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Abstract: Models of within-host influenza viral dynamics have contributed to an improved
understanding of viral dynamics and antiviral effects over the past decade. Existing models can be
classified into two broad types based on the mechanism of viral control: models utilising target cell
depletion to limit the progress of infection and models which rely on timely activation of innate and
adaptive immune responses to control the infection. In this paper, we compare how two exemplar
models based on these different mechanisms behave and investigate how the mechanistic difference
affects the assessment and prediction of antiviral treatment. We find that the assumed mechanism
for viral control strongly influences the predicted outcomes of treatment. Furthermore, we observe
that for the target cell-limited model the assumed drug efficacy strongly influences the predicted
treatment outcomes. The area under the viral load curve is identified as the most reliable predictor of
drug efficacy, and is robust to model selection. Moreover, with support from previous clinical studies,
we suggest that the target cell-limited model is more suitable for modelling in vitro assays or infection
in some immunocompromised/immunosuppressed patients while the immune response model is
preferred for predicting the infection/antiviral effect in immunocompetent animals/patients.

Keywords: model selection; target cell depletion; immune response; neuraminidase inhibitor;
drug efficacy

1. Introduction

Influenza is an infectious disease targeting a host’s respiratory system, causing high morbidity
and mortality worldwide [1,2]. Infection of healthy epithelial cells in the upper respiratory tract (URT)
with influenza virus leads to a rapid viral reproduction and may subsequently cause symptoms from
mild cough, runny nose and sore throat to severe illness. Antiviral drugs are important to alleviate
influenza symptoms at the individual level and reduce transmission at the population level [3,4].
The most widely used antiviral drugs are neuraminidase inhibitors (NAI), such as oseltamivir and
zanamivir [5], which (partially) block the release of influenza virus from infected cells and in turn
reduce virus spread within the URT. Upon the emergence of novel influenza strains, assessing the
antiviral efficacy and impact on both reducing viral replication and controlling the spread of resistance
is both urgent and important [6–8]. This is, however, challenging due to a limited understanding of
both viral and immune system dynamics in the host and the feasibility of various endpoints proposed
for clinical trials [9–11].
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Mathematical models of within-host influenza viral dynamics provide a platform on which the
effect of antiviral drugs can be investigated and predicted due to their transparent structures and
biologically interpretable parameters [12,13]. Previously the function of NAIs has been modelled
by a constant reduction in the rate of viral production, through which altered model kinetics were
investigated [11,14–19]. Those studies (also including any mentioned later) have played an important
role in advancing our understanding of antiviral effects. For example, Baccam et al. found that
an influenza viral infection model with a 97% reduction in viral production rate reasonably reproduced
a set of viral load data [14]; Handel et al. studied the emergence and spread of NAI resistance
using a model with both NAI-sensitive and NAI-resistant pools of virus and identified significant
challenges related to the quantification of resistance generation [15]; Dobrovolny et al. compared
the effect of NAIs against infection in human and avian hosts and demonstrated that NAIs are
efficacious for both strains [17]. Other models have incorporated both viral dynamics and plasma NAI
concentration dynamics (which are referred to as the pharmacodynamic-pharmacokinetic (PK-PD)
models) such that the reduction in viral production rate is dependent on the time course of plasma
drug concentration [20,21]. These models are more realistic and allow for the assessment of alternative
dosing strategies [20], although the detailed kinetics of drug concentration are not necessarily important
for high frequency dosing regimens [21].

Although influenza viral dynamic models vary from study to study, most of the models used for
the assessment and prediction of NAI efficacy belong to a common model type—the target cell-limited
model—which is structured to capture the essential interactions among three populations: target cells
(i.e., healthy epithelial cells susceptible to virus infection), virus-infected cells and free virus. A key
feature of this class of models is that target cell depletion will occur after approximately two days
post-infection (p.i.) such that an effective control of viral load is primarily driven by a dramatically
reduced viral production (a typical solution is given in Figure 1A). Practically, while this model may be
suitable for modelling an in vitro assay [22,23] where the immune response is absent, it is less suitable
for in vivo viral dynamics where viral control is thought to be dominated by various activated immune
responses (IR) [24] (a schematic illustration is given in Figure 1B).
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1Figure 1. Schematic illustration of the typical solutions to the target cell-limited models (A) and models
incorporating both innate and adaptive immune responses (B). For the target cell-limited models,
severe depletion of target cells stops viral growth leading to viral clearance (the approximate turning
point is indicated by a filled triangle). In contrast, for the models with both innate and adaptive immune
responses, timely activation of the innate immune response stops viral growth and later activation of
the adaptive immune response is responsible for viral clearance (the approximate times of activation
are indicated by filled triangles). p.i.: post-infection.
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Assumed differences in the mechanism of viral control have been shown to influence the
predictive power of viral dynamic models [13,15,25,26]. For the prediction of NAI effects, Handel et al.
showed that a lack of NAI treatment data prevented identification of the mechanisms of NAI action
and argued for the necessity to incorporate the dynamics of the immune response into models for
further assessment [15]. Therefore, with the increasing attention being paid to model-based studies of
antiviral efficacy and clinical applications, it is important to understand how the different mechanisms
for viral control (i.e., target cell-limited viral growth versus immunity-driving viral clearance) affect
model predictions of antiviral treatment outcomes.

In this paper, we first present a typical target cell-limited model and a virus dynamic model with
both innate and adaptive immune responses which exhibits typical behaviour of natural infection and
has been validated with multiple sources of experimental data. We analyse the model dynamics and
demonstrate that the two models utilise different mechanisms to control viral load. By integrating
the two virus dynamic models with a pharmacokinetic model of NAI, we then analyse the models’
behaviours and compare their predictions on how the viral load profile depends on NAI efficacy
and how infection-related quantities (such as the area under the viral load curve, peak viral load,
and duration of infection) are associated with NAI efficacy. Finally, we examine the predictions of the
two models on treatment outcomes for different initiation times for drug administration.

2. Materials and Methods

In this section, we first provide details for the two models with different mechanisms of
within-host viral control. The target cell-limited model which we focus on here is a system of ordinary
differential equations (ODEs) with the simplest structure capturing the essential interactions among
target cells (denoted by T), virus-infected cells (denoted by I) and free virus (denoted by V), known as
the TIV model. The other model incorporates innate and adaptive immune responses and is referred
to as the immune response model (IR model). The IR model is an extension of the TIV model and
contains both ordinary and delay differential equations.

We then introduce a pharmacokinetic model which produces a realistic time course for plasma
NAI concentration. In this study, we shall focus on oseltamivir (the most commonly used NAI) whose
active metabolite, oseltamivir carboxylate (OC), plays a direct role in reducing the viral production
from infected cells [5].

Finally, we introduce the infection-related statistics for both models, such as the area under the
viral load curve, peak viral load, and duration of infection, which will be analysed in the Results and
provide important insights into the dynamics of the two models with antiviral treatment.

2.1. The TIV Model

The TIV model is given by

dT
dt

= gTT(1− T + I
T0

)− β′VT, (1)

dI
dt

= β′VT − δI I, (2)

dV
dt

= (1− ε)pV I − δVV − βVT. (3)

Virus (quantified by viral load V) is produced from infected cells (I) at rate pV and is cleared at
a rate δV . Consumption of free virus is also via binding to target cells (T) at a rate βT. An NAI-induced
reduction in viral production is modelled by the factor 1 − ε where ε is a Hill function of OC
concentration, D, detailed later. Target cells are replenished by logistic regrowth of the target cell pool
at a basal rate gT but limited by the capacity T0 and are also consumed by the invasion of free virus at
a rate β′V (note that β and β′ are different parameters due to different units for viral load V and target
cells T [26]). Invasion of free virus into target cells produces infected cells, which are then cleared at
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a rate δI . This model retains the fundamental structure of the majority of target cell-limited models in
the literature [13].

2.2. The IR Model

The IR model extends the TIV model by including innate and adaptive immune response
mechanisms, each of which performs a particular function over a distinct timescale [27]. The model is
formulated as a system of ordinary and delay differential equations. We adopt one of our published
models [27] which incorporates a comprehensive set of major immune responses and which has been
validated against a number of sources of experimental data:

dV
dt

= (1− ε)pV I − δVV − κSVAS − κLVAL − βVT, (4)

dT
dt

= gT(T + R)(1− T + R + I
T0

)− β′VT + ρR− φFT, (5)

dI
dt

= β′VT − δI I − κN IF− κE IE, (6)

dR
dt

= φFT − ρR, (7)

dF
dt

= pF I − δFF, (8)

dCn

dt
= −βCn(

V
V + hC

)Cn, (9)

dE
dt

= βCn(
V(t− τC)

V(t− τC) + hC
)Cn(t− τC)epC − δEE, (10)

dBn

dt
= −βBn(

V
V + hB

)Bn, (11)

dP
dt

= βBn(
V(t− τB)

V(t− τB) + hB
)Bn(t− τB)epB − δPP, (12)

dAS
dt

= pSP− δS AS, (13)

dAL
dt

= pLP− δL AL. (14)

The model is a coupled system constituting three major parts. The first part (Equations (4)–(7))
describes the process of infection of target cells by influenza virus, retaining the skeleton of the TIV
model except for the addition of several components related to the immune response. κSVAS and
κLVAL represent virus neutralisation by antibodies (both a short-lived antibody response AS driven
by, for example IgM, and a longer-lasting antibody response AL driven by, for example IgG and
IgA [28,29]. The innate immune response, mediated by interferon (IFN; F), triggers target cells (T) to
become virus-resistant (R) at a rate φF, and the resistant cells may lose protection and change back
to target cells at a rate ρ [30]. Infected cells are killed by IFN-activated natural killer cells at a rate
κN F [30,31] and by effector CD8+ T cells (E) at a rate κEE [29].

The second part (Equation (8)) describes the dynamics of IFN, the production of IFN by infected
cells at rate pF and decay of IFN at rate δF [26,30]. Note that although we confine the innate immunity
to be IFN-mediated in the model (because of the well-established role of IFN), the compartment IFN
can also be viewed as a gross response of various innate immune processes to viral infection.

The last part (Equations (9)–(14)) describes various major adaptive immune responses including
CD8+ T cells and B cell-produced antibodies. Naive CD8+ T cells (Cn), upon stimulation by
antigen-presentation at a rate βCnV/(V + hC) (where βCn is the maximum stimulation rate and
hC indicates the viral load (V) at which half of the stimulation rate is achieved), initiate the
proliferation/differentiation process and produce effector CD8+ T cells at a multiplication factor of epC

after a delay τC. The delay could be induced by both naive CD8+ T cell proliferation/differentiation
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and effector CD8+ T cell migration and localisation to the site of infection [32–34]. Similarly,
naive B cells Bn are recruited and subsequently produce antibody-secreting plasma B cells P at
a rate βBnV/(V + hB) after a delay τB. Two types of antibody responses, a short-lasting antibody
response AS (e.g., IgM lasting from about day 5 to day 20 p.i.) and a longer-lived antibody response
AL (e.g., IgG and IgA lasting weeks to months) [28,29], are modelled by simple linear production and
decay kinetics. Effector CD8+ T cells and plasma B cells decay at rates δE and δP respectively.

As demonstrated above, the TIV model can be seen as a special case of the IR model where all
immune components are knocked out. We use the same set of parameter values to simulate both
models. For model simulation, the initial conditions are (V, T, I) = (104, T0, 0) for the TIV model and
(V, T, I, F, R, Cn, E, Bn, P, AS, AL) = (104, T0, 0, 0, 0, 100, 0, 100, 0, 0, 0) for the IR model. The parameter
values are adopted from [27] where the IR model was fitted to a set of murine data from [29] and
provided in Table 1. Note that we choose the parameter values such that the two models exhibit typical
behaviours of the two model types observed in previous modelling studies (detailed in the summary
section of the Results) and therefore are competent representatives of the model types.

Table 1. Model parameter values for both the target cells—virus-infected cells—free virus (TIV) model
and the immune response (IR) model. The values are adopted from one of our earlier study [27] where
some of the parameters were obtained from the literature (references provided in [27]) and the rest
were obtained by fitting the IR model to experimental data from [29]. [uV ], [uF] and [uA] represent the
units of viral load, interferon (IFN) and antibodies respectively. [uV ] and [uA] are EID50/mL (50% egg
infective dose) and pg/mL. IFN is assumed to be a non-dimensionalised variable in the model, and
therefore [uF] can be ignored. URT: upper respiratory tract.

Par. Description Value & Unit

T0 initial/total number of epithelial cells in the URT 7× 107 cells
gT basal growth rate of healthy cells 0.8 d−1

pV viral production rate 210 [uV]cell−1d−1

pF IFN production rate 10−5 [uF]cell−1d−1

pS short-lived antibody production rate 12 [uA]cell−1d−1

pL long-lived antibody production rate 4 [uA]cell−1d−1

δV nonspecific viral clearance rate 5 d−1

δI nonspecific death rate of infected cells 2 d−1

δF IFN degradation rate 2 d−1

δE death rate of effector CD8+ T cells 0.57 d−1

δP death rate of plasma B cells 0.5 d−1

δS short-lived antibody consumption rate 2 d−1

δL long-lived antibody consumption rate 0.015 d−1

β rate of viral consumption by binding to target cells 5× 10−7 cell−1d−1

β′ rate of infection of target cells by virus 3× 10−8 [uV]
−1d−1

φ rate of conversion to virus-resistant state 0.33 [uF]
−1d−1

ρ rate of recovery from virus-resistant state 2.6 d−1

κS rate of viral neutralization by short-lived antibodies 0.8 [uA]
−1d−1

κL rate of viral neutralization by long-lived antibodies 0.4 [uA]
−1d−1

κN killing rate of infected cells by IFN-activated NK cells 2.5 [uF]
−1d−1

κE killing rate of infected cells by effector CD8+ T cells 5× 10−5 cell−1d−1

βCn maximum rate of stimulation of naive CD8+ T cells by virus 1 d−1

βBn maximum rate of stimulation of naive B cells by virus 0.03 d−1

hC half-maximal stimulating viral load for naive CD8+ T cells 104 [uV]
hB half-maximal stimulating viral load for naive B cells 104 [uV]
pC exponent of the CD8+ T cell multiplication factor 7.2 d−1

pB exponent of the B cell multiplication factor 2.08 d−1

τC delay for effector CD8+ T cell production 6 d
τB delay for plasma B cell production 4 d
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2.3. The Pharmacokinetic Model

A one-compartment pharmacokinetic (PK) model with first-order drug absorption and first-order
elimination is used to simulate the plasma OC concentration D [35]:

dD
dt

= ωkaDadmineka(t−tadmin) − keD, (t ≥ tadmin), (15)

where Dadmin (in units of mg) and tadmin (in units of days) indicate the dose and time of oseltamivir
administration respectively, ka is the rate of oseltamivir absorption into the plasma and ke is the rate of
OC elimination. ω is a factor converting absorbed drug mass to OC concentration (in units of ng/mL).
In this study, we shall concentrate on a standard regimen of 75 mg oseltamivir twice per day (note that
this treatment is only recommended for patients aged 13 years and older). This means Dadmin = 75 mg
is applied every 12 h. We assume that the drug administration starts at 28 h p.i. in line with previous
clinical and modelling studies [21,36]. ka = 11.04 day−1 and ke = 2.64 day−1 [21,37]. ω is chosen to be
4.63 kL−1 such that the simulated plasma OC concentration oscillates in a range consistent with the
experimental estimate of 167–332 ng/mL (median minimum to median maximum) [37].

The PK model and the viral dynamic models are coupled through an OC concentration-dependent
reduction in viral production. As introduced before, this is modelled by (1− ε)pV in Equation (3) or
Equation (4). ε is given by a function of OC concentration,

ε(t) =
εmaxD(t)

D(t) + EC50
, (16)

where εmax represents the maximum antiviral effect achievable by oseltamivir and is chosen to be 0.98
according to [21]. Small perturbations in εmax (or equivalently pV) do not alter the model dynamics [27].
The concentration achieving half-maximal effect, EC50, is highly variable (e.g., for different influenza
strains or individual hosts) ranging from 0.0008–35 µM [21] which is equivalent to approximately
0.2–9900 ng/mL (estimated using the OC molecular mass of 284.1736 g/mol). In this study, we only
allow EC50 to vary within this plausible range.

The PK-PD models are solved in MATLAB R2016b (The MathWorks, Natick, MA, USA).
The models are solved iteratively in time, and for each time step MATLAB’s ODE solver ode15s
is used to calculate the solutions. MATLAB code is provided in the Supplementary Material.

2.4. Infection-Related Statistics

For influenza, viral load is one of the most important indicators of the progress of infection.
Therefore measurable quantities related to the viral load may be used to improve the overall
assessment of the efficacy of antiviral therapies. In this paper, by varying EC50 (as a way to vary
drug efficacy), we investigate three important infection-related quantities: (1) the area under the
viral load curve (AUC); (2) the peak viral load; and (3) the duration of infection. These statistics are
schematically illustrated in Figure 2. Note that we redefine a truncated AUC within the first N days
p.i. (AUCN; calculated by integrating the viral load (before log-transform) over the relevant period),
which generalises the traditionally-defined AUC. Note that, in the Results, the AUCN and the peak
viral load are normalised to their corresponding quantities in the no-drug control to aid comparison.
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Figure 2. Schematic diagram showing the definitions of three important quantities characterising
the viral load profile. Peak viral load indicates the maximum of the viral load curve. Duration of
infection is the period of time from the start of infection to the time when the viral load reaches the
limit of detection. The area under the viral load curve within the first N days p.i. (AUCN; calculated
by integrating the viral load over the relevant period) is a measure of the cumulative viral load over
a certain period of infection.

3. Results

In this section, we first compare the behaviour of the two virus dynamic models (in the absence of
drug), in order to demonstrate the mechanistic difference in the control of viral growth and clearance.
Then we investigate and compare the dependence of both viral load curve and infection-related
quantities (such as the area under the curve, peak viral load, and duration of infection) on drug efficacy
(implemented by varying EC50) for both models. We also investigate and compare the predictions of
the two models for varied drug administration times. Finally, we summarise the model predictions
and evaluate them in relation to previous modelling and clinical studies.

3.1. Behaviour of the Viral Dynamic Models

We first demonstrate how the dynamical behaviour of the TIV model and the IR model differ
due to the underlying mechanisms utilised to control virus. In the main text we focus on the viral
load solution, which is the most direct indicator of the progress of infection and is easy to measure
experimentally. Full model solutions are provided in Figures S1 and S2 in the Supplementary
Material. Figure 3A shows the contribution of different processes, including production of free
virus (pV I, which appears on the righthand side of Equation (3)), unspecified virus clearance (δVV)
and binding to target cells (βVT), to the establishment of the viral load profile of the TIV model.
We see that all the processes play a role in determining the rate of early viral growth (while depletion
of target cells at approximately day 2 p.i., indicated by a rapid decrease of the term βVT (dotted
black curve) leads to a subsequent dominant role for viral clearance). This is consistent with the
well-established result that target cell-limited models exhibit a robust two phase response in the time
course of viral load—an upstroke phase driven by exponential viral growth followed by a decrease
phase of exponential viral clearance [38].
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Figure 3. Results showing the contributions of various processes to the establishment of the viral
load profile. (A) For the TIV model, three processes are involved: production of free virus (pV I),
unspecified virus clearance (δVV) and binding to target cells (βVT). The terms appear on the righthand
side of Equation (3); (B) For the IR model, four processes are involved: production of free virus (pV I),
unspecified virus clearance (δVV), binding to target cells (βVT) and virus neutralisation by antibodies
(κS ASV + κL ALV). The terms appear on the righthand side of Equation (4). The processes leading to
an increase in viral load are labelled by (+) and shown by solid curves, while the processes reducing
the viral load are labelled by (−) and shown by dotted curves.

Similarly, for the IR model, we show the contribution of different processes including production
of free virus (pV I, which appears on the righthand side of Equation (4)), unspecified virus clearance
(δVV), binding to target cells (βVT) and virus neutralisation by antibodies (κS ASV + κL ALV) in
Figure 3B. One of the notable features is that the level of target cells no longer limits the free virus
binding (see the dotted black curve), demonstrating a very different mechanism for viral control
compared to that of the TIV model. The innate immune response is activated within the first 2 days
p.i. (Figure S2) and has been shown in [27] to suppress viral growth (which leads to the plateau in
the red curve in Figure 3B). Following a lag phase due to B cell maturation (lasting approximately
4 days), antibodies quickly dominate viral clearance, particularly during the late stage of infection
(Figure 3; dotted blue curve). The viral load profile for the IR model exhibits three phases (and is
robust to parameter perturbations [27]), which is another distinguishing feature from the biphasic viral
load in the TIV model.

3.2. The TIV Model Predicts a Relatively Complex Effect of Drug Efficacy on Viral Load Profile

When oseltamivir is first taken at 28 h p.i. (and subsequently taken every 12 h indefinitely),
simulation based on the TIV model predicts that the viral load profile is highly dependent on drug
efficacy (Figure 4; implemented by varying EC50). For low EC50 (i.e., high efficacy), for example
10 ng/mL, oseltamivir effectively reduces the viral load and accelerates the clearance of free virus
(i.e., reaching the assumed detection of limit V = 1 earlier than the no-drug control). When the
EC50 increases to 30 ng/mL, the reduction in viral load is accompanied by a significantly postponed
clearance time. As the EC50 is increased further to 50 ng/mL, an almost sustained elevation in viral
load is achieved (in fact it is a very slow decay process in the long term). Further increases in EC50,
for example to 80 ng/mL or 140 ng/mL, leads to an oscillatory viral load, which is a result of the
target cell replenishment due to the regrowth term in Equation (1) (Note that oscillations with large
amplitudes may reach a very low level where virus may go extinct stochasticity before rebound,
which has been studied in [26,39–41]). If target cell replenishment is inhibited (by setting gT = 0), the
oscillations disappear (Figure S3 in the Supplementary Material). The above results are consistent
with a recent finding that the inclusion of target cell regrowth can lead to chronic infection [42]. For a
sufficiently high EC50, e.g., 300 ng/mL, the viral load trajectory almost follows that of the no-drug
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control (dashed black curve), except for a slight reduction in peak viral load during the early phase of
infection.
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Figure 4. Dependence of viral load profile on drug efficacy for the TIV model. The time course of
plasma oseltamivir carboxylate (OC) concentration is shown in (B). For EC50 (half maximal effective
concentration) varying from 10 ng/mL to 300 ng/mL, corresponding viral load solutions are shown
in (A) with different colours. The solution with no drug applied is shown by the dashed black curve.
EID50/mL : 50% egg infective dose.

This dynamic profile for the viral load does not correlate well with drug efficacy for the TIV
model. But we do identify a narrow window, of approximately two days immediately after drug
administration, where the variation in EC50 can be reliably indicated by the viral load level (Figures 4
and S3). If the TIV model is an appropriate model for studying infection dynamics, this suggests that
a more frequent measurement of viral load soon after drug administration may improve the estimation
of drug efficacy. An important reason for this phenomenon is the availability of sufficient target cells
in the early phase of infection. Once target cell depletion dominates viral clearance, little information
about drug effect can be identified using the TIV model. In fact, as we will soon show, such a window
is also applicable to the IR model, confirming the important role of the target cell pool in affecting
model predictions.

3.3. Predicting the Dependence of Infection-Related Quantities on Drug Efficacy Using the TIV Model

Figure 5 shows how infection-related quantities vary with different EC50 for the TIV model. As the
EC50 increases from 10 ng/mL to 800 ng/mL, AUC8 (the truncated AUC within the first 8 days p.i.;
a time frame usually covers the symptomatic period of influenza infection for individual patients) also
increases (Figure 5A). A truncated AUC within a shorter period of 4 days p.i., AUC4, is also examined
and found to follow a similar trend to that of AUC8 (Figure 5B), suggesting that the trend in AUC
statistics does not depend strongly on the choice of period (subject to the assumed initiation time of
treatment). Peak viral load is also positively correlated with EC50, suggesting a strong correlation with
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AUC. A similar correlation between peak viral load and AUC was previously identified by fitting
a TIV model to clinical data for a placebo group [11], which is likely (at least partially) driven by the
properties of the TIV model. However, we find that for very small EC50 (i.e., very high drug efficacy),
the peak viral load is insensitive to the change in EC50 (see the inset of Figure 5C), which is caused
by an immediate inhibition of viral growth upon drug administration such that the peak viral load is
achieved almost at that time (see Figure 4).
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Figure 5. Dependence of infection-related quantities on drug efficacy for the TIV model. As drug
efficacy EC50 varies from 10 ng/mL to 800 ng/mL, infection-related quantities, under the curve (AUC)
(A,B), peak viral load (C) and duration of infection (D), are shown in different panels. AUC8, AUC4

and peak viral load are normalised to their corresponding quantities in the no-drug control. Insets
show sub-parts of the plots. For duration of infection longer than 30 days, we truncate the duration at
30 days in panel D. The duration of infection without antiviral treatment is indicated by the dotted red
line in panel D.

When we consider the duration of infection, the relationship with EC50 is more complicated
(Figure 5D). For EC50 < 30 ng/mL, increasing the EC50 leads to an increase in the duration of infection.
For a further increase in EC50, e.g., to 40–150 ng/mL, the viral load never returns to the limit of
detection (V = 1) within a reasonable time frame (e.g., truncated at day 30 p.i. in Figure 5D) such
that the measure of infection duration becomes undefined. Drug administration, at least for the TIV
model, triggers a state of chronic infection. However, when the EC50 is sufficiently large, e.g., 300 or
800 ng/mL, the duration of infection is insensitive to the change in EC50 and is close to that of the
no-drug control (dotted red line in Figure 5D), as the viral clearance curve almost follows the solution
of the TIV model without treatment (dashed black curve in Figure 4).

In addition, given the fact that target cell regeneration may affect model predictions [42],
we further perform simulations using the TIV model without target cell regrowth (i.e., gT = 0).
Results show that target cell regrowth does not qualitatively alter the model predictions (Figure S4 in
the Supplementary Material).
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3.4. The IR Model Predicts a Relatively Robust Effect of Drug Efficacy on Viral Load Profile

In contrast to the TIV model, the IR model does not support long-lasting infection dynamics
for any EC50 value. Drug administration always shortens the duration of infection and reduces the
AUC (Figure 6). This is a direct result of the effective virus resolution by the immune response even
in the absence of treatment. In detail, for a decreasing EC50, the viral load also decreases over the
entire infection period, suggesting that experimental measurement at any time during the infection
would be useful in estimating drug efficacy. Hence, both the TIV model and the IR model predict that
finely spaced viral load measurements during the period soon after drug administration should be
informative for the evaluation of treatment efficacy. The IR model further predicts that measuring the
viral load in a time window of approximately 3–5 days p.i. would be more sensitive to the change in
drug efficacy (Figure 6).
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Figure 6. Dependence of viral load profile on drug efficacy for the IR model. The time course of
plasma oseltamivir carboxylate (OC) concentration is shown in (B). For EC50 varying from 10 ng/mL
to 300 ng/mL, corresponding viral load solutions are shown in (A) with different colours. The solution
with no drug applied is shown by the dashed black curve.

3.5. Predicting the Dependence of Infection-Related Quantities on Drug Efficacy Using the IR Model

As analysed above, the IR model predicts a positive correlation between the EC50 and the overall
level of viral load, which is validated by the monotonically increasing relationship between EC50 and
AUC (Figure 7A,B). A similar result was also predicted by the TIV model (Figure 5), suggesting that
the use of AUC to indicate drug efficacy is robust to model selection. Again, the results for both AUC8

and AUC4 are consistent, demonstrating that the ability of AUC to indicate drug efficacy is largely
unaffected by choice of the infection period.
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Figure 7. Dependence of infection-related quantities on drug efficacy for the IR model. As drug efficacy
EC50 varies from 10 ng/mL to 800 ng/mL, infection-related quantities, AUC (A,B), peak viral load
(C) and duration of infection (D), are shown in different panels. AUC8, AUC4 and peak viral load are
normalised to their corresponding quantities in the no-drug control. The duration of infection without
antiviral treatment is indicated by the dotted red line in panel D.

However, contrary to the TIV model, the IR model predicts very different dependences of peak
viral load and duration of infection on drug efficacy. The peak viral load is insensitive to the change
in EC50 over a relatively broad range (e.g., from 10–300 ng/mL) (Figure 7C), a result of immediate
inhibition of viral growth by treatment (Figure 6). When the EC50 is sufficiently large, e.g., 800 ng/mL,
the peak viral load may show a detectable change (and a further increase in EC50 will increase the peak
viral load). The discrepancy in the EC50-sensitive range for AUC and peak viral load suggests a weak
correlation between AUC and peak viral load. The duration of infection is increased, as EC50 increases,
and approaches the duration of infection for the no-drug control (dotted red line in Figure 7D).

Similar to Figure S4, we also perform simulations using the IR model without target cell regrowth
(i.e., gT = 0). Results show that target cell regrowth does not qualitatively alter the model predictions
(Figure S5 in the Supplementary Material).

3.6. Model pRediction and Comparison for Varied Drug Administration Time

In addition to varying drug efficacy (i.e., varying EC50), varying the initiation time of drug
administration may also significantly affect treatment outcomes [43–45]. Here we investigate the
effect of drug administration time on the viral load profile for both the TIV model and the IR model.
We look at two situations, one where the drug is highly efficient (e.g., EC50 = 20 ng/mL), and the
other where it is less efficient (e.g., EC50 = 200 ng/mL). For EC50 = 20 ng/mL, the TIV model predicts
that early viral clearance, compared to the no-drug control (dashed black curve), can be achieved only
when drug is first taken very early (e.g., 12 h p.i.) or relatively late (e.g., after 48 h p.i.) (Figure 8A).
In contrast, the IR model predicts that early viral clearance can always be achieved regardless of when
the treatment starts (Figure 8B). If we further assume that 12 h p.i. is the earliest time a patient may
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take drug (e.g., due to the latency from exposure to virus to the onset of symptoms), the TIV model
predicts an optimal time of first drug administration of 12 h p.i. while the IR model predicts an optimal
time of approximately 36 h p.i. (although the duration of infection is improved by less than one day
compared to taking drug at other sub-optimal times; Figure 8B). In contrast to the duration of infection,
the two models consistently show a decreasing AUC as the starting time of treatment is advanced
(Figure 8C,D).
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Figure 8. Comparison of model behaviours of the TIV model (A,C) and the IR model (B,D) for
a highly effective drug (EC50 = 20 ng/mL) and varied drug administration time. The time when
drug is first taken is varied from 12 h p.i. to 96 h p.i. and the corresponding viral load solutions are
shown in different colours. AUC8 is normalised to its corresponding quantity in the no-drug control.
The solutions with no treatment are shown by dashed black curves.

For EC50 = 200 ng/mL, the TIV model predicts that the peak viral load is postponed and the
duration of infection is prolonged when treatment starts earlier (Figure 9A). This is because reduced
viral production delays the depletion of target cells and in turn delays the peak and clearance time
of viral load. In contrast, the IR model predicts that varying the drug administration time does not
significantly affect the duration of infection (Figure 9B; note that the duration of infection is always
shortened whenever drug is first taken compared with that for the no-drug control). Despite this
difference, both models again predict a positive correlation between the AUC and drug administration
time (Figure 9C,D).
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Figure 9. Comparison of model behaviours of the TIV model (A,C) and the IR model (B,D) for a less
effective drug (EC50 = 200 ng/mL) and varied drug administration time. The time when drug is first
taken is varied from 12 h p.i. to 96 h p.i. and the corresponding viral load solutions are shown in different
colours. AUC8 is normalised to its corresponding quantity in the no-drug control. The solutions with
no treatment are shown by dashed black curves.

3.7. Results Summary

Here we summarise the model predictions and provide further comments on them based on
previous studies:

• For a decreasing drug efficacy (indicated by an increasing EC50), the TIV model predicts five
types of behaviour (in terms of viral load kinetics and when compared with the no-drug control):
(1) early clearance (see EC50 = 10 ng/mL in Figure 4); (2) late clearance (see EC50 = 30 ng/mL in
Figure 4); (3) long-lasting infection (see EC50 = 50 or 80 ng/mL in Figure 4); (4) an oscillatory
viral load (see EC50 = 80 or 140 ng/mL in Figure 4); and (5) an approach to the solution of the
no-drug control (see EC50 = 300 ng/mL in Figure 4). Note that without target cell regeneration,
oscillatory-type chronic infection does not occur, while a delayed time to peak and clearance
of free virus may be achieved (Figure S3 in the Supplementary Material). In contrast, the IR
model predicts early viral clearance for all EC50 and a shorter duration of infection when drug
efficacy is higher (Figure 6). The different model behaviours have been observed in previous
studies, for example Figure 2 in [17] and Figure 4 in [18] for the target cell-limited models and the
middle panel of Figure 7 in [16] for the model incorporating a relatively detailed structure of the
adaptive immune response. Therefore, we argue that the TIV model and the IR model used in
our study are representative, and a detailed comparison of the model behaviours is important for
the judgement of model predictions.

• Both models consistently predict that NAI efficacy is well correlated with the viral load
level within a short time window (approximately 2 days) soon after drug administration
(Figures 4 and 6). This suggests that a high frequency measurement of viral load during that
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time window could improve the evaluation of in vivo drug efficacy. Although a very frequent
measurement in clinical trials may not be practical, laboratory experiments using animals may
be achievable.

• For the TIV model, the AUC and peak viral load are well correlated with NAI efficacy while the
duration of infection varies in a different manner (Figure 5). For the IR model, the AUC and
duration of infection are well correlated with NAI efficacy while the peak viral load is insensitive
to the change in EC50 (Figure 7). Exclusion of target cell regeneration does not qualitatively affect
the model predictions (Figures S4 and S5). The prediction of the IR model is more consistent
with previous clinical findings that treatment with NAI reduces both the AUC and duration of
viral shedding [36,46]. On the other hand, the TIV model, which lacks an immune response,
might be more appropriate to predict infection of immunocompromised/immunosuppressed
patients where prolonged influenza viral shedding has been observed [47], although prolonged
viral shedding was also observed in young immunocompetent adults [48]. We note that such
a scenario is also highly related to the emergence of antiviral resistance [49].

• For a highly effective NAI (e.g., EC50 = 20 ng/mL), the TIV model predicts that sufficient
early drug administration may shorten the duration of infection, while the IR model predicts
an optimal drug administration time of approximately 36 h p.i. when assessed by clearance
time (Figure 8A,B). In contrast, for a less effective NAI (e.g., EC50 = 200 ng/mL), the TIV model
predicts that early drug administration may delay the peak in viral load and in turn prolong the
duration of infection, while the IR model predicts that the duration of infection is insensitive to
a change in drug administration time (Figure 9A,B). Note that we have only considered infection
with and treatment of a drug-sensitive strain. We have not considered the possible adverse
consequences of drug resistance. Early treatment within the first two days post-infection may
increase the risk of emergence of drug-resistant strains [20], which we expect would lead to
additional complexities in system behaviour.

• Clinical studies have found that early treatment is associated with reduced viral load and
a shortened duration of viral shedding [48,50]. Thus, to qualitatively reproduce this finding,
the TIV model requires that the NAI is highly effective and drug is first administrated before the
peak viral load (see Figure 8A) while the IR model requires that the NAI is highly effective and
drug is first administrated after the peak viral load (see Figure 8B). Interestingly, both models
predict that a high NAI efficacy is necessary. However, since the onset of illness (and possibly
the time to seek antiviral treatment) is approximately at the time of peak viral load [51], the IR
model simulates a more realistic scenario and is expected to provide more reliable predictions.
In addition, despite the different behaviours for the TIV model and the IR model, they both
predict that earlier drug administration is associated with a lower AUC (Figures 8 and 9).

4. Discussion

Models of within-host influenza viral dynamics have played an important role in advancing our
understanding of viral kinetics and host-virus interactions over the past decade. Although numerous
models have been proposed, most of them can be classified into two types in terms of the mechanism
of viral control: the target cell-limited models and the immune response models. The target cell-limited
models utilise depletion of target cells to limit the formation of infected cells and in turn the production
of virus, while the immune response models rely on timely activation of innate and adaptive immune
responses to clear infected cells and free virus. In this paper, we used two models, one with each of the
alternative mechanisms for within-host influenza viral control, to compare the outcome of antiviral
treatment (focusing on NAIs). Through varying drug efficacy, we found that the two models predict
very different viral load profiles, which can be further quantified by infection-related quantities such as
the AUC, peak viral load and duration of infection. In particular, the negative correlation between AUC
and drug efficacy is robust to model selection. Our results demonstrate that the assumed mechanism of
viral control (either target cell limitation or immune-mediated control) is a major driver of the observed
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differences in viral kinetics under antiviral treatment. However, clearly other model assumptions,
such as the presence or absence of target cell regrowth, and the form of that regrowth if present,
lead to a more general model-dependency in the predictions. We only claim that the mechanism of
viral control is influential, but not the sole factor affected the predicted antiviral effect. With some
support from previous clinical studies (as discussed in the last part of the Results), we conclude
that the target cell-limited model is more suitable for modelling in vitro assays or infection in some
immunocompromised/immunosuppressed patients where prolonged influenza viral shedding is
evident, while the immune response model is preferred for predicting the infection/antiviral effect in
immunocompetent animals/patients.

Viral shedding and associated transmission among individuals is highly heterogeneous [52–54].
Vegvari et al. found, by fitting a TIV model to a placebo group (9 patients) in a clinical trial, that peak
viral load and AUC exhibit the greatest variation among individuals [11]. Large variation in those
quantities may hinder their use as a baseline to reliably evaluate the efficacy of antiviral treatment,
although our results suggest that AUC is a model-independent quantity to reflect the variation in
drug efficacy. Vegvari et al. also found that the duration of infection was highly correlated with the
basic reproduction number and was the most sensitive quantity to assess antiviral therapies in clinical
trials. The IR model supports a reliable use of duration of infection to reflect drug efficacy (Figure 7)
but reliability may become an issue for (even partially) immunocompromised/immunosuppressed
patients whose infection and treatment outcomes may be better predicted by the TIV model (Figure 2).
To resolve these problems, we recommend both testing the uncertainty of AUC for a larger number
of placebo patients and examining the patients’ immune responses before choosing the duration of
infection (in terms of viral load) as a reliable virological endpoint.

Influenza pathogenesis is associated with both a high viral load and hyper-cytokinemia [55].
Thus, besides the virological endpoints, quantities related to the immune response, such as the levels of
cytokine and chemokine expression, may also reflect the severity of infection [56–58] and therefore are
plausible candidates to facilitate the assessment of antiviral therapies. Introducing immune factors to
quantify the severity of infection in mathematical models has been proposed in previous studies [59,60]
and is a promising and cost-effective way to predict the effect of antiviral treatment on the expression
of immune responses. By enriching available viral dynamic models with more detailed immune
components, we plan to establish a comprehensive and reliable model to assist in the design and
assessment of antiviral treatment regimens in the near future.

An important application of viral dynamic models is the estimation of key kinetic parameter
through model fitting, which is, however, strongly affected by the issue of parameter identifiability [61].
The TIV model has been widely used to estimate the viral replication rate and viral clearance rate
because of its simple structure and small number of parameters. But the only data available for the TIV
model is the measurement of viral load at discrete time points, which has been shown to be insufficient
to unambiguously determine all kinetic parameters [10,62]. An even more challenging problem is
expected for models with various immune components which have a large number of parameters.
Although some immune response data is available (note that measurement of the in vivo immune
response usually requires animal sacrifice and is costly), it is usually insufficient to overcome the
dramatic expansion in parameter space dimensionality [25,27,29]. Due to non-identifiability issues and
other factors such as variation among different individuals/species/assays, kinetic parameter values
estimated in different studies can differ substantially and most model-based assessments of antiviral
effects including ours have been focused on qualitative predictions. Hence, development of a more
comprehensive and realistic model of in vivo viral dynamics and methods to reduce the uncertainty
in parameter estimation are required in order to improve quantitative predictions of both host-virus
interactions and antiviral effects.

Supplementary Materials: The following are available online at www.mdpi.com/1999-4915/9/8/197/s1.
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