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Abstract

Oligonucleotide signatures, especially tetranucleotide signatures, have been used as method for homology binning by
exploiting an organism’s inherent biases towards the use of specific oligonucleotide words. Tetranucleotide signatures have
been especially useful in environmental metagenomics samples as many of these samples contain organisms from poorly
classified phyla which cannot be easily identified using traditional homology methods, including NCBI BLAST. This study
examines oligonucleotide signatures across 1,424 completed genomes from across the tree of life, substantially expanding
upon previous work. A comprehensive analysis of mononucleotide through nonanucleotide word lengths suggests that
longer word lengths substantially improve the classification of DNA fragments across a range of sizes of relevance to high
throughput sequencing. We find that, at present, heptanucleotide signatures represent an optimal balance between
prediction accuracy and computational time for resolving taxonomy using both genomic and metagenomic fragments. We
directly compare the ability of tetranucleotide and heptanucleotide world lengths (tetranucleotide signatures are the
current standard for oligonucleotide word usage analyses) for taxonomic binning of metagenome reads. We present
evidence that heptanucleotide word lengths consistently provide more taxonomic resolving power, particularly in
distinguishing between closely related organisms that are often present in metagenomic samples. This implies that longer
oligonucleotide word lengths should replace tetranucleotide signatures for most analyses. Finally, we show that the
application of longer word lengths to metagenomic datasets leads to more accurate taxonomic binning of DNA scaffolds
and have the potential to substantially improve taxonomic assignment and assembly of metagenomic data.
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Introduction

Microbes maintain biases in their nucleotide usage that are

reflected in their genetic material. These biases were initially noted

as the average (G+C) content in prokaryotes, ranging from 17% to

74% [1]. However, biases extend well beyond mononucleotides, to

lengths in excess of twenty-five nucleotides in Archaea [2]. These

biases are thought to be a result of codon usage patterns due to

environmental limitations [3], as well as biases in DNA replication

and repair systems [4]. The tetranucleotide biases (signatures) for

Sulfolobus islandicus and Escherichia coli are shown in Figure S1 in

comparison to the tetranucleotide signature of a randomly

generated 1.6 million base pair DNA sequence, ordered by rank

abundance to highlight differences in bin populations between the

species and between randomly generated sequences. From these

figures it is clear that nature diverges from a uniform distribution

of tetramer words and that this divergence varies greatly among

the different domains of life.

As oligonucleotide signatures are generally conserved across an

organism’s entire genome, they have become a powerful tool for

inter-genome comparisons [5–16] and as a very useful method for

taxonomy-based binning of DNA from environmental metage-

nomics samples [17–20]. This work is absolutely essential to

resolving the taxonomic make-up of natural environments, as the

DNA/RNA fragments obtained via metagenomics are usually

stripped of taxonomically informative genes such as rRNA. Even

in metagenomic studies where rRNA libraries are available,

connecting an rRNA sequence in one dataset to a metagenomic

read in another dataset is non-trivial; rRNA is notably biased in

complex communities, over-representing some community mem-

bers that are easily amplified, and under-representing (or even

completely missing) community members whose rRNA is poorly

amplified [21]. Much work has been done to develop algorithms

for clustering metagenomic data based on statistical correlations of

oligonucleotide usage patterns, including self organizing maps

[22–24] and principal component analysis [25–27]. The enormous

diversity found in natural communities and the short lengths of

metagenome sequencing reads both act to prohibit assembly of

metagenomic data into complete genomes. As a result, alternative

methods for classifying the organisms in environmental genomics

samples have been under rapid development [28–31].

Despite evidence that oligonucleotide signatures of up to eight

words in lengths may be useful for clustering [7,8,27] most work

has concentrated on word lengths of two or four (dinucleotide and
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tetranucleotide), often without clear rational for not analyzing

longer word lengths. Additionally, while a comprehensive analysis

was completed to verify the usefulness of tetranucleotide signatures

for comparative studies [32], there are no large-scale comparative

studies validating tetranucleotide signatures as the optimal

oligonucleotide word length for classifying genomes and meta-

genomes. Furthermore, the recent, dramatic expansion in the

availability of sequenced genomes from across the tree of life

compels a more comprehensive analysis, undertaken herein, of

oligonucleotide biases across a range of word lengths and including

all prokaryotic genomes available via NCBI’s publicly available

repository.

In this study we have expanded previous oligonucleotide studies

to include 1,424 sequenced microbes, including 1,315 bacteria and

109 archaea, analyzing oligonucleotide usage biases from mono-

nucleotides through nonanucleotides. We also examined the

extent to which these biases are preserved in varying sized

fragments of entire genomes, so as to replicate the smaller

fragment sizes associated with metagenome/environmental se-

quencing and assembly. Based on our findings, we argue that

longer word lengths demonstrate the most potential for phyloge-

netic differentiation and the ability to classify microbes with an

accuracy nearing 16S rRNA. These findings underscore the

potential applicability of these techniques to metagenomic data

sets where sequencing coverage permits assembly of scaffolds of

10 kb or larger. While tetranucleotide signatures are still useful for

homology comparisons and are computationally facile to calculate,

we argue that longer signatures are well within the range of

modern computers and permit more accurate classification of

genomes and scaffolds. We identify a tradeoff above word lengths

of seven nucleotides where the diminishing increase in taxonomic

resolution is not justified by the concomitant exponential increase

in calculation time and computational resources required (at least

given the present generation of computational facilities). As a

result, we recommend the use of longer word lengths with

heptanucleotide signatures as the optimal compromise between

resolution and computational requirements for future work using

oligonucleotide signatures.

Results and Discussion

Using oligonucleotide-based Euclidean distance matrices (see

Methods), we constructed cladograms to visually represent the

clustering ability of various oligonucleotide word lengths. Figure 1

contains a cladogram representing the relationships derived from

heptanucleotide signatures (cladograms representing di- through

nona- oligonucleotide signatures are included in Figure S2). The

terminal branches of all cladograms are color coded based on

taxonomy: those with a nearest neighbor from the same genus or

species are red (strong relationships), those with nearest neighbors

at phylum or better are blue (good relationships), those with

nearest neighbors of the same domain are yellow and those with

nearest neighbors from different domains are black. It is important

to note that in many cases (particularly in the Archaeal domain) a

Figure 1. Heptanucleotide Signature Based Cladogram. Cladogram derived from heptanucleotide signatures using Euclidean distances
between 1,424 sequenced microbes. Terminal branches are color-coded to depict nearest neighbor taxonomic relationships as: strong relationships
(same species or same genus) in red, good relationships (phylum or better) in blue, same domain in yellow and different domain in black. This figure
shows that heptanucleotide signatures are conserved amongst phylogenetically similar organisms across the tree of life. The tendency for
phylogenetically similar organisms to maintain similar oligonucleotide biases is the basis oligonucleotide-based clustering techniques.
doi:10.1371/journal.pone.0067337.g001
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same genus or species nearest neighbor is not possible due to

limited availability of sequenced organisms within some phyla.

These cladograms demonstrate the power of grouping taxonom-

ically similar microbes based solely on their oligonucleotide

signatures: the majority of terminal leaves are colored either red

or blue, with many of those colored red (Numerically in Table S1).

Comparisons across all oligonucleotide signature lengths demon-

strate their effectiveness placing organisms from the same

taxonomic groups together, with a general trend towards shorter

branch lengths at longer word lengths. Additionally, these

cladograms show that oligonucleotide signatures are conserved

between closely related microbes across the tree of life. The

conservation of signatures among closely related organisms is the

key to using oligonucleotide signatures as a method for determin-

ing taxonomy, and it is noteworthy that genomes across the tree of

life show distinct, evolutionarily conserved trends in their

oligonucleotide biases.

16S rRNA-based phylogenies are currently the gold standard

for determining taxonomic relationships across the tree of life.

Therefore, we focused on comparing oligonucleotide-based

cladograms from mono- to nona- word lengths to a 16S rRNA-

based phylogenetic tree of the 1,424 prokaryotes available from

NCBI’s microbial genome database. For these comparisons,

oligonucleotide and 16S based cladograms were analyzed by

calculating the percentage of leaf nodes which contain nearest

neighbors of the same taxonomic level. The percentage of nearest

neighbors with the same taxonomy from oligonucleotide signa-

tures (y-axis) is plotted relative to 16S rRNA (x-axis) for

mononucleotide through nonanucleotide signatures (Figure 2)

(data provided in Table S1). This analysis includes all major

taxonomic levels with the top axis denoting taxonomic levels as:

same species (S), same genus (G), same family (F), same order (O),

same phylum (P) and same domain (D). A 1:1 line shows the region

of the plot with equivalence in performance between oligonucle-

otide word usage and 16S rRNA, and deviations from this 1:1 line

indicate that one method is outperforming the other. Notably, di-

through nona- nucleotide signatures perform nearly as well as 16S

rRNA when placing genomes of the same species and domain

together on a cladogram, but are outperformed by 16S rRNA at

clustering genomes in the genus through phylum levels together.

As is evident in Figure 2, the placement of same taxon organisms

together improves substantially as oligonucleotide word length

increases from mono- through tetra-, followed by more gradual

increases as word lengths are extended further. While these data

substantiate the use of tetranucleotide frequency analysis as fast

and effective way to assign taxonomy they also suggest that longer

word length analyses can indeed provide better taxonomic

resolution. It is again important to note that the lack of multiple

organisms from all taxonomic levels makes it impossible to place

nearest neighbors together for all cases.

The downside of longer word length analyses is that compu-

tational time increases dramatically with longer oligonucleotide

signatures, as the number of bins involved in calculating Euclidean

distances increases as 4(word length). Table S1 shows the CPU time

required (running on a single 2.1 GHz core) to complete the

Euclidean distance calculations and shows that, above word

lengths of nine nucleotides, computational time quickly becomes

intractable on modern computing hardware. Additionally, beyond

word lengths of seven nucleotides the increase in CPU time does

not correspond to a sizeable increase in prediction accuracy

(Figure 3). This suggests a compromise between accuracy and

computing time at the heptanucleotide length that is both effective

at grouping taxa and well within the computational capabilities of

computational genomicists. We focus the analyses below on

comparisons between heptanucleotide and tetranucleotide signa-

tures, while including other word length analyses in the

Supporting Information.

Pairwise comparisons of 16S rRNA and oligonucleotide

signatures were used to investigate how oligonucleotide Euclidean

distances correlate with 16S rRNA identity. This was done directly

by plotting Euclidean distance verses 16S rRNA percent identity

Figure 2. Oligonucleotide vs. 16S rRNA Comparisons. The ability
place phylogenetically similar organisms together on a cladogram using
mononucleotide through nonanucleotide signatures was tested against
a cladogram generated using 16S rRNA for 1,424 completed prokaryotic
genomes. This figure shows the percentage correct cladogram
placement for oligonucleotide signature (x-axis) verses the percentage
of correct cladogram placement for 16S rRNA (y-axis). Taxonomic level
is show along top axis using: same species (S), same genus (G), same
family (F), same phylum (P) and same domain (D). Mononucleotides
through nonanucleotide signature trend lines are color-coded (see
figure legend).
doi:10.1371/journal.pone.0067337.g002

Figure 3. Improvement in Placement vs. CPU Time. The sum total
percent improvement in placing identical taxonomic levels together on
a cladogram as oligonucleotide length is increased verses the increase
in CPU time required to calculate all Euclidean distances between 1,424
genomes. CPU time increases are due to the exponential increase in
signature bins (and therefore variables in Euclidean distance calcula-
tions) as oligonucleotide lengths increase.
doi:10.1371/journal.pone.0067337.g003

Oligonucleotide Signatures for Resolving Taxonomy
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for all organism pairs in our 1,424 member dataset (2,027,776

total points/comparisons). Figure 4 shows the corresponding plots

for tetranucleotide and heptanucleotide signatures while Figure S3

shows plots over the range of mono- through nona- oligonucle-

otide signatures. Plots are colored based on the highest shared

taxonomic level of the two organisms being compared: same

species are in orange, same genus (purple), same family (green),

same order (red), same phylum (blue), same domain (yellow) and

different domain (black) (note that the plots are normalized so the

largest genus to genus Euclidean distance is assigned a genus

normalized Euclidean distance of 1.0 (Normalization factors in

Table S2) Additionally, plots are truncated to this distance – due to

their long tails. Figure 4 shows two very intriguing regions which

are devoid of points located at high Euclidean distance/high 16S

rRNA identity (upper right) and low Euclidean distance/low 16S

rRNA identity (lower left). These regions contain rough ‘‘slopes’’

which naturally constrain the Euclidean distance/16S rRNA

identity space occupied and allow estimation of the minimum and

maximum Euclidean distances that bound different taxonomic

level. Both plots in Figure 4 show a region at low Euclidean

distances where most points are either same species or same genus

(left of vertical lines). The existence of this region is a key for using

oligonucleotide signatures as a method for identifying genomic or

metagenomic fragments based on oligonucleotide signatures;

points that fall into this region can be placed into a genus or

species classification with a high probability.

The plots in Figure 4 also demonstrate that at greater Euclidean

distances (to the right of the vertical line) it becomes increasingly

difficult to correctly identify taxonomy, as the higher taxonomic

levels blur together. This ‘‘blurring’’ explains why while oligonu-

cleotide signatures perform nearly equivalently to 16S RNA for

placing genus and species while their ability to differentiate higher

taxonomic levels drops off significantly. The distinguishing feature

between the tetranucleotide and heptanucleotide plots is the

Euclidean distance where these dividing lines are located: in the

heptanucleotide plot the line is shifted to the right, indicating

greater potential for classifying genomic or metagenomic frag-

ments at the species and genus levels. Note that the heptanucleo-

tide plot shows a shallower negative slope in the lower-left region

as compared to the tetranucleotide plot, which hints at more

Euclidean distance space which is usable for disseminating higher

taxonomic levels (family, order, phylum and domain) as the result

of this shallower slope is less blurring of the higher taxonomic

levels. This may be the reason why longer oligonucleotide

signatures are slightly better than tetranucleotide signatures for

correctly placing the higher taxonomic levels together.

To directly compare tetranucleotide and heptanucleotide

signatures we took the Euclidean distances for all pair-wise

comparisons between all organisms for tetranucleotide and

heptanucleotide signatures and plotted them against each other

(Figures 5A and 5B). Figure 5A shows all points up to a genus

normalized Euclidean distance of 1.0 (as in Figure 4) while

Figure 5B is enlarged to show points near the origin. Plots use the

same coloring-by-shared-taxa as per Figure 3, and include a 1:1

line to show equivalent performance in grouping like taxa

together. Figure 5A indicates that heptanucleotide signatures are

producing relatively larger Euclidean distances for closely related

organisms while performing equivalently to tetranucleotide

signatures for distantly related organisms. This tends to stretch

the same species and same genus portions of the Euclidean

distance space while not affecting the domain and phylum regions.

Focusing on the same species and same genus comparisons (orange

and purple) in Figure 5B we see that almost all these points are

above the 1:1 line, indicating that the stretching in this region for

Figure 4. Tetranucleotide & Heptanucleotide vs. 16S rRNA identity. Plot of 16S percent identity verses genus normalized Euclidean distance
for tetranucleotide (A) and heptanucleotide (B) signatures. Plots are colored based on the highest shared taxonomic level of the two organisms being
compared: same species are in orange, same genus (purple), same family (green), same order (red), same phylum (blue), same domain (yellow) and
different domain (black). Vertical lines added at a Euclidean distance of 0.3 for visual reference. By plotting 16S identity verses Euclidean distance this
plot demonstrates the range of oligonucleotide Euclidean distances useful for discerning the taxonomic relationships between sequences.
Additionally, this plot shows that low oligonucleotide Euclidean distances are a strong indicator that sequences are from phylogenetically close
organisms.
doi:10.1371/journal.pone.0067337.g004
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heptanucleotide signatures is potentially very useful for placing

same genus and same species together based on Euclidean

distance. Additionally, these plots suggest the use of tetranucleo-

tide signatures for comparisons between higher taxonomic levels

(i.e. between phylums) as these points are mainly on the

tetranucleotide side of the 45o line. This raises an important

point: different oligonucleotide word lengths might provide

advantages in assigning different taxonomic levels. For instance,

tetranucleotide analysis may indeed outperform heptanucleotide

analysis when applied to a metagenomic dataset with many novel/

unassignable species, where the focus might instead be on

assigning reads at the phylum or domain levels.

To further investigate of the probability of oligonucleotide

signatures providing correct taxonomic information based on

Euclidean distance, we devised a leave-one-out analysis where

taxonomic assignment of one ‘‘unknown’’ organism (the ‘‘one left

out’’) was made by comparing oligonucleotide signatures with the

other N-1 genomes. Thus N-1 total comparisons were made and

binned based on their Euclidean distance, with results shown in

Figure 6 (for visualization, the genus normalized Euclidean

distance range was divided into 30 bins). Bins were plotted as

stacked bars showing the percentages of similarity at each

taxonomic level between all N-1 comparisons. Figure 6 plots

tetranucleotide and heptanucleotide signatures (di- through nona-

in Figure S4). The bars are color-coded as: same species (orange),

same genus (purple), same family (green), same order (red), same

phylum (blue), same domain (yellow) and different domain (black).

These plots reveal the useful range of Euclidean distances for

taxonomic determinations by showing which Euclidean distances

have a high likelihood for correctly identifying the taxonomy of an

unknown DNA sequence. These charts combine the information

we had previously seen into a form which allows us to see point

density based on taxonomy. For example, if we have two DNA

sequences with a heptanucleotide-based Euclidean distance of 0.4

we would predict an approximately 45% chance they are within

the same species or genus and a greater than 95% chance they are

within the same family.

These bar charts validate what we had previously observed by

showing the range of Euclidean distances corresponding to same

species and same genus comparisons being spread out, while the

tetranucleotide plot has taller same-genus and -species bars at

short Euclidean distances, which then drop off at larger distances.

This means that while longer word lengths may allow for more

resolution the signal is getting mixed in with the Euclidean

distances corresponding to higher taxonomic levels. While we are

able to use longer word lengths for the purposes of differentiating

between sequences, longer word lengths are less useful when trying

to assign an unknown sequence based solely on a Euclidean

distance. However, increased resolution will likely result in a

substantial increase in the usefulness of oligonucleotide signatures,

as other methods, such as NBCI BLAST, exist for direct

comparisons between two DNA sequences.

We analyzed the degree to which tetranucleotide and

heptanucleotide signatures respond to random mutations in a

one million base pair DNA sequence. For this we took a randomly

generated DNA sequence and randomly mutated a single base

over one million iterations to measure the change in Euclidean

distance when compared to the original sequence. The results of

plotting Euclidean distance verses iteration number are in

Figures 7A and 7B, while Figure 7C shows the Euclidean distances

for tetranucleotide (x-axis) verses heptanucleotide (y-axis). This

analysis shows that heptanucleotide signatures respond faster to

small changes in the DNA sequence, confirming that they are

better for differentiating between very similar sequences. Addi-

tionally, heptanucleotide curve shows saturation at approximately

600,000 mutations while the tetranucleotide curve continues to

fluctuate to 1 million iterations. This is likely a product of the

additional bins in the heptanucleotide analysis smoothing out the

Figure 5. Tetranucleotide vs. Heptanucleotide. Plot of tetranucleotide verses heptanucleotide Euclidean distance for 1,424 genomes to a genus
normalized Euclidean distance of 2.0 (A) and 0.20 (B). Plots are colored based on the highest shared taxonomic level of the two organisms being
compared: same species are in orange, same genus (purple), same family (green), same order (red), same phylum (blue), same domain (yellow) and
different domain (black). Plots include a 1:1 line to mark equivalence between tetranucleotide and heptanucleotide Euclidean distances. These plots
demonstrate lower Euclidean distance for closely related organisms (same genus/species) from heptanucleotide signatures, while moving towards
shorter Euclidean distances for distantly related organisms from tetranucleotide signatures.
doi:10.1371/journal.pone.0067337.g005
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curve. As this analysis fails to reach large Euclidean distances away

from the initial sequences it reinforces the idea that oligonucleotide

signatures are not the result random mutations, as randomly

mutating a sequence does nothing more that redistribute the bases

into a different random pattern, while being unable to generate the

strong biases in oligonucleotide usage seen in nature.

Oligonucleotide signatures have most often been applied to

metagenomics datasets [18,20,24–26]. Within these analyses

oligonucleotide signatures were implemented as a method for

internally clustering short DNA fragments. This was accomplished

by clustering fragments with similar oligonucleotide biases and

using these clusters as the basis for further analyses, including

assembly [18,24]. To complement this work we investigated the

Figure 6. Leave-one-out Histograms. Histograms show the results of a leave-one-out analysis where the oligonucleotide-based Euclidean
distance was calculated between all organisms (except self comparisons) and the percentage of organism matches which contain identical taxonomy
for tetranucleotide (A) and heptanucleotide (B) signatures was binned based on genus normalized Euclidean distance. Plots are colored based on the
highest shared taxonomic level of the two organisms being compared: same species are in orange, same genus (purple), same family (green), same
order (red), same phylum (blue), same domain (yellow) and different domain (black). These plots are useful for determining the statistical likelihood of
taxonomic matches between unknown sequences, as the percentages can be used to determine likelihood of a taxonomic match when the
Euclidean distance between two unknown sequences has been calculated.
doi:10.1371/journal.pone.0067337.g006

Figure 7. Random Mutations. This figure shows how a one million base pair DNA sequence responds to random mutations. Euclidean distance
from the initial sequence is plotted for tetranucleotide (A) and heptanucleotide (B) verses iteration number. Figure 7C shows tetranucleotide verses
heptanucleotide Euclidean distance by iteration with a 1:1 line (red) to show equivalence. These plots show that heptanucleotide signatures
demonstrate a faster increase in Euclidean distance from small changes in the DNA sequence, compared to tetranucleotide signatures, while leveling
off and responding little to changes beyond approximately 600,000 iterations. Conversely, tetranucleotide signatures demonstrate smaller increases
in Euclidean distance as a result of small perturbations in the DNA sequence, but continue to fluctuate to one million iterations.
doi:10.1371/journal.pone.0067337.g007
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relative usefulness of heptanucleotide signatures compared to

tetranucleotide signatures as the basis for analyzing short DNA

fragments. To test this we extracted fragments of metagenomically

relevant lengths (1,000 bp, 2,500 bp, 5,000 bp, 10,000 bp,

15,000 bp, 25,000 bp and 50,000 bp) from the completed genome

dataset, giving 1,424 genome fragments for each length. The

tetranucleotide and heptanucleotide signatures for each fragment

were calculated along with the Euclidean distance between each

fragment. A distance matrix and cladogram were then generated

from each fragment length group and nearest neighbor compar-

isons were completed, as done with whole genomes. Figure 8

shows the percentage of fragments belonging to the same genus

which occur as nearest neighbors on the cladogram verses

fragment length. As fragment length increases the prediction

ability increases, although the increase is gradual beyond an initial

spike at short fragment lengths. Interestingly, heptanucleotide

signature improvement levels off at shorter fragment length

(approximately 5,000 bp) while tetranucleotide signatures are not

leveling off until approximately 10,000 bp. Also, we note that

heptanucleotide signatures are better in all cases and the

improvement in moving from tetranucleotide to heptanucleotide

signatures allows 5,000 bp fragments to be placed with a level of

accuracy not obtained until 50,000 bp using tetranucleotide

signatures. At 50,000 bp the accuracy is below the levels obtained

with whole genomes (52% vs. 57% for tetranucleotide and 54% vs.

59% for heptanucleotide), but these analyses indicate the

usefulness of applying these methods to metagenomically relevant

sequence lengths as well as the improvement due to using longer

word lengths.

To study the fragment length required to overcome intrinsic

oligonucleotide signature differences we broke the genomes of six

organisms from six phyla (Escherichia coli, Mycoplasma leachii,

Prochlorococcus marinus, Roseiflexus castenholzii, Sulfolobus

islandicus and Thermotoga petrophila), plus a random 1.6 million

base pair sequence into chunks in a range of lengths that are

typical of metagenomic sequencing reads and scaffold assemblies

(500 bp, 1,000 bp, 2,500 bp, 5,000 bp, 10,000 bp, 15,000 bp,

20,000 bp and 50,000 bp). We then calculated the average

Euclidean distance between all organisms (including self compar-

isons) for all fragment lengths using tetranucleotide (Figure S5) and

heptanucleotide (Figure S6) signatures. By plotting fragment

length verses Euclidean distance for all organisms we can see that

the 10,000 base pair fragments demonstrate the minimum ideal

fragment size required to differentiate between organisms from

different phyla, although fragments as short as 2,500 base pair

where demonstrating some ability for differentiation. Additionally,

it is important to note the Euclidean distances in the self

comparisons as these distances show the differences in oligonu-

cleotide signatures found in different regions of a complete

genome. While it is clear the average overall oligonucleotide

signature for an organism is evolutionarily conserved newly

integrated portions may not be mutated sufficiently to display

the biases in which these methods rely. As a result, this study shows

that oligonucleotide analysis is only useful on approximately

10,000 bp or larger fragments.

Using a 10,000 base pair minimum fragment lengths we ran a

comparison between tetranucleotide and heptanucleotide signa-

tures ability to correctly assign fragments from metagenomics data

using the NCBI non-redundant (nt) database. As a relevant sample

set we analyzed all scaffolds over 10,000 base pairs in length from

the five sampling locations within the Bison Pool metagenomics

dataset [18]. For an accurate comparison NCBI BLAST was used

for the determination of the ‘‘correct’’ sequence match in the nt

database. Results were parsed to the genus level and Table S3

shows the best BLAST matches for the Bison Pool scaffolds along

with the best tetranucleotide and heptanucleotide matches. We

calculated the percentage of hits in which tetranucleotide and

heptanucleotide signatures agree with the genus match from NCBI

BLAST and found that tetranucleotide signatures agree 39.1% of

the time while heptanucleotide signatures agree 41.9% of the time.

While this is not a huge improvement it does show that

heptanucleotide signatures are the better choice when assigning

taxonomic labels to metagenomic data. Additionally, many of

these hits had 2nd or 3rd best hits from different genera. This is the

case for both the oligonucleotide based hits and the BLAST hits,

so the percentages from these ‘‘best hit’’ comparisons are likely

artificially low.

To investigate the effect scaffold length has on Euclidean

distance for a dataset of metagenomic scaffolds we calculated the

tetranucleotide and heptanucleotide Euclidean distances between

scaffolds and related sequences in the NCBI nt database. This

analysis randomly sampled 242 scaffolds (with lengths ranging

from 221 bp to 13,363 bp) from twenty five metagenome projects

[33] that encompass a wide range of geochemically diverse

environments–and, ostensibly, taxonomically diverse communi-

ties–collected within Yellowstone National Park (listed in Table

S4),. NCBI BLAST was first used to identify DNA sequences

within the NCBI nt database that showed homology to these 242

metagenome scaffolds. Subsequently, tetranucleotide and hepta-

nucleotide Euclidean distances were calculated between these 242

metagenome scaffolds and all their nt homologs (resulting in 5,840

Figure 8. Metagenomic Sized Fragments. Completed prokaryotic
genomes were broken into metagenomically relevant fragments sizes
of: 1,000 bp, 2,500 bp, 5,000 bp, 10,000 bp, 15,000 bp, 25,000 bp and
50,000 bp by extracting a random fragment of each length from each
of the 1,424 genomes. The tetranucleotide and heptanucleotide based
Euclidean distance was calculated between each fragment and these
distances were used to construct cladograms. Each cladogram was
analyzed for the percentage of organisms with a nearest neighbor
belonging to the same genus and this percentage is plotted verses
fragment length. Improvement is seen as fragment length is increased,
but the improvement levels off at approximately 10,000 bp for
tetranucleotide signatures and approximately 5,000 bp for heptanu-
cleotide signatures, with heptanucleotide signatures are performing
better at all fragment lengths.
doi:10.1371/journal.pone.0067337.g008
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total comparisons). Plots of scaffold length verses Euclidean

distance for tetranucleotide (Figure S7-A) and heptanucleotide

(Figure S7-B) signatures show that short scaffolds have relatively

long Euclidean distances to their homologs. This is especially

evident in the ‘‘clean’’ region at the lower left of the heptanucleo-

tide plot (Figure S7-B). Interestingly, tetranucleotide signatures are

able to obtain low genus normalized Euclidean distances (,1.0)

from short (,4,000 bp) DNA fragments while heptanucleotide

signatures do not.

Figure S8 shows a plot of tetranucleotide Euclidean distance

verses heptanucleotide Euclidean distance which has been colored

to indicated scaffold length as: less than 800 bp (red), 800 bp to

1,000 bp (blue), 1,000 bp to 2,000 bp (green), 2,000 to 5,000 bp

(orange) and over 5,000 bp (black). This plot demonstrates the

consistency of heptanucleotide Euclidean distances between

fragments of similar length while those fragments are spread

across a large range of tetranucleotide Euclidean distance space.

This plot also reinforces the observation that longer scaffolds

(.5,000 bp) are required to obtain normalized heptanucleotide

Euclidean distances below 1.0, whereas all scaffold lengths are

capable of obtaining short tetranucleotide Euclidean distances.

Additionally, the ‘‘banding’’ of colors along the heptanucleotide

axis confirms the relationship between scaffold length and

Euclidean distance between similar sequences when using

heptanucleotide signatures. These minimum Euclidean distances

must be accounted for when using oligonucleotide signatures with

real metagenomics datasets as they set the standard for determin-

ing the relatedness of two scaffolds.

Twenty five Yellowstone National park metagenomes (Table

S4) were analyzed to determine the frequency of large scaffolds, as

these are the most useful for taxonomic binning applied to real

metagenomics datasets. Figure S9 shows a histogram of the

average frequency of large (.10,000 bp) scaffolds within these

metagenomes. While the majority of the larger scaffolds are

10,000 bp to 15,000 bp, many are longer, with each of the

metagenomes averaging seven scaffolds over 50,000 bp. The data

include a total of eighty-seven large scaffolds, although it must be

noted that next generation sequencing becomes more affordable,

the frequency of large scaffolds in datasets will continue to

increase, resulting in the increased applicability of these methods.

Our analyses show that longer oligonucleotide signatures have

great applicability for homology binning and taxonomic identifi-

cation. In many cases oligonucleotide signatures were able to

compete with 16S rRNA for resolving taxonomy, demonstrating

the usefulness of oligonucleotide signatures as for resolving the

taxonomic source of a DNA fragment, an increasingly important

challenge as environmental sequencing becomes the norm in how

DNA/RNA is obtained from complex communities. The some-

times substantial improvements in taxonomic resolution gained

from analyzing longer oligonucleotide word lengths comes at a

fairly cheap computational cost, and we call into question whether

the current paradigm of tetranucleotide word length analysis in

metagenomics should undergo a much needed shift.

Methods

A complete set of non-draft sequenced microbial genomes

(including 1,315 bacteria and 109 archaea) (Table S5) were

downloaded from the National Center for Biotechnology Infor-

mation (NCBI) website (ftp://ftp.ncbi.nih.gov/genomes/

Bacteria/) on June 21st, 2012. The genomes were filtered to

remove plasmids to allow for an analysis of only chromosomal

DNA. Additionally, 16S rRNA sequences for all included genomes

were downloaded from the Ribosomal Database Project (RDP)

(http://rdp.cme.msu.edu/). All genomes included in this study

contain taxonomic information obtained from the NCBI taxo-

nomic database (ftp://ftp.ncbi.nih.gov/pub/taxonomy/) and

parsed to include: species, genus, family, order, phylum and

domain annotations. An analysis of the phylums included in this

study shows that while the NCBI genomes database contains good

diversity (30 phylums) it also includes a strong bias towards

proteobacteria (43% of total genomes) and firmicutes (19% of total

genomes).

All chromosomes were analyzed to determine their mono-

through nona- oligonucleotide signatures using a ‘‘sliding window’’

to find the count of each possible oligonucleotide combination [7].

These counts were converted into percentages where the ratio of

all percentages represents the genetic signature. The Euclidean

distance between chromosomes was determined using the

following formula:

d(p,q)~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(q1{p1)z(q2{p2)z:::z(qn{pn)

p

Where each (p, q) set represents a bin from the oligonucleotide

signature. The Euclidean distances between all organism pairs

were converted into a distance matrix for analysis using the

neighbor program within the Phylip software package [34]. This

resulted in cladograms representing the Euclidean distances (i.e.

oligonucleotide signatures) between all members of the 1,424

organism dataset. Corresponding bacterial and archaeal 16S

rRNA sequences were combined and aligned using the RDP’s on-

line tools. The aligned 16S rRNA sequences where converted into

a phylogenetic tree using the dnadist and neighbor tools within

Phylip. The oligonucleotide signature based cladograms and the

16S rRNA based phylogenetic tree were analyzed using Bioperl’s

TreeIO [35] tools to extract the distance between all leaf nodes.

Results were filtered to generate a list of the nearest neighbor for

all leaf nodes in all cladograms. Using taxonomy data for all leafs

and their nearest neighbor we determined the percentage of

occurrences when a nearest neighbor is from the same taxonomic

group (i.e. same domain, same phylum, etc). Additionally, the

taxonomic data between nearest neighbors allowed for the color-

coding of cladogram nodes based on taxonomy.

Euclidean distance verses 16S identity plots were generated by

plotting the Euclidean distance between all organism pairs in our

1,424 member dataset verses the 16S identity between the pair.

The identity between aligned 16S rRNA sequences was deter-

mined using the dnadist program within Phylip. Taxonomy data

was also included to color-code the plot. The genus normalized

Euclidean distance normalization metric was derived from

dividing all Euclidean distances by the largest genus-genus

Euclidean distance for all oligonucleotide lengths (Table S2).

To generate the leave-one out analysis we calculated the

Euclidean distance between all organisms in our 1,424 member

dataset, not including self-comparisons. We then organized all

resulting distances into thirty equally sized bins and calculated the

taxonomical relationships for all organism pairs in each bin. Each

bin was then analyzed for the percentage of times the same

taxonomic identity was seen (i.e. how often a bin contained

organism pairs from the same genus).

To determine random divergence we constructed a random one

million base pair DNA sequence. The sequence was subjected to

one million iterations where we randomly selected a single base

and mutated it to a randomly selected base. The mutated DNA

sequence was written to disk every one hundred iterations and

each of these sequences were compared to the original by

calculating the tetranucleotide and heptanucleotide signature and
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calculating the Euclidean distance from the original sequence. The

results were plotted as iteration number verses Euclidean distance

from the original sequence.

To analyze metagenomically relevant fragments from 1,424

completed genomes we randomly pulled 1,000, 2,500, 5,000,

10,000, 15,000, 25,000 and 50,000 base pair fragments from each

completed genome and calculated tetranucleotide/heptanucleo-

tide signatures for all fragments. The Euclidean distance was

calculated between each fragment for all fragment lengths and

each set of Euclidean distances was converted into a distance

matrix. Distance matrices were analyzed using the neighbor

application in Phylip to generate cladograms. BioPerl’s TreeIO

was used to calculate the nearest neighbor for all nodes and the

NCBI taxonomy was used to pull genus of all sequenced genomes

included. The percentage of nearest neighbors having the same

genus was calculated and plotted verses fragment length for both

tetranucleotide and heptanucleotide signatures.

To determine the Euclidean distances based on fragment length

the organism’s chromosome was broken in chunks with lengths of:

50,000, 20,000, 15,000, 10,000, 5,000, 2,500, 1,000 and 500 base

pairs. The tetranucleotide and heptanucleotide signatures were

calculated for all chunks along with the Euclidean distances

between all chunks. The average Euclidean distance between all

chunks was then calculated between all organism pairs over all

chunk lengths. These average Euclidean distances were then

plotted verses chunk length for each organism pair.

To determine nt database matches for the Bison Pool

metagenome dataset using oligonucleotide signatures both the nt

database and the Bison Pool dataset were parsed to DNA

sequences in excess of 10,000 base pairs. Next, the tetranucleotide

and heptanucleotide signatures were calculated for all sequences in

the nt database as well as the Bison Pool dataset. The Euclidean

distance was calculated between all members of the Bison Pool

dataset and nt using both tetranucleotide and heptanucleotide

signatures, with the pairing with the lowest Euclidean distance

designated as the best match. NCBI BLAST was used between the

over 10,000 base pair nt database and the over 10,000 base pair

Bison Pool datasets to determine the ‘‘correct’’ best match between

the metagenomes and the nt database. Results were then analyzed

for how often the best BLAST hit and shortest Euclidean distance

hit agreed.

The twenty-five Yellowstone National Park metagenomes were

combined into a single file and parsed so that every 700th sequence

was pulled out for analysis, giving us 242 scaffolds. NCBI BLAST

was used to find all related sequences for the 242 metagenomic

scaffolds within the NCBI nt database. The tetra- and hepta-

nucleotide Euclidean distance was calculated between all metage-

nomic scaffolds and all their related hits in the nt database. The

calculated Euclidean distances and the scaffold lengths were

plotted using R.

Perl scripts developed for the determination of oligonucleotide

signatures from DNA sequences as well as for calculating the

Euclidean distance between oligonucleotide signatures are avail-

able for download from the Raymond ground website at

evolution.asu.edu.

Supporting Information

Figure S1 Tetranucleotide Signatures. Bar chart showing

the 256 bins possible for tetranucleotide signatures and how they

are occupied by Escherichia coli (red), Sulfolobus islandicus (green) and

a 1.6 million base pair random sequence (blue) – ordered high to

low by percentage. E. coli and S. islandicus have biases towards

specific bins while the random sequence occupies all bins relatively

equally, as tetranucleotide words are randomly assigned. The non-

random nature of DNA sequences from real organisms shows that

nature is not random and this non-random nature can be

exploited as an oligonucleotide signature.

(TIF)

Figure S2 Cladograms Based on Oligonucleotide Signa-
tures. Cladograms derived from dinucleotide through nonanu-

cleotide signatures using Euclidean distances between 1,424

sequenced microbes. Terminal branches are color-coded to depict

nearest neighbor taxonomic relationships as: strong relationships

(same species or same genus) in red, good relationships (phylum or

better) in blue, same domain in yellow and different domain in

black. This figure demonstrates that di- through nona- nucleotide

signatures are able to correctly place taxonomically similar

organisms together on a cladogram.

(TIF)

Figure S3 Oligonucleotide Signatures vs. 16S rRNA
identity. Plot of 16S percent identity verses genus normalized

Euclidean distance for mononucleotide through nonanucleotide

signatures. Plots are colored based on the highest shared

taxonomic level of the two organisms being compared: same

species are in orange, same genus (purple), same family (green),

same order (red), same phylum (blue), same domain (yellow) and

different domain (black). These plots show that the Euclidean

distance space useful for same species comparisons is enlarged as

oligonucleotide length is increased, with the most noticeable

increases occurring at shorter oligonucleotide lengths.

(TIF)

Figures S4 Leave-one-out Histograms. Histograms show,

by genus normalized Euclidean distance, the percentage of

organism matches which contain identical taxonomy for mono-

nucleotide through nonanucleotide signatures. Plots are colored

based on the highest shared taxonomic level of the two organisms

being compared: same species are in orange, same genus (purple),

same family (green), same order (red), same phylum (blue), same

domain (yellow) and different domain (black). These histograms

demonstrate the expansion of usable Euclidean distance space for

making same genus and same species taxonomic identifications as

oligonucleotide length increases.

(TIF)

Figure S5 Variable Fragment Lengths Plots. Figures S5

and S6 show the average tetranucleotide (S5) and heptanucleotide

(S6) Euclidean distances between genome fragments of lengths

between 500 bp and 50,000 bp for six organisms (Escherichia coli,

Mycoplasma leachii, Prochlorococcus marinus, Roseiflexus cas-

tenholzii, Sulfolobus islandicus and Thermotoga petrophila), plus

a random 1.6 million base pair. By plotting fragment length verses

Euclidean distance for all organisms it can be seen that 10,000

base pair fragments demonstrate the minimum ideal fragment size

required to differentiate between organisms from different phyla,

although fragments as short as 2,500 base pair where demon-

strating some ability for differentiation.

(TIF)

Figure S6 Variable Fragment Lengths Plots.

(TIF)

Figure S7 Tetra- and Hepta- Nucleotide Euclidean
Distance verses Scaffold Length. These figures show

tetranucleotide (A) and heptanucleotide (B) genus normalized

Euclidean distance verses scaffold length for comparisons between

242 metagenomic scaffolds and all related sequences within the nt

database. These figures demonstrate the Euclidean distances seem
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for a variety of scaffold lengths along with the possible variations in

Euclidean distance for a given scaffold length.

(TIF)

Figure S8 Tetranucleotide verses Heptanucleotide Eu-
clidean Distances. This figure shows the tetra- and hepta-

nucleotide genus normalized Euclidean distances between meta-

genomic scaffolds and their related sequences within the NCBI nt

database. Points are colored by scaffold length as: less than 800 bp

(red), 800 bp to 1,000 bp (blue), 1,000 bp to 2,000 bp (green),

2,000 to 5,000 bp (orange) and over 5,000 bp (black). This plot is

based on 242 scaffolds ranging in size from 221 bp to 13,363 bp

and includes 5,840 comparisons to related sequences in the nt

database.

Counts in Metagenomic Datasets. This figure shows a
histogram of the average frequency of large ( .10,000 bp) scaffo-

lds  across  twenty-five   metagenomic  datasets  collected  within

Yellowstone National Park. These metagenomic datasets average

eighty-seven scaffolds over 10,000 bp, including seven which are

over 50,000 bp.

(TIF)

Table S1 Percentages from Nearest-Neighbor Analyses
with CPU Time. Mononucleotide through nonanucleotide

signatures were compared with 16S rRNA using nearest neighbor

prediction ability (the percentage of times taxonomically identical

genomes were placed as nearest neighbors on a cladogram). This

table includes the values determined from this calculation (Figure 2

shows these values graphically). Additionally, this table shows the

CPU time required to calculate the Euclidean distances between

all 1,424 organism pairs.

(XLS)

same genus distance for each oligonucleotide length. These
normalizations were completed to correct for the shrinking of

Euclidean distances as oligonucleotide lengths increased due to the

additional bins, and the subsequently smaller percentages each bin
contained.

(XLS)

Table S3 Bison Pool Metagenome Best Hits Using
Oligonucleotide Signatures and BLAST. Scaffold over

10,000 base pairs in length were compared to the nt database

using NCBI BLAST, tetranucleotide signatures and heptanucleo-

tide signatures. This table shows: genus of best BLAST hit (with e-

value to that hit), genus of best tetranucleotide signature hit (with

Euclidean distance to that hit) and genus of best heptanucleotide

signature hit (with Euclidean distance to that hit) for each Bison

Pool scaffold.

(XLS)

Table S4 Metagenomes Included. This table lists the

twenty-five Yellowstone National Park metagenomic sample sets

used and their JGI/IMG designations.

(XLS)

Table S5 Organism Names and Accession Numbers for
All Included Genomes. This table contains the organism name

and NCBI accession number for 1,424 genomes used in this study.

Table also contains the RDP accession number for the 16S rRNA

sequence corresponding to the genomes used in this study.

(XLS)
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