothesis-based scientific method did experience variations here

and there, but its conceptual scaffold remained essentially unchanged (Fig 1). Its key is a pro-

cess that begins with the formulation of a hypothesis that is to be rigorously tested, either in

the wet lab or computationally; nonadherence to this principle is seen as lacking rigor and can

lead to irreproducible results [1, 13–15].

Going further, the prominent philosopher of science Sir Karl Popper argued that a scientific

hypothesis can never be verified but that it can be disproved by a single counterexample. He

therefore demanded that scientific hypotheses had to be falsifiable, because otherwise, testing

would be moot [16, 17] (see also [18]). As Gillies put it, “successful theories are those that sur-

vive elimination through falsification” [19]. Kelley and Scott agreed to some degree but warned

that complete insistence on falsifiability is too restrictive as it would mark many computational

techniques, statistical hypothesis testing, and even Darwin’s theory of evolution as nonscien-

tific [20].

While the hypothesis-based scientific method has been very successful, its exclusive reliance

on deductive reasoning is dangerous because according to the so-called Duhem–Quine thesis,
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hypothesis testing always involves an unknown number of explicit or implicit assumptions,

some of which may steer the researcher away from hypotheses that seem implausible, although

they are, in fact, true [21]. According to Kuhn, this bias can obstruct the recognition of para-

digm shifts [22], which require the rethinking of previously accepted “truths” and the develop-

ment of radically new ideas [23, 24]. The testing of simultaneous alternative hypotheses [25–

27] ameliorates this problem to some degree but not entirely.

The traditional scientific method is often presented in discrete steps, but it should really be

seen as a form of critical thinking, subject to review and independent validation [8]. It has

proven very influential, not only by prescribing valid experimentation, but also for affecting

the way we attempt to understand nature [18], for teaching [8, 12], reporting, publishing, and

otherwise sharing information [28], for peer review and the awarding of funds by research-

supporting agencies [29, 30], for medical diagnostics [7], and even in litigation [31].

Fig 1. Traditional scientific method: Hypothesis-based deduction. The central concept of the traditional scientific

method is a falsifiable hypothesis regarding some phenomenon of interest. This hypothesis is to be tested

experimentally or computationally. The test results support or refute the hypothesis, triggering a new round of

hypothesis formulation and testing.

https://doi.org/10.1371/journal.pcbi.1007279.g001
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A second dimension of the scientific method: Data-mining–inspired

induction

A major shift in biological experimentation occurred with the–omics revolution of the early

21st century. All of a sudden, it became feasible to perform high-throughput experiments that

generated thousands of measurements, typically characterizing the expression or abundances of

very many—if not all—genes, proteins, metabolites, or other biological quantities in a sample.

The strategy of measuring large numbers of items in a nontargeted fashion is fundamentally

different from the traditional scientific method and constitutes a new, second dimension of

the scientific method. Instead of hypothesizing and testing whether gene X is up-regulated

under some altered condition, the leading question becomes which of the thousands of genes

in a sample are up- or down-regulated. This shift in focus elevates the data to the supreme role

of revealing novel insights by themselves (Fig 2). As an important, generic advantage over the

Fig 2. Dimension of data-mining–inspired induction. Data-driven research begins with an untargeted exploration,

in which the data speak for themselves. Machine learning extracts patterns from the data, which suggest hypotheses

that are to be tested in the lab or computationally.

https://doi.org/10.1371/journal.pcbi.1007279.g002
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traditional strategy, this second dimension is free of a researcher’s preconceived notions

regarding the molecular mechanisms governing the phenomenon of interest, which are other-

wise the key to formulating a hypothesis. The prominent biologists Patrick Brown and David

Botstein commented that “the patterns of expression will often suffice to begin de novo discov-

ery of potential gene functions” [32].

This data-driven, discovery-generating approach is at once appealing and challenging. On

the one hand, very many data are explored simultaneously and essentially without bias. On the

other hand, the large datasets supporting this approach create a genuine challenge to under-

standing and interpreting the experimental results because the thousands of data points, often

superimposed with a fair amount of noise, make it difficult to detect meaningful differences

between sample and control. This situation can only be addressed with computational meth-

ods that first “clean” the data, for instance, through the statistically valid removal of outliers,

and then use machine learning to identify statistically significant, distinguishing molecular

profiles or signatures. In favorable cases, such signatures point to specific biological pathways,

whereas other signatures defy direct explanation but may become the launch pad for follow-up

investigations [33].

Today’s scientists are very familiar with this discovery-driven exploration of “what’s out

there” and might consider it a quaint quirk of history that this strategy was at first widely chas-

tised and ridiculed as a “fishing expedition” [30, 34]. Strict traditionalists were outraged that

rigor was leaving science with the new approach and that sufficient guidelines were unavailable

to assure the validity and reproducibility of results [10, 35, 36].

From the view point of philosophy of science, this second dimension of the scientific

method uses inductive reasoning and reflects Bacon’s idea that observations can and should

dictate the research question to be investigated [1, 7]. Allen [36] forcefully rejected this type of

reasoning, stating “the thinking goes, we can now expect computer programs to derive signifi-

cance, relevance and meaning from chunks of information, be they nucleotide sequences or

gene expression profiles. . . In contrast with this view, many are convinced that no purely logi-

cal process can turn observation into understanding.” His conviction goes back to the 18th

century philosopher David Hume and again to Popper, who identified as the overriding prob-

lem with inductive reasoning that it can never truly reveal causality, even if a phenomenon is

observed time and again [16, 17, 37, 38]. No number of observations, even if they always have

the same result, can guard against an exception that would violate the generality of a law

inferred from these observations [1, 35]. Worse, Popper argued, through inference by induc-

tion, we cannot even know the probability of something being true [10, 17, 36].

Others argued that data-driven and hypothesis-driven research actually do not differ all

that much in principle, as long as there is cycling between developing new ideas and testing

them with care [27]. In fact, Kell and Oliver [34] maintained that the exclusive acceptance of

hypothesis-driven programs misrepresents the complexities of biological knowledge genera-

tion. Similarly refuting the prominent rule of deduction, Platt [26] and Beard and Kushmerick

[27] argued that repeated inductive reasoning, called strong inference, corresponds to a logi-

cally sound decision tree of disproving or refining hypotheses that can rapidly yield firm con-

clusions; nonetheless, Platt had to admit that inductive inference is not as certain as deduction,

because it projects into the unknown. Lander compared the task of obtaining causality by

induction to the problem of inferring the design of a microprocessor from input-output read-

ings, which in a strict sense is impossible, because the microprocessor could be arbitrarily

complicated; even so, inference often leads to novel insights and therefore is valuable [39].

An interesting special case of almost pure inductive reasoning is epidemiology, where

hypothesis-driven reasoning is rare and instead, the fundamental question is whether data-

based evidence is sufficient to associate health risks with specific causes [31, 34].
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Recent advances in machine learning and “big-data” mining have driven the use of induc-

tive reasoning to unprecedented heights. As an example, machine learning can greatly assist in

the discovery of patterns, for instance, in biological sequences [40]. Going a step further, a

pithy article by Andersen [41] proffered that we may not need to look for causality or mecha-

nistic explanations anymore if we just have enough correlation: “With enough data, the num-

bers speak for themselves, correlation replaces causation, and science can advance even

without coherent models or unified theories.”

Of course, the proposal to abandon the quest for causality caused pushback on philosophi-

cal as well as mathematical grounds. Allen [10, 35] considered the idea “absurd” that data anal-

ysis could enhance understanding in the absence of a hypothesis. He felt confident “that even

the formidable combination of computing power with ease of access to data cannot produce a

qualitative shift in the way that we do science: the making of hypotheses remains an indispens-

able component in the growth of knowledge” [36]. Succi and Coveney [42] refuted the “most

extravagant claims” of big-data proponents very differently, namely by analyzing the theories

on which machine learning is founded. They contrasted the assumptions underlying these the-

ories, such as the law of large numbers, with the mathematical reality of complex biological

systems. Specifically, they carefully identified genuine features of these systems, such as nonlin-

earities, nonlocality of effects, fractal aspects, and high dimensionality, and argued that they

fundamentally violate some of the statistical assumptions implicitly underlying big-data analy-

sis, like independence of events. They concluded that these discrepancies “may lead to false

expectations and, at their nadir, even to dangerous social, economical and political manipula-

tion.” To ameliorate the situation, the field of big-data analysis would need new strong theo-

rems characterizing the validity of its methods and the numbers of data required for obtaining

reliable insights. Succi and Coveney go as far as stating that too many data are just as bad as

insufficient data [42].

While philosophical doubts regarding inductive methods will always persist, one cannot

deny that -omics-based, high-throughput studies, combined with machine learning and big-

data analysis, have been very successful [43]. Yes, induction cannot truly reveal general laws,

no matter how large the datasets, but they do provide insights that are very different from what

science had offered before and may at least suggest novel patterns, trends, or principles. As a

case in point, if many transcriptomic studies indicate that a particular gene set is involved in

certain classes of phenomena, there is probably some truth to the observation, even though it

is not mathematically provable. Kepler’s laws of astronomy were arguably derived solely from

inductive reasoning [34].

Notwithstanding the opposing views on inductive methods, successful strategies shape how

we think about science. Thus, to take advantage of all experimental options while ensuring

quality of research, we must not allow that “anything goes” but instead identify and character-

ize standard operating procedures and controls that render this emerging scientific method

valid and reproducible. A laudable step in this direction was the wide acceptance of “minimum

information about a microarray experiment” (MIAME) standards for microarray experiments

[44].

A third dimension of the scientific method: Allochthonous reasoning

Parallel to the blossoming of molecular biology and the rapid rise in the power and availability

of computing in the late 20th century, the use of mathematical and computational models

became increasingly recognized as relevant and beneficial for understanding biological phe-

nomena. Indeed, mathematical models eventually achieved cornerstone status in the new field

of computational systems biology.
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Mathematical modeling has been used as a tool of biological analysis for a long time [27,

45–48]. Interesting for the discussion here is that the use of mathematical and computational

modeling in biology follows a scientific approach that is distinctly different from the tradi-

tional and the data-driven methods, because it is distributed over two entirely separate

domains of knowledge. One consists of the biological reality of DNA, elephants, and roses,

whereas the other is the world of mathematics, which is governed by numbers, symbols, theo-

rems, and abstract work protocols. Because the ways of thinking—and even the languages—

are different in these two realms, I suggest calling this type of knowledge acquisition

“allochthonous” (literally Greek: in or from a “piece of land different from where one is at

home”; one could perhaps translate it into modern lingo as “outside one’s comfort zone”). De

facto, most allochthonous reasoning in biology presently refers to mathematics and comput-

ing, but one might also consider, for instance, the application of methods from linguistics in

the analysis of DNA sequences or proteins [49].

One could argue that biologists have employed “models” for a long time, for instance, in

the form of “model organisms,” cell lines, or in vitro experiments, which more or less faithfully

reflect features of the organisms of true interest but are easier to manipulate. However, this

type of biological model use is rather different from allochthonous reasoning, as it does not

leave the realm of biology and uses the same language and often similar methodologies.

A brief discussion of three experiences from our lab may illustrate the benefits of allochtho-

nous reasoning. (1) In a case study of renal cell carcinoma, a dynamic model was able to

explain an observed yet nonintuitive metabolic profile in terms of the enzymatic reaction steps

that had been altered during the disease [50]. (2) A transcriptome analysis had identified sev-

eral genes as displaying significantly different expression patterns during malaria infection in

comparison to the state of health. Considered by themselves and focusing solely on genes cod-

ing for specific enzymes of purine metabolism, the findings showed patterns that did not make

sense. However, integrating the changes in a dynamic model revealed that purine metabolism

globally shifted, in response to malaria, from guanine compounds to adenine, inosine, and

hypoxanthine [51]. (3) Data capturing the dynamics of malaria parasites suggested growth

rates that were biologically impossible. Speculation regarding possible explanations led to the

hypothesis that many parasite-harboring red blood cells might “hide” from circulation and

therewith from detection in the blood stream. While experimental testing of the feasibility of

the hypothesis would have been expensive, a dynamic model confirmed that such a conceal-

ment mechanism could indeed quantitatively explain the apparently very high growth rates

[52]. In all three cases, the insights gained inductively from computational modeling would

have been difficult to obtain purely with experimental laboratory methods. Purely deductive

allochthonous reasoning is the ultimate goal of the search for design and operating principles

[53–55], which strives to explain why certain structures or functions are employed by nature

time and again. An example is a linear metabolic pathway, in which feedback inhibition is

essentially always exerted on the first step [56, 57]. This generality allows the deduction that a

so far unstudied linear pathway is most likely (or even certain to be) inhibited at the first step.

Not strictly deductive—but rather abductive—was a study in our lab in which we analyzed

time series data with a mathematical model that allowed us to infer the most likely regulatory

structure of a metabolic pathway [58, 59].

A typical allochthonous investigation begins in the realm of biology with the formulation of

a hypothesis (Fig 3). Instead of testing this hypothesis with laboratory experiments, the system

encompassing the hypothesis is moved into the realm of mathematics. This move requires two

sets of ingredients. One set consists of the simplification and abstraction of the biological sys-

tem: Any distracting details that seem unrelated to the hypothesis and its context are omitted

or represented collectively with other details. This simplification step carries the greatest risk
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of the entire modeling approach, as omission of seemingly negligible but, in truth, important

details can easily lead to wrong results. The second set of ingredients consists of correspon-

dence rules that translate every biological component or process into the language of mathe-

matics [60, 61].

Once the system is translated, it has become an entirely mathematical construct that can be

analyzed purely with mathematical and computational means. The results of this analysis are

also strictly mathematical. They typically consist of values of variables, magnitudes of processes,

sensitivity patterns, signs of eigenvalues, or qualitative features like the onset of oscillations or

the potential for limit cycles. Correspondence rules are used again to move these results back

into the realm of biology. As an example, the mathematical result that “two eigenvalues have

positive real parts” does not make much sense to many biologists, whereas the interpretation

that “the system is not stable at the steady state in question” is readily explained. New biological

insights may lead to new hypotheses, which are tested either by experiments or by returning

once more to the realm of mathematics. The model design, diagnosis, refinements, and

Fig 3. Dimension of allochthonous, model-based reasoning. This mathematical and computational approach is

distributed over two realms, which are connected by correspondence rules.

https://doi.org/10.1371/journal.pcbi.1007279.g003
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validation consist of several phases, which have been discussed widely in the biomathematical

literature. Importantly, each iteration of a typical modeling analysis consists of a move from the

biological to the mathematical realm and back.

The reasoning within the realm of mathematics is often deductive, in the form of an Aristo-

telian syllogism, such as the well-known “All men are mortal; Socrates is a man; therefore, Soc-

rates is mortal.” However, the reasoning may also be inductive, as it is the case with large-scale

Monte-Carlo simulations that generate arbitrarily many “observations,” although they cannot

reveal universal principles or theorems. An example is a simulation randomly drawing num-

bers in an attempt to show that every real number has an inverse. The simulation will always

attest to this hypothesis but fail to discover the truth because it will never randomly draw 0.

Generically, computational models may be considered sets of hypotheses, formulated as equa-

tions or as algorithms that reflect our perception of a complex system [27].

Impact of the multidimensional scientific method on learning

Almost all we know in biology has come from observation, experimentation, and interpreta-

tion. The traditional scientific method not only offered clear guidance for this knowledge gath-

ering, but it also fundamentally shaped the way we think about the exploration of nature.

When presented with a new research question, scientists were trained to think immediately in

terms of hypotheses and alternatives, pondering the best feasible ways of testing them, and

designing in their minds strong controls that would limit the effects of known or unknown

confounders. Shaped by the rigidity of this ever-repeating process, our thinking became

trained to move forward one well-planned step at a time. This modus operandi was rigid and

exact. It also minimized the erroneous pursuit of long speculative lines of thought, because

every step required testing before a new hypothesis was formed. While effective, the process

was also very slow and driven by ingenuity—as well as bias—on the scientist’s part. This bias

was sometimes a hindrance to necessary paradigm shifts [22].

High-throughput data generation, big-data analysis, and mathematical-computational

modeling changed all that within a few decades. In particular, the acceptance of inductive prin-

ciples and of the allochthonous use of nonbiological strategies to answer biological questions

created an unprecedented mix of successes and chaos. To the horror of traditionalists, the

importance of hypotheses became minimized, and the suggestion spread that the data would

speak for themselves [36]. Importantly, within this fog of “anything goes,” the fundamental

question arose how to determine whether an experiment was valid.

Because agreed-upon operating procedures affect research progress and interpretation,

thinking, teaching, and sharing of results, this question requires a deconvolution of scientific

strategies. Here I proffer that the single scientific method of the past should be expanded

toward a vector space of scientific methods, with spanning vectors that correspond to different

dimensions of the scientific method (Fig 4).

Obviously, all three dimensions have their advantages and drawbacks. The traditional,

hypothesis-driven deductive method is philosophically “clean,” except that it is confounded by

preconceptions and assumptions. The data-mining–inspired inductive method cannot offer

universal truths but helps us explore very large spaces of factors that contribute to a phenome-

non. Allochthonous, model-based reasoning can be performed mentally, with paper and pen-

cil, through rigorous analysis, or with a host of computational methods that are precise and

disprovable [27]. At the same time, they are incomparable faster, cheaper, and much more

comprehensive than experiments in molecular biology. This reduction in cost and time, and

the increase in coverage, may eventually have far-reaching consequences, as we can already

fathom from much of modern physics.
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Due to its long history, the traditional dimension of the scientific method is supported by

clear and very strong standard operating procedures. Similarly, strong procedures need to be

developed for the other two dimensions. The MIAME rules for microarray analysis provide an

excellent example [44]. On the mathematical modeling front, no such rules are generally

accepted yet, but trends toward them seem to emerge at the horizon. For instance, it seems to

be becoming common practice to include sensitivity analyses in typical modeling studies and

to assess the identifiability or sloppiness of ensembles of parameter combinations that fit a

given dataset well [62, 63].

From a philosophical point of view, it seems unlikely that objections against inductive rea-

soning will disappear. However, instead of pitting hypothesis-based deductive reasoning

against inductivism, it seems more beneficial to determine how the different methods can be

synergistically blended (cf. [18, 27, 34, 42]) as linear combinations of the three vectors of

knowledge acquisition (Fig 4). It is at this point unclear to what degree the identified three

dimensions are truly independent of each other, whether additional dimensions should be

added [24], or whether the different versions could be amalgamated into a single scientific

method [18], especially if it is loosely defined as a form of critical thinking [8]. Nobel Laureate

Percy Bridgman even concluded that “science is what scientists do, and there are as many sci-

entific methods as there are individual scientists” [8, 64].

Combinations of the three spanning vectors of the scientific method have been emerging

for some time. Many biologists already use inductive high-throughput methods to develop

Fig 4. Space of scientific methods. The traditional hypothesis-based deductive scientific method is expanded into a 3D

space that allows for synergistic blends of methods that include data-mining–inspired, inductive knowledge acquisition,

and mathematical model-based, allochthonous reasoning.

https://doi.org/10.1371/journal.pcbi.1007279.g004
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specific hypotheses that are subsequently tested with deductive or further inductive methods

[34, 65]. In terms of including mathematical modeling, physics and geology have been leading

the way for a long time, often by beginning an investigation in theory, before any actual experi-

ment is performed. It will benefit biology to look into this strategy and to develop best prac-

tices of allochthonous reasoning.

The blending of methods may take quite different shapes. Early on, Ideker and colleagues

[65] proposed an integrated experimental approach for pathway analysis that offered a glimpse

of new experimental strategies within the space of scientific methods. In a similar vein, Covert

and colleagues [66] included computational methods into such an integrated approach.

Additional examples of blended analyses in systems biology can be seen in other works, such

as [43, 67–73]. Generically, it is often beneficial to start with big data, determine patterns in

associations and correlations, then switch to the mathematical realm in order to filter out spu-

rious correlations in a high-throughput fashion. If this procedure is executed in an iterative

manner, the “surviving” associations have an increased level of confidence and are good

candidates for further experimental or computational testing (personal communication from

S. Chandrasekaran).

If each component of a blended scientific method follows strict, commonly agreed guide-

lines, “linear combinations” within the 3D space can also be checked objectively, per deconvo-

lution. In addition, guidelines for synergistic blends of component procedures should be

developed. If we carefully monitor such blends, time will presumably indicate which method is

best for which task and how the different approaches optimally inform each other. For

instance, it will be interesting to study whether there is an optimal sequence of experiments

along the three axes for a particular class of tasks. Big-data analysis together with inductive rea-

soning might be optimal for creating initial hypotheses and possibly refuting wrong specula-

tions (“we had thought this gene would be involved, but apparently it isn’t”). If the logic of an

emerging hypotheses can be tested with mathematical and computational tools, it will almost

certainly be faster and cheaper than an immediate launch into wet-lab experimentation. It is

also likely that mathematical reasoning will be able to refute some apparently feasible hypothe-

sis and suggest amendments. Ultimately, the “surviving” hypotheses must still be tested for

validity through conventional experiments. Deconvolving current practices and optimizing

the combination of methods within the 3D or higher-dimensional space of scientific methods

will likely result in better planning of experiments and in synergistic blends of approaches that

have the potential capacity of addressing some of the grand challenges in biology.
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