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Cancer proteomics has become a powerful technique for characterizing the protein markers driving
transformation of malignancy, tracing proteome variation triggered by therapeutics, and discovering
the novel targets and drugs for the treatment of oncologic diseases. To facilitate cancer diagnosis/prog-
nosis and accelerate drug target discovery, a variety of methods for tumor marker identification and sam-
ple classification have been developed and successfully applied to cancer proteomic studies. This review
article describes the most recent advances in those various approaches together with their current appli-
cations in cancer-related studies. Firstly, a number of popular feature selection methods are overviewed
with objective evaluation on their advantages and disadvantages. Secondly, these methods are grouped
into three major classes based on their underlying algorithms. Finally, a variety of sample separation
algorithms are discussed. This review provides a comprehensive overview of the advances on tumor
maker identification and patients/samples/tissues separations, which could be guidance to the researches
in cancer proteomics.
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1. Introduction

In 2015, cancer caused over eight million deaths, making it the
second leading cause of death in the world, nearly one-sixth deaths
caused by cancer according to the report of the World Health Orga-
nization [1,2]. The impact of cancer on economy is significant and
growing [3–5], and the cancer is common in late manifestations
and inaccessible diagnosis and treatment [6]. If detected early, can-
cer can respond to effective treatments, leading to lower morbid-
ity, less treatment spending and larger chances of survival [7].
Thus, an effective early diagnosis and treatment can improve the
cure rate of many cancers and alleviate the burden of cancer
patients [8].

It is important to develop more effective early diagnosis strate-
gies for cancer, and biomarkers are urgently needed to diagnose
various types of cancers, assess the severity of diseases, and dis-
cover the corresponding therapeutics [9–15]. A biomarker can be
a protein, a polypeptide or a metabolite whose levels change with
the stage of cancer, as well as the messenger RNA or other kinds of
nucleic acids [16–19]. It is well known that there is much less
understanding of the pathogenesis of cancer at the proteomic level
than gene mutations level [20,21]. Since proteome is a functional
translation of genome and a rich source of biomarkers, huge
amounts of time and money are needed for proteomics to develop
Fig. 1. The workflow of cancer biomarker dis
biomarker [22]. Gene is merely a ‘‘formulation” of the cell, and the
protein encoded by the gene is ultimately a functional participant
in normal and cancer physiology [23]. Thus, while the genetic
background contributes in part to the susceptibility and develop-
ment of cancer [24], cancer can now be considered as a proteome
disease and has more links to the post-transcriptional steps
[25,26]. In terms of patient prognosis, there is an urgent need for
protein markers distinguishing cancer patients from normal indi-
viduals. In addition, biomarkers used in cancer surveillance may
affect the development of new therapy [27]. Protein biomarkers
obtained from biological samples can not only provide starting
point for finding links between disease and biological pathway,
but also play an important role in advancing cancer medical
research through the early diagnosis of cancer and prognosis of
treatment interventions [28]. An ideal biomarker should be with
the following characteristics: (1) good consistency and (2) high
reproducibility on same phenotyping biological samples, and (3)
good classification performance at distinguishing cases from con-
trols across studies [29–31].

Recently, a well-rounded analysis of human genome, transcrip-
tome, proteome and metabolome has made significant advance,
making a significant contribution to the discovery of tumor
biomarkers [32]. Proteomics can provide the qualitative and quan-
titative information on proteins based on a multitude of complex
covery in quantitative proteomics study.
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biological samples [33,34], It is also a powerful technique for iden-
tifying potential proteomic biomarkers, facilitating the discovery of
anticancer drug targets and providing new sight into mechanism
underlying complicated cancers [35–37,17]. The workflow of can-
cer biomarker discovery based on quantitative proteomics is illus-
trated in Fig. 1. In the proteomics study, it is critical for assessing
the performance of feature selection methods using the external
validations strategy [38]. The external validation implies the pres-
ence of a test dataset of samples that has not been employed for
constructing the model, and could be considered the suitable strat-
egy for avoiding overfitting problem [38].

Due to the sparsity of features in a big proteomic data, feature
selection methods are applied to identify significant proteins/pep-
tides (or features) between distinct groups, which is a crucial step
for cancer classification, diagnosis and prognosis in the compara-
tive proteomics study [38–42]. Currently, diverse feature selec-
tions have been developed and applied to the analyzed
proteomic data in various cancer-associated studies [41]. However,
due to the lack of robustness of feature selection methods, the
robustness and consistency of the biomarker sets discovered in
most cases is ambiguous [43,44].

This review describes recent computational advances made in
the field of cancer proteomics from biomarker candidates’ identifi-
cation perspectives. A variety of popular feature selection tech-
niques applied to cancer proteomic data are overviewed with
critical assessments of both challenges and potentials. The
main aim of this review is to make practitioners aware of the
benefits and the necessity of applying feature selection
techniques.
2. Considerations concerning study design

Tumor heterogeneity, design of study, sample size sand selec-
tion of the reference sample should be considered for discovering
tumor biomarker in proteomic study [45–47]. For example, the
use of normal/healthy controls as a reference group also needs to
be made cautiously [47]. The inter-individual heterogeneity among
tumors could affect proteins biomarker expression [48] and could
result in inappropriate ‘‘normal controls” samples employed for
tumor biomarker discovery [48]. Moreover, a relatively large num-
bers of samples employed could provide the biomarker validation
in study design [49].
Fig. 2. Classification of available feature select
3. Feature selection for tumor marker identification

Feature selection techniques have become quite popular as well
as required in tumor marker identification [50–53]. The application
of feature selection techniques not only facilitates the identifica-
tion of optimal differential oncological protein features [54–56],
but also improves cancer risk stratification and prediction
[57,58]. The available feature selection techniques can be orga-
nized into three categories based on their theories of screening
variables and classifying distinct groups: filter methods, wrapper
methods and embedded approaches. Moreover, one of the major
problems in proteomics dataset is the treating of missing values.
The imputation methods widely applied in proteomics data
included the background imputation, Bayesian principal compo-
nent imputation, censored imputation, k-nearest neighbor imputa-
tion, local least squares imputation and singular value
decomposition [59].

As shown in Fig. 2, a common taxonomy of feature selection
methods in different categories is provided, and the corresponding
advantages and disadvantages of these methods are discussed with
examples of the most influential techniques. Due to the various
types of feature selection techniques available for tumor marker
identification (Table 1), it is a great challenge to identify the opti-
mal approach for analyzing any tumor marker-related study. The
extensive application of each feature selection methods in current
proteomic study together with popular sample classification meth-
ods are shown in Fig. 3. These common feature selection tech-
niques currently available for tumor marker identification are
overviewed as follow.
3.1. Filter methods for tumor marker identification from proteomic
data

Filter methods involve in choosing the significantly differential
features based on discriminating metric (e.g. p-value) that are rel-
atively independent of classification. This metric well reflects the
quality of each feature in terms of its discriminative power. The
features would be remained when the metric values were within
a specific criterion, and features beyond the thresholding condition
would be eliminated. However, it should be noted that the feature
selection based on p-value could be misleading when the differ-
ence is not based on regulation, but on the mere capacity of a cell
to produce enough of the protein. Moreover, multicollinearity
ion algorithms in cancer proteomic study.



Table 1
Different feature selection methods for identifying the markers in proteomics research.

Methods Extensive application of each feature selection methods in current proteomic research

Filter-based feature selection methods
1 Fold change Used to identify the protein markers for early screening detection and monitoring invasive breast cancer progression

(PLoS One. 10:e0141876, 2015).
2 Entropy-based Filters Applied to discover biomarkers from serum peptide profiling based on proteomic techniques (Nat Protoc. 2:588–602,

2007)
3 Analysis of variance Used to discover the biomarkers associated with the orthostatic hypotension based on the proteomic study

(Hypertension. 71:465–72, 2018)
4 Chi-square Applied to reveal a prognostic signature in oral cancer in combining discovery and targeted proteomics (Nat Commun.

9:3598, 2018)
5 Student’s t-distribution Performed to reveal the differential proteins between samples with and without primary dysmenorrhea (F1000Res. 7:59,

2018)
6 Significance Analysis of Microarrays Used to analyze significance between two biological samples in quantitative proteomic study (BMC Bioinformatics. 9:187,

2008)
7 Linear Models for Microarray Data Applied to find significantly affected proteins by cathepsin A via proteomic profiling (J Proteome Res. 15:3188–95, 2016)
8 Linear discriminant analysis Used to find circulating lipids and coagulation cascade in septic shock progression based on proteomics data (Sci Rep.

8:6681, 2018)
9 Mann–Whitney–Wilcoxon test Used to identify the candidate biomarkers of prostate cancer in proteomic study (BMC Bioinformatics. 16:169, 2015)
10 Correlation-based feature selection Used to screen the features for investigating the periplasmic expression of soluble proteins in Escherichia coli (Sci Rep.

6:21844, 2016)
11 Markov blanket filter Used to detect proteomic biomarker in the recurrent ovarian cancer study from high-resolution mass spectrometry data

(IEEE Trans Inf Technol Biomed. 13:195–206, 2009)
12 Partial Least Square Discriminant

Analysis
Applied to select the discriminative proteins between the medullary sponge kidney and idiopathic calcium
nephrolithiasis patients (Int J Mol Sci. 20:5517, 2019)

13 Orthogonal Partial Least Squares
Discriminant Analysis

Used to identify candidate biomarkers significantly discriminated cholangiocarcinoma from normal and periductal
fibrosis patients (PLoS One. 14:e0221024, 2019)

14 Sparse Partial Least Squares
Discriminant Analysis

Applied to discovery the protein biomarkers in hypertrophic cardiomyopathy based on proteomics profiling (J Cardiovasc
Transl Res. 12:569–79, 2019)

15 Discriminant Analysis of Principal
Component

Used to find conditions for the subsequent identification of biomarkers and stress proteins (PLoS One. 11:e0165504,
2016)

Wrapper-based feature selection methods
1 Sequential forward selection Used for protein mass spectrometry in the disease diagnosis and biomarker identification (BMC Bioinformatics. 6:68,

2005)
2 Sequential backward elimination Used to select k-spaced amino acid pairs to identify the pupylated proteins and pupylation sites based on proteomic data

(J Theor Biol. 336:11–7, 2013)
3 Simulated annealing Applied to find a biomarker in prostate proteomic pattern based on prostate protein mass spectrometry data (CIBCB,

195–200, 2008)
4 Hill climbings Employed to tumor detection and discriminate tumor samples from nontumor ones in proteomic study (Artif Intell Med.

32:71–83, 2004)
5 Genetic algorithm Used to identify proteomic patterns in serum that distinguish neoplastic from non-neoplastic disease (Lancet. 359:572–7,

2002)
6 Estimation of distribution algorithm Applied to identify the prognosis biomarker of ovarian cancer in metabolomic study (Metabolomics, 7:614–22 2011)

Embedded feature selection methods
1 Decision Tree Used to automatically determine proteomic biomarkers and predictive models in the diagnosis of rheumatoid arthritis

and inflammatory bowel diseases (Bioinformatics. 21:3138–45, 2005)
2 Support Vector Machine Used to find proteins which differ between the breast cancer subtypes based on proteomic profiles (Nat Commun.

7:10259, 2016)
3 Weighted naïve Bayes Used to discover serum protein biomarkers for the diagnosis of active pulmonary tuberculosis based on proteomic

profiling (J Clin Microbiol. 55:3057–71, 2017)
4 SVM Recursive Feature Elimination Used to identify the biomarkers for predicting the early recurrence of ovarian cancer based on serum proteomic profiling

(Genome Inform. 16:195–204, 2005)
5 Artificial Neural Networks Applied to identify serum signatures for detecting hepatocellular carcinoma and its subtypes (Clin Chem. 49:752–60,

2003)
6 Random Forest Used to identify the protein biomarkers in non-small cell lung cancer for early stage asymptomatic patients (Cancer

Genomics Proteomics. 16:229–44, 2019)
7 RF Recursive Feature Elimination Applied to preliminarily screening the differential proteins for discovering biomarkers of hepatocellular carcinoma (J

Proteomics. 225:103780, 2020)
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implies a strong correlation between features that affect the target
vectors simultaneously. The multicollinearity problem could lead
to instability of some feature selection method [60]. The type of fil-
ter methods is relative of great simplicity compared to other wrap-
per and embedded methods. In particular, these filter methods can
be organized into two categories based on the number of variables
analyzed: (1) univariate and (2) multivariate methods. The former
type refers to methods where only one variable is used for filter
analysis, which includes Fold Change (FC), Entropy-based Filters,
Analysis of Variance (ANOVA), Chi-square (v2), Euclidian Distance,
T-test, Information Gain (IG), Significance Analysis of Microarrays
(SAM), Linear Models for Microarray Data (LIMMA) and Mann–W
hitney–Wilcoxon test (MWW test). The later type refers to meth-
ods where at least two variables are considered for building modes,
which include Correlation-based Feature Selection (CFS), Markov
Blanket Filter (MBF), Linear Discriminant Analysis (LDA), Partial
Least Square Discriminant Analysis (PLS-DA), Orthogonal Partial
Least Squares Discriminant Analysis (OPLS-DA), Sparse Partial
Least Squares Discriminant Analysis (sPLSDA), Discriminant Analy-
sis of Principal Component (DAPC) and Relief. As reported previ-
ously, the univariate methods could be used to evaluate a single
biomarker with respect to recurrence and outcome, and multivari-
ate methods were employed to develop a prognostic classification
panel for disease recurrence [61]. The application of univariate and
multivariate methods usually results in numerous significance fea-
tures. Advantages of filter techniques are computationally simple



Fig. 3. Feature selections applied in cancer proteomics and popular sample classification methods.
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and fast, and they are independent of the classification algorithm.
A common disadvantage of filter methods is that they ignore the
interaction with the classifier. Explanation and summary on each
filter method are provided in Table 2. And the detailed descriptions
and the corresponding applications of cancer-regulated studies are
as follow:

3.1.1. Univariate filter methods
Fold Change (FC) is to compare the absolute value change

between means of two groups, and it is calculated as the ratio or
log of the ratio of the mean metabolite levels between two groups.
A threshold needs to be defined, if fold change value exceeds this
threshold, the variable will be reported as significant. FC has been
widely applied in multiple omics analysis to predict survival of
patients with metastatic colorectal cancer [62], and detect changes
in the metabolomics profiles of men before and after androgen
deprivation therapy for prostate cancer [63].

Entropy-based Filters are filter-based feature ranking tech-
niques which include three classes: Information Gain (IG), Gain
Ratio (GR) and Symmetrical Uncertainty (SU). IG selects features
based on contribution of information related to the class variable
without considering feature interactions. GR is non-symmetrical
measure that is introduced to compensate for the bias of the IG,
and SU criterion compensates for the inherent bias of IG [64].
Entropy-based Filters have been applied to identify the features
related to glioma subtypes [65] and discover biomarkers in Ara-
bidopsis thaliana [66].
A collection of statistical models and their associated estimation
procedures was developed by Ronald Fisher called Analysis of Vari-
ance (ANOVA) [67]. This method mainly focuses on analyzing the
differences among different groups average or variance values in
a specific protein [68,69]. When comparing with multiple groups
average values for statistical significance, it is more conservative
than the traditional multiple two-sample t-tests method, and is
therefore applicative for an extensive range of practical problems
[70]. The ANOVA has been applied to investigate pro-
inflammatory cytokines and liver functional markers [71] and
explore the cellular resistance through quantitative proteomic
analysis [72].

When a hypothetical feature is actual independent of the class
value, Chi-square (v2) becomes a popular statistical test for
weighting divergence distribution [73]. It is known that the v2 test
is used to judge the independence of two events and its behavior is
erratic for very small counts of cases [74]. Using the v2 statistic for
feature selection is similar to importing a hypothesis testing about
the distribution of classes [75]. Chi-square has been applied to
study the incidence of injury to parathyroid glands during surgery
for papillary thyroid carcinoma [76]. Main function of t-test is to
judge whether the average of the two groups is statistically differ-
ent [77]. T-test is suitable for samples with a normal distribution
[78]. Commonly, the log transformation was needed for obtaining
a more symmetric distribution prior to t-test analysis. Moreover,
normalization is also a necessary step for proteomics analysis that
aims to reduce systematic bias and make samples more compara-



Table 2
Fifteen filter feature selection methods available and popular in cancer proteomic study.

Methods Abbr. Packages in R
(Function)

Brief Descriptions Reference

Fold change FC metabolomics
(FoldChange)

The FC is a popular and simple statistical method for the absolute
value change between means of two groups. And it is often applied
together with other parametric/non-parametric methods

Clin Cancer Res. 18:3677–
85, 2012

Entropy-based Filters Entropy FSelector
(entropy.
based)

The Entropy filter method is similar to the Chi-square, which screens
variables reraedless of possible interactions. And its performance
depended on the characteristic s of studied data.

Comput Chem Eng.
22:613–626, 1998.s

Analysis of variance ANOVA ANOVA.TFNs
(fanova)

The ANOVA is a powerful statistical method of parametric/non-
parametric and linear. And focus on analyzing the differences among
multiple groups average values in a specific protein.

Br J Math Stat Psychol.
68:23–42, 2015

Chi-square v2 stats (chisq.
test)

The v2 is a popular statistical test of non-parametric, and difficult
interpreting when the present of a large number of categories in the
variables.

Am J Orthod Dentofacial
Orthop. 150:1066–1067,
2016

Student’s t-distribution T-test stats (t.test) The T-test is parametric method to judge whether the average of the
two groups is statistically different.

Br J Educ Psychol. 76:663–
75, 2006

Significance Analysis of Microarrays SAM samr (sam) The SAM is non-parametric and linear statistical technique. And rely
on samples when carries out variable specific t-tests and ignore
single variable

Proc Natl Acad Sci USA.
98:5116–21, 2001

Linear Models for Microarray Data LIMMA limma (lmFit) The LIMMA is an advanced statistical method based on parametric
and linear models. And analyze the reverse-phase protein array data

Nucleic Acids Res. 43:e47,
2015

Linear discriminant analysis LDA MASS (lda) The LDA is statistical algorithm based on the linear theory existing
among different variables. And it is well suitable for study the small
number of features.

Methods Mol Biol.
1362:175–84, 2016

Mann–Whitney–Wilcoxon test MWW
test

stats (wilcox.
test)

The MWW test is a nonparametric test of the null hypothesis. And it
is well suitable when the assumptions of the t test or the data is
ordered are not met.

J Wound Ostomy
Continence Nurs. 24:12,
1997

Correlation-based feature selection CFS FSelector (cfs) The CFS is a parametric and linear algorithm that have a heuristic
search strategy. Its goal is to finalize a subset of the characteristics of
these groups that are less correlated but highly.

Information Sciences.
282:111–135, 2014

Markov blanket filter MBF MXM (mmmb) The MBF is a based on discretized features feature selection statistical
method, which can be applied for obtaining good classification
performance with the small variables sets.

Med Phys. 42:2421–30,
2015

Partial Least Square Discriminant
Analysis

PLS-DA ropls (opls)
caret (plsda)

The PLS-DA is supervised multivariate statistical approach and
belongs to type of linear two-class classifier. And is can maximize
interval between predefined classes.

Chemometrics&Intelligent
Laboratory Systems.
58.2:109–130, 2001

Orthogonal Partial Least Squares
Discriminant Analysis

OPLS-
DA

ropls (opls) The OPLS-DA is an advanced multivariate statistical method for one
or more classes problems. And it is well suitable for classification of
proteomic dataset when the variables often existed multi-collinear
and noisy problems.

J. Chemometrics. 20:341–
351, 2006

Sparse Partial Least Squares
Discriminant Analysis

sPLSDA ropls (opls)
mixOmics
(splsda)

The sPLS-DA is an advanced multivariate statistical algorithm for
screening the variables and may miss out on variables between small
sample sizes. The advantages of sPLS-DA are that variable selection
and modeling are allowed in one step and can address multiclass
problems.

BMC Bioinformatics.
12:253, 2011

Discriminant Analysis of Principal
Components

DAPC adegenet
(dapc)

The DAPC is nonparametric and linear method. DAPC retains all
property of DA without being dragged down by its restrictions.

BMC Genet. 11:94, 2010
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ble [79–84]. As reported, the variance stabilization normalization
(VSN) method has a built-in transformation and could perform
well in the statistical analysis [59,85]. However, t-test with multi-
ple testing correction might not be appropriate when studied sam-
ple size is too small (less than 6) [16]. The Multiple testing
correction is a necessary step to manage the problem of false pos-
itive when performing multiple statistical tests in proteomics
study [38]. Popularly applied multiple testing correction methods
included the Bonferroni correction, Holm correction and
Benjamini-Hochberg correction. The t-test has been applied to dis-
tinguish prostate cancer from normal and benign conditions [86].

In 2001, Virginia Tusher et al. developed a statistical technique
called Significance Analysis of Microarrays (SAM) for judging
whether statistical significance of gene expression changes exists
[87]. SAM can assign a grade to every protein according to the dis-
tinction in expression associative with the standard deviation and
then give a permutation based false discovery rate (FDR) estimate
[87,88]. The advantage of this method is non-parametric statistics
which uses repeated permutations of the data to judge whether the
expression of protein is significant related to the response that is
based on experimental conditions regardless of the distribution
of individual proteins [87]. SAM has been applied to identify speci-
fic serum proteomic features associated with hepatocellular carci-
noma [89].

A package called Linear Models for Microarray Data (LIMMA)
focuses on differential expression gene analysis of file generated
by simple or complex microarray experiments [90]. Matching a lin-
ear model to the gene or protein expression data is a central idea of
this method. The functions of input and normalization can be per-
formed by LIMMA when two color microarray data need to be pro-
cessed [91]. Meanwhile, LIMMA can conjunct with the affyPLM or
affy packages for Affymetrix data. It has been used in dopaminergic
neurons function analysis for mouse and human fibroblasts [92]
and analysis of reverse-phase protein array data [93]. LIMMA has
been applied to investigate the influence of Cathepsin A on the car-
diac proteome in a mouse model of cardiomyocyte-specific human
Cathepsin A overexpression [94].

A non-parametric alternative test of the null hypothesis called
the Mann–Whitney–Wilcoxon test (MWW test) aims at comparing
two mean values from the same sample and testing if two sample
values are equally distributed [95,96]. In general, the MWW test is
used when the assumptions of the t test is not met [97]. By com-
paring the distribution of results of two groups with outliers in
the data, MWW test is widely used to observe the treatment effect
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[98]. As reported, its performance would be dramatically improved
with sample size increasing to a certain degree (more than 12)
when compared with the other methods (e.g. PCDA) [16,99]. The
MWW test has been applied to identify candidate biomarkers of
prostate cancer in proteomic study [100]. This method is imple-
mented based on the linear theory existing among features. The
LDA has been applied to identify a set of physicochemical proper-
ties for facilitating the classification of metal-based colloids [101].
3.1.2. Multivariate filter methods
Feature subsets among the features can be selected by

Correlation-based Feature Selection (CFS) relying on the degree
of redundancy [102]. The evaluator’s goal is to finalize a subset
of the characteristics of these groups that are less correlated but
highly related to the class [103]. In particular, the subset evaluators
search iteratively and add features using a numeric measure, for
instance, conditional entropy [104]. As a multivariate filter, the
CFS considers the relationship between features not noticed by
non-univariate filters [103]. CFS is applied to select first-rate fea-
ture subset and is bonded with search methods, for example, bi-
directional search, forward selection, genetic search and best-first
search [105]. CFS has been used in the subtype discovery of pedi-
atric acute lymphoblastic leukemia by cancer microarray file
[106]. Based on discretized features, a feature selection method
named Markov Blanket Filter (MBF) is raised [107]. As a critical
evaluation of MBF, contradictory and counterintuitive nature leads
to undesirable properties on the small sample size applications
which have function of classifying for microarray gene expression
data [108]. Linear Discriminant Analysis (LDA) is applied to iden-
tify differences or discriminant features among different samples
groups and pattern classification [109], which is quite suitable
for studying the small number of features [110].

Swedish statistician Herman O. A. Wold and his son Svante
Wold proposed and developed Partial Least Square Discriminant
Analysis (PLS-DA) [111]. This method belongs to linear two-class
classifier and maximize interval between predefined classes
[112]. The PLS-DAmethod will not produce the most accurate deci-
sion boundary once the sample sizes are unequal [111]. This
method is now usually applied by chemometricians who incorpo-
rate it into most pack-ages and is therefore cited in metabolomics
papers [113]. The PLS-DA combined other univariate methods has
been applied to select the discriminative proteins between the
medullary sponge kidney and idiopathic calcium nephrolithiasis
patients [114].

A supervised multiple regression analysis called Orthogonal
Partial Least Squares Discriminant Analysis (OPLS-DA) can be
applied to identify the difference between different data sets of X
and Y [115]. The OPLS methods is an extended Partial Least Squares
(PLS) method that combines an orthogonal signal correction filter
to discriminate data changes from predictive quantitative response
predictions that are useful from orthogonal predictions [116]. This
method is a powerful tool to analyze qualitative data structures
and predicted results are similar to the results of standard PLS-
DA [117]. OPLS-DA has a primary advantage as for interpretation
of the models due to its predictability [118]. The OPLS-DA has been
applied to identify candidate biomarkers significantly discrimi-
nated cholangiocarcinoma from normal and periductal fibrosis
patients [119]. Moreover, similar to the partial least squares dis-
criminant analysis, the Sparse Partial Least Squares Discriminant
Analysis (sPLS-DA) aims to achieve discrimination analysis based
on PLS regression [120]. When adding a Lasso penalization to select
variables, sPLS-DA can select variable and reduce dimension simul-
taneously [120]. sPLS-DA may tend to miss out on variables that
only distinguish between small sample sizes, assuming effect size
[121]. The advantage of sPLS-DA is that variable selection and
modeling are allowed in one step, and interpretability is improved
through valuable graphical output [122].

In 2010, Jombart and colleagues proposed Discriminant Analy-
sis of Principal Components (DAPC) for inferring the number of
genetically related individuals [123]. DAPC and previously men-
tioned PLS-DA choose small-size feature sets precisely but miss
many true positive features relevant to the spiked proteins [16].
This multivariate statistical approach divides variance of the sam-
ple into between-group and within-group to maximize discrimina-
tion between groups. DAPC first converts the data using Principal
Component Analysis (PCA) and then uses Discriminant Analysis
(DA) to identify the cluster [123]. As a new methodological
approach, DAPC retains all property of DA without being dragged
down by its restrictions [123]. A major advantage of DAPC in the
Bayesian Cluster approach is the ability to generate graphs that
infer kinship between clusters. DAPC can be used to decompose
potential structures in more complex demographic models [124].

3.2. Wrapper methods for tumor marker identification from proteomic
data

The wrapper method is one of the most popular feature selec-
tion methods proposed by Kohavi and John in 1997 [125]. In the
wrapper method, a search for an optimal set of features is made
using the induction algorithm as a black box [126]. It provides a
simple and powerful technique to solve the challenge of feature
selection. The wrapper methods look for the best subset of features
based on their predictive power. Wrapper methods are often crit-
icized because they train various new subsets into corresponding
models, and need a large amount of computation, but it is not nec-
essarily the case. Researchers can design an effective search strat-
egy. Using this strategy does not necessarily mean sacrificing
predictive performance. But it usually provides the best perform-
ing feature set for a particular type of model. Generally, different
wrapper methods are used to select the best subset. The commonly
used methods are Genetic Algorithms (GA), Hill Climbing (HC),
Sequential Backward Elimination (SBE), Estimation of Distribution
Algorithm (EDA), Simulated Annealing (SA), and Sequential For-
ward Selection (SFS). Explanation and summary on each wrapper
method are provided in Table 3. And the detailed descriptions
and the corresponding application of cancer-regulated studies are
as follow:

A valid and commonly applicable function minimization
method is the Genetic Algorithm (GA) [127]. This method achieves
the results of global optimization based on the genetic theory of
‘‘survival of the fittest”. Unlike traditional search methods, GA
begins with a set of finite-length encoded alphabet strings not a
real set of parameters [128]. Selection, crossover, and mutation
are operators of GA [129]. Through the selection step, a number
of individuals which have strong adaptability are found out from
the group, and then the individual copy number is determined
based on the selection method [130]. Generally speaking, it is nec-
essary to select the suitable crossover and mutation probabilities
based on practical problems [131]. GA had been used to maximize
functional value in chronic dialysis patients [132]. Moreover, the
most famous local search algorithm may be Hill Climbing (HC)
[133]. The main idea of climbing is divided into three steps: first,
randomly generate a state, and then find the best assessment value
to transfer to the neighbor, and finally if the third step has reached
a rigid local minimum, restart other randomly created states. These
steps need to be repeated until the solution or a local optimum is
found [134,135]. The HC has been applied to predict the protein
structure prediction combining with genetic algorithm [136].

The Sequential Backward Elimination (SBE), also called SBS
(Sequential Backward Selection), starts from the entire collection,
discarding the feature x in turn minimizes the value of the objec-



Table 3
Six wrapper feature selection methods available and popular in cancer proteomic study.

Method Abbr. Packages in R
(Function)

Brief Description References

Sequential
forward
selection

SFS Dprep (sffs) SFS is the only method containing F core steps of linear parameter and is a bottom-up
search technique. Many variants and applications are proposed based on SFS.

Pattern recognition and
signal processing 41–60,
1978

Sequential
backward
elimination

SBE MASS
(stepAIC)

SBE is a linear and parameter algorithm that performs well due to its addressing of large
subsets. SBE works in opposite direction.

Pattern recognition and
signal processing 41–60,
1978

Simulated
annealing

SA GenSA (GenSA)
SS

SA is a specific parameters and linear method of approximating the global optimization
problems. It is strict with various conditions, but sometimes the cost-increasing can be
acceptable.

Soviet Phys Cryst. 5:905–
916, 1979

Hill climbing HC FSelector
(hill.climbing.
search)

HC is a local search linear and parameter algorithm, which does not need to find the
global maximum. Combining with genetic algorithm, HC has been used to predict protein
structure.

Proteome Sci. 1:S19, 2011

Genetic algorithm GA GA (ga) GA is an effective and universally applicable function of parameters and linear/unlinear,
which does not scale well with complexity.

Mitochondrial DNA 25:231–
7, 2014

Estimation of
distribution
algorithm

EDA Copulaedas
(Copula)

EDA is a parameter approach and a widely used random optimization. It belongs to the
class of evolutionary algorithms.

IJCSE. 3:1787–97, 2011
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tive function J(Y-x-) [137,138]. These features are considered non-
monotonic. Because SBS is addressing large subsets in most cases,
it performs best while the first-rank feature subset exists many
features [139]. The primary disadvantage of SBS is that it is not
possible to re-evaluate the reusability of this feature when a fea-
ture is removed [140]. Sequential Forward Selection (SFS), a
bottom-up search technique, works in opposite directions from
SBE. SFS is first based on a null feature set and then gradually adds
features picked by some assessment functions to minimize Mean
Square Error (MSE) [141]. Sharma et al. proposed SFS [142] and
attempted to conquer the shortcoming of traditional feature selec-
tion method whereby a weakly ranked protein that could conduce
to classification accuracy with a suitable subset of proteins has
eliminated from the selection [143]. In each iteration, the remain-
ing available features that do not exist in the feature set are
selected into the feature set [144]. Therefore, the extended feature
set will generate a minimal classification deviation compared to
the previously added features [145]. Despite this, SFS is widely
applied because of its simplicity and the fact that it only contains
F core steps, and many variants and applications are proposed
based on the SFS.

Estimation of Distribution Algorithm (EDA), also named Proba-
bilistic Model-building Genetic Algorithm (PMBGA), is a widely
used random optimization method [146]. Firstly, EDA learns the
Table 4
Seven embedded feature selection methods available and popular in cancer proteomic stu

Methods Abbr. Packages in R
(Function)

Brief Descriptions

Decision Tree DT dtree (pca) The DT is a supervised algorithm for cla
for nonlinear proteomic data.

Support Vector
Machine

SVM e1071 (svm) The SVM is a supervised learning mode
suitable any linear or nonlinear proteom
consuming for large scale proteomic da

Weighted naïve
Bayes

WNB CORElearn
(CoreModel)

The WNB is a supervised learning meth
suitable for the proteomic data, where

SVM Recursive
Feature
Elimination

SVM-
RFE

MCRestimate
(varSel.svm.
rfe)

The SVM-RFE is popular supervised em
addressing overfitting risk when the nu

Artificial Neural
Networks

ANN neuralnet
(neuralnet)

The ANN is supervised embedded meth
depended on the characteristic of studi

Random Forest RF randomForest
(randomFores)

The RF is popular supervised embedded
proteomic dataset for identifying the sm

RF Recursive
Feature
Elimination

RF-
RFE

varSelRF
(varSelRF)

The RF-RFE is popular supervised embe
addressing the non-linear or linear vari
explicit probability model which is a promising solution that is
currently found, and then generates a new solution by sampling
the created model [147]. EDA belongs to a class of evolutionary
algorithm. Unlike most traditional evolutionary algorithms which
use implicit distributions defined by one or more variant operators
to generate new candidate solution, EDA uses Bayesian networks
multivariable normal [148]. EDA is an excellent solution to a num-
ber of challenging problems [149]. EDA now has been applied to
the HP model on a cubic lattice and predict the native structures
of relatively small proteins therefore helps in drug design and pro-
teomics [150–152]. Moreover, the Simulated Annealing (SA) is a
specific method for a number of type optimization problems
[153]. SA has now been applied to help identify HER2 and hor-
monal receptor expression states of breast cancer patients [154].

3.3. Embedded methods for tumor marker identification from
proteomic data

Embedded methods are commonly used in feature selection in
order to select the optimal subset of features which play a great
role in the process of constructing the classifier [155]. A low min-
imum sample size of around 20 samples was suggested as suffi-
cient to perform robust power analysis [156]. It is clear that
sample imbalance has a great effect on identifying differential
dy.

Reference

ssification and prediction. And it is suitable Machine Learning. 4:161–86,
1989

l for classification and regression. And it is
ic data, but also complex and time

ta.

Bioinformatics. 21:47–56, 2005

od based on the Bayes theory. And it is only
all variables are independent of each other.

Appl Environ Microbiol. 73:5261–
7, 2007

bedded method. And it is well suitable for
mber of variables is high.

Anal Chem. 80: 7562–70, 2008

od. And its performance on consistent
ed data.

Nat Rev Urol. 10:174–82, 2013

method. And it is well suitable for any
all variables set.

Isprs Journal of Photogrammetry &
Remote Sensing. 67:93–104, 2012

dded method. And it is well suitable for
ables of proteomic dataset.

Metabolomics. 18: 3677–85,
2012
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features. For example, the imbalance sample in the dataset could
lead to model overfitting or underfitting. To deal with the overfit-
ting problem, the dataset could be randomly divided into training
(60%), validation (20%), and test (20%) data sets, or training (70%)
and test (30%) data sets in case validation is not required [157].

In this section, six methods are listed as follows: Decision Trees
(DT), Random Forest (RF), Support Vector Machine (SVM), Bayesian
Classifier and Artificial Neural Network (ANN), Random Forest with
Recursive Feature Elimination (RF-RFE) and Support Vector
Machine with Recursive Feature Elimination (SVM-RFE) [84].
Explanation on each method is provided in Table 4, and detailed
descriptions and the corresponding application of cancer-
regulated studies are as follow:

Decision Tree learner is a common decision support tool that
resembles a tree structure in which each non-leaf node represents
a test on a specific characteristic, each branch means the result of
the test, and each leaf node denotes a class label [158]. Through an
iterative process, the Decision Tree learns from a series of training
examples, selects an attribute and then splits a given set of exam-
ples based on the values of that attribute [159]. Advantages of the
method can be summed up in two aspects. First, the construction
of the classifier does not require much of professional knowledge
and its reliability in diagnosis can be verified through both expert
knowledge and testing data [160]. Besides, its inductive classifica-
tion step is simple and fast [159].

Random Forest developed by Leo Breiman is an algorithm that
integrates multiple trees through the idea of integrated learning
[161]. Its basic unit is Decision Tree which takes the advantage
of a bootstrap sample of the data [162]. The method is excellent
in accuracy [163] and generates an internal unbiased estimate of
the generalization error as the forest building progresses. More-
over, when comparing with SVM, it performs better in the aspect
of classification tasks [164]. Random Forest with Recursive Feature
Elimination (RF-RFE) conducts a recursive backward feature elim-
ination procedure. It begins with all the features. In each iteration,
a Random Forest is constructed to measure the features’ impor-
tance and the feature with least importance is removed. This pro-
cedure is repeated until there is no feature left. Finally, the features
are ranked according to the deleted sequence, and the top ranked
feature is the last deleted one. RF-RFE has been applied to reveal
the deregulation of fatty acids metabolism in hepatocellular carci-
noma and chronic liver [165,166], and investigate hepatitis C by
using metabolomics as a tool [63].

Support Vector Machine (SVM) is a kind of learning machines
constructed according to structural risk minimization principle
on the basis of Vector Machine theory, which hopes to find a seg-
mentation surface that can separate the data points apart [167].
One of the challenges of this method is how to choose the proper
kernel function [168]. When it comes to the advantages of SVM,
it performs well in dealing with high-dimensional data sets with
very few training examples [169]. Moreover, as family of simple
‘‘probabilistic classifiers” based on Bayes theory, the Bayesian Clas-
sifier can be applied to predict the probability that a given instance
pertains to a class [170]. It assumes that all the attributes are inde-
pendent of each other [171]. In theory, the naive Bayesian classifier
has the minimum error rate when compared to other classification
methods. However, this is not always the case in practice due to
the above assumption. Even so, the Naive Bayesian classifier has
the high precision and speed in the application of large database
[172].

Support Vector Machine with Recursive Feature Elimination
(SVM-RFE) is an embedded approach that uses the norm of the
weights w to rank the variables. Initially, all data is taken, and a
classifier is computed. The norm of w is then computed for each
of the features and the feature with the smallest norm is elimi-
nated. This process is repeated until all features are ranked. For
selecting features relevant to the spiked compounds, linear SVM-
RFE performs poorly even if the classification error is relatively
low [16]. SVM-RFE has been applied to determine differences
between healthy subjects and patients suffering from Streptococ-
cus pneumoniae [173], and interrogate the serum metabolome of
early-stage ovarian cancer patients and age-matched control
women [174].

Artificial Neural Networks (ANN) is an algorithm mathematical
that simulates the behavior characteristics of biological neural net-
works, including their structure and functionalities [175]. The basic
unit of every artificial neural network is artificial neuron which is a
simple mathematical function [176]. This kind of network relies on
the complexity of the system and can process information by
adjusting the weight of the interconnection between a large num-
ber of nodes (neurons) within the system [177]. Requiring less for-
mal statistical training, ANN performs well in detecting the
complex non-linear relationship between dependent and indepen-
dent variables [178].

In addition to the above feature selection methods, deep learn-
ing is also a type of machine learning approaches which enables to
identify the highly complex patterns in omics data [179–181].
Common deep learning methods included the convolutional neural
networks, recurrent neural networks and deep neural networks
[182]. Untill now, deep learning has been widely applied in cancer
proteomics [183]. For example, the deep learning approach has
been applied for the diagnosis of pancreatic cancer in proteomic
data [183].
4. Sample clustering and visualization

Clustering or unsupervised modeling is a powerful technique
for discovering the molecular classification of patient’s cancer tis-
sues [184] and identifying subtype specific characterization (e.g.
subtype specific cancer therapeutic targets) [185,186]. The under-
lying theories of clustering technique are considering the similari-
ties among different samples based on high dimension proteins or
peptides, which can provide information of the same or differential
patterns on protein expression level, aiming at clustering those
biologically similar samples together [187]. Therefore, the unsu-
pervised approaches are widely applied to characterize and ana-
lyze the complex proteomic dataset. Currently, there are five
different approaches for sample separation of cancer proteomic
dataset, including three clustering methods and two popular
reducing dimension methods [188]. In cluster analysis, Hierarchi-
cal Cluster Analysis (HCA), Self-organizing Map (SOM) and K-
means Clustering are three prominent representatives in the anal-
ysis of proteomic data [189]. Principal Component Analysis (PCA)
and the state of art stochastic neighbor embedding analysis based
on Student t Distribution (t-SNE) [190,184] are the most commonly
used unsupervised approaches of reduction dimensions in cancer
proteomic studies [188]. Explanation on these methods is provided
in Table 5. Detailed descriptions and the corresponding application
of cancer-regulated studies are as follow.

The Principal Component Analysis (PCA) aims at interpreting
the first few principal components that often explain thousands
of the variables, and is often applied strategy of reducing dimen-
sion for high dimensional cancer proteomic data [191]. Particu-
larly, a multivariate proteomic dataset can first be transformed
based on the linear relationship between different proteins or pep-
tides [188], and then determine the most significant Principal
Components (PCs) according to the obtained variances [191]. In
PCA analysis, the scatterplots (e.g. scores plot and loadings plot)
are often used for visualizing correlation of the biological samples
or the importance of proteins/peptides to discriminate those differ-
ential samples, which are often visualized based on two axes (two



Table 5
Five methods for sample clustering and dimension reduction available in cancer proteomics.

Methods Abbr. Packages in
R (Function)

Brief Descriptions Reference

Principal Component
Analysis

PCA ropls (pca) The PCA is unsupervised, non-parametric and linear
method of reduce dimension method. And Unsuitable
the dataset when the proteins or peptides were
nonlinear relationship.

Clin Biochem. 56:55–61, 2016

t-Distributed Stochastic
Neighbor Embedding

t-SNE Rtsne (Rtsne) The t-SNE is unsupervised, non-parametric and non-
linear method of reduce dimension method. And
Unsuitable the dataset when the proteins or peptides
were linear relationship.

J Mach Learn Res. 9:25S79–605, 2008

Self-Organizing Map SOM Som (som) The SOM is unsupervised, non-parametric and non-
linear method of clustering. And suitable for any
proteomic the dataset.

IEEE Trans Neural Netw. 11(3):574–
85, 2000

Hierarchical Cluster Analysis HCA Cluster (agnes) The HCA is unsupervised, non-parametric and non-
linear method of clustering. And suitable the any
datasets.

Front Bioeng Biotechnols. 3:23. 2015

K-Means Clustering K-Means skmeans (skmeans) The K-Means is unsupervised, non-parametric and non-
linear method of clustering. And Unsuitable the dataset
when the number of clusters is not known.

Proteomics. 16:1613–21, 2016
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principal components) or three axes (three principal components).
The PCA scores plot demonstrates the discriminative power
between different sample groups (these points represent the corre-
sponding samples). The PCA scores plots establish whether there
are any intrinsic differences in the composition of samples. More-
over, the loading plots of proteome from PCA models display pro-
teins or peptides positively correlated with score plots. From the
loading plots, differential proteins or peptides between control
and cancer subjects are identified [192]. In general, the more these
variables are away from center points, the more significant differ-
ences they can be considered. The PCA has been widely applied in
comparative proteomic analysis, for example liver cirrhosis and
gastric cancer samples clustering and visualization [193]. The
PCA has been also applied in metabolomics to produce global
metabolite profiles by studying perturbations under different bio-
logical [194] and studying toxicity induced by drugs [195].

Compared with the principal component analysis, the Stochas-
tic Neighbor Embedding (SNE) method is a recently proposed and
much more effective on-linear dimensionality algorithm of reduc-
ing dimension, which visualizes high-dimensional data by describ-
ing the similarity of samples using a low dimension space. The
technique is primarily derived from SNE [196], and has unique
advantages of using symmetrized SNE with straightforward gradi-
ents and computing the similarity between two samples based t
distribution. Thus, SNE can alleviate crowded area of the two or
three-dimensional map, and be quite suitable for exploring the
optimal global organizations of the data based on the early exag-
geration trick. SNE map is widely applied for cancer proteomic
studies, for example, uncovering subtypes of gastric cancer and
metastasis status in primary breast cancer [197].

When the number of clusters is unknown, the most prevalent
clustering techniques would be unsupervised Hierarchical Cluster-
ing Analysis (HCA). The HCA can perform the clustering of samples
by a dendrogram or tree plot [198]. The proteins expression levels
or the studied samples can be clustered in a dendrogram [199].
The correlation coefficient across samples can be estimated based
on the specific distance (e.g. Euclidean,ManhattanorMaximumdis-
tances). For these samples with the highest correlation coefficients,
they would be categorized into the same cluster. The obtained den-
drograms can explainmanybiological issues in the context of cancer
subtypes and development statuses [200]. HCA is widely applied for
cancer proteomic studies to identify the co-expression patterns of
differentially expressed proteins in hepatocellular carcinoma based
on iTRAQ quantitative proteomics analysis [201].

The K-means Clustering is prevalently used in cancer proteomic
data when the number of underlying clusters is known [202]. The
K-means Clustering aims at performing the grouping based on the
known the clusters number k, and categorizing n samples into the
k classes [203]. These samples with the most similarity values can
be considered the same class, and the similarities are computed
using Euclidean Distances. Compared with the HCA, the method
often needs additional check procedures to identify the optimal
clusters number. The method has been widely applied for identify-
ing the co-expression patterns in glioblastoma multiform based
the protein expression level [204]. Self-organizing Map analysis
(SOM) is another popular clustering method applied in cancer pro-
teomic study, which aims at describing the similarity of studied
samples based on low dimensional map space [205]. The advan-
tages of SOM are that it doesn’t need to input the known cluster
number and these similarity samples exist topological relation-
ships. In summary, SOM regards the most similarity samples as
in a clustering. Thus, SOM provides a map, in which, similar sam-
ples are grouped together, and disparate samples can be separated
into different groups. SOM has been widely applied in multiple
omics study to visualize samples phenotypes as well as variables
patterns [188], for example, revealing unique dynamic expression
patterns of proteins among the different colorectal cancer status
[199]. SOM has also been applied to metabolic study for visualiza-
tion of differential metabolites associated with wound response of
Arabidopsis thaliana [206].
5. Conclusions

Tumor marker selection and sample classification are key issues
in current cancer proteomics study. The biomarker sets identified
via feature selection methods were inconsistency in several publi-
cations. This article reviewed the popular feature selection meth-
ods currently applied in tumor maker selection and discussed
several sample classification algorithms available for cancer pro-
teomic. These advances made the MS-based proteomics technol-
ogy more widely applied to identify diagnostic, prognostic, and
therapeutic biomarkers for anticancer drug discovery. Moreover,
the pathogenetic process of a specific disease could be comprehen-
sively and better understood using a panel of biomarkers, under
this circumstance, the wrapper and embedded feature selection
methods were suitable for selecting a small the feature panel in
the tumor marker identifications.
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