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Abstract

MiRNAs play a relevant role in regulating gene expression in a variety of physiological and pathological conditions including
autoimmune disorders. MiRNAs are also important in the differentiation and function of the mouse intestinal epithelium.
Our study was aimed to look for miRNA-based modulation of gene expression in celiac small intestine, and particularly for
genes involved in cell intestinal differentiation/proliferation mechanisms. A cohort of 40 children (20 with active CD, 9 on a
gluten-free diet (GFD), and 11 controls), were recruited at the Paediatrics Department (University of Naples Federico II). The
expression of 365 human miRNAs was quantified by TaqMan low-density arrays. We used bioinformatics to predict putative
target genes of miRNAs and to select biological pathways. The presence of NOTCH1, HES1, KLF4, MUC-2, Ki67 and beta-
catenin proteins in the small intestine of CD and control children was tested by immunohistochemistry. The expression of
about 20% of the miRNAs tested differed between CD and control children. We found that high miR-449a levels targeted
and reduced both NOTCH1 and KLF4 in HEK-293 cells. NOTCH1, KLF4 signals and the number of goblet cells were lower in
small intestine of children with active CD and in those on a GFD than in controls, whereas more nuclear beta-catenin
staining, as a sign of the WNT pathway activation, and more Ki67 staining, as sign of proliferation, were present in crypts
from CD patients than in controls. In conclusion we first demonstrate a miRNA mediated gene regulation in small intestine
of CD patients. We also highlighted a reduced NOTCH1 pathway in our patients, irrespective of whether the disease was
active or not. We suggest that NOTCH pathway could be constitutively altered in the celiac small intestine and could drive
the increased proliferation and the decreased differentiation of intestinal cells towards the secretory goblet cell lineage.
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Introduction

Celiac disease (CD) is an immunomediated enteropathy and

one of the most heritable complex diseases. The concordance rate

in monozygotic twins is 75% [1,2]. HLA DQ2/DQ8 haplotypes

confer the highest estimated heritability (,35%) [3] reported so

far.

Exposure to gliadin triggers an inappropriate immune response

in HLA-susceptible individuals. However, the presence of HLA-

risk alleles is a necessary but not sufficient condition for the

development of CD. In fact, about 30–40% of healthy subjects

carry HLA-risk alleles [4,5]. Attempts at identifying non-HLA

major genetic risk loci have been unsuccessful [6]. Gluten has also

been shown to affect epithelial differentiation-associated genes in

the small intestinal mucosa of celiac patients [7,8]. However, the

role of miRNA-based regulatory mechanisms in mediating gene

expression alteration in CD has not yet been investigated.

MicroRNAs (miRNAs) are small non-coding RNAs, 20–25 nt

long, that modulate gene expression through canonical base

pairing to complementary sequences in the 39UTR of target

mRNA [9]. Since their identification in 1993 [10], miRNAs have

been found to play a relevant role in regulating gene expression

in a variety of biological processes in physiological and

pathological conditions [11] including autoimmune disorders

[12]. They can be involved in the development of mature

immune cells and in the control of their function [13–15].

MiRNAs are also important in the differentiation and function of

the mouse intestinal epithelium [16].

In this study, we evaluated the miRNA expression pattern in the

small intestine of children affected by active CD, children with CD

on a gluten-free diet (GFD) and control children without CD. Our

aim was to look for miRNA-based modulation of gene expression

in celiac small intestine, and particularly for genes involved in cell

intestinal differentiation/proliferation mechanisms.
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Results

Clinical features of CD patients and controls
Clinical features of our CD patients and controls are reported in

Table 1. Villous atrophy was subtotal or total [TIIIB: n = 3 (15%)

and TIIIC: n = 17 (85%)] in all active CD patients. Only minor

histological abnormalities were present in GFD patients [T0: n = 5

(56%) and TI: n = 4 (44%)] and in control patients [T0: n = 7

(64%) and TI: n = 4 (36%)].

CD children and controls have a different miRNA
expression levels in small intestine

Figure 1 shows the miRNA expression in the small intestine of

children with active CD (panel A) and in children on a GFD (panel

B). Ninety of the 365 (25%) miRNAs tested were not expressed in

small intestine. Over 50% of miRNAs were expressed at similar

levels in the two groups of CD compared to controls. On the

contrary, the expression levels of about 20% of miRNAs (22% in

active CD and 19% in GFD) differed between CD and controls. In

particular, in active CD patients 27 and 55 miRNAs were

expressed respectively more (RQ$2.0) or less (RQ#0.5) than in

controls, whereas in GFD patients 22 and 49 miRNAs were

expressed respectively more (RQ$2.0) or less (RQ#0.5) than in

controls. The miRNAs that were differently expressed in the two

CD groups are listed in Table S1.

Two sets of miRNAs (one down-regulated and one up-
regulated compared to controls) show similar expression
levels in active and GFD CD patients, being miR-449a the
highest expressed miRNA

Among the miRNAs differently expressed between CD children

and controls, but with similar expression levels in active and in

GFD CD, 9 were up-regulated and 21 were down-regulated

(Table 2). Particularly, among the down-regulated miRNAs the set

of miR-124a, miR-189, miR-299-5p and miR-379, was previously

reported associated with autoimmune disorders [17]. Among the

up-regulated miRNAs the miR-449a was expressed at very high

levels in all active CD (55.18616.45 mean RQ6SEM) and GFD

children (15.4367.69 mean RQ6SEM). qRT-PCR confirmed the

expression levels both of miR-449a (active CD: 2.860.9 mean

RQ6SEM) and of 2 other tested miRNAs, the down-regulated

miR-124a (active CD:0.660.1 mean RQ6SEM) and the similar

to control expressed miR-564 (active CD:1.460.3 mean

RQ6SEM vs 1.260.1 at array).

Bioinformatic prediction of the target genes of miR-449a
Six of the 11 programs [Target Scan 5.1, PicTar, Miranda 1.9,

MirTarget2 (v2.0), PITA (Catalog version 3) and RNAhybrid (v2.2)],

which we used to predict putative target genes of miR-449a,

identified several proteins that are present in relevant biological

pathways. The biological pathways predicted to be deregulated by

miR-449a and sorted in functional groups are reported in Figure S1

(http://mirecords.biolead.org/interactions.php?species=Homo+sapiens

&mirna_acc=hsa-miR449a&targetgene_type=refseq_acc&targetgene_

info=&v=yes&search_int=Search (http://www.targetscan.org/cgi-bin

/targetscan/vert_50/targetscan.cgi?species=Human&gid=&mir_sc=

&mir_c=&mir_nc=&mirg=hsa-miR-449a). Among putative target

genes the programs identified NOTCH1, Krueppel-like factor 4

(KLF4), delta-like 1 (DLL1), lymphoid enhancer-binding factor 1

(LEF1) and numb homolog-like (NUMBL) proteins, which are all

involved in the Notch pathway. As this pathway plays a relevant role in

the control of intestinal cell fate in animal models we further examined

the interaction of miR-449a with Notch pathway [18].

MiR-449a binds to the 39 UTR of NOTCH1 and KLF4 and

inhibits their expression. We verified the interaction between

miR-449a and the 39 UTR of NOTCH1 and of KLF4 using the

luciferase reporter assay. In cells co-transfected with pRL-NOTCH1

vector and pre-miR-449a or with pRL-KLF4 vector, a pre-miR-

449a concentration of 100 nmol/L was sufficient to significantly

reduce (respectively, p = 0.001 and p = 0.002) Renilla luciferase

activity versus control values after 48 h (Figure S2A and S2B).This

finding confirms the interaction between miR-449a and the 39 UTR

of both NOTCH1 and KLF4.

The direct interaction between miR-449a and the 39UTRs of

both NOTCH1 and KLF4 was further confirmed after mutating

the putative target sites in 39UTR of the two genes (See Materials

and Methods S1).

NOTCH1 and HES1 mRNAs are expressed in the small
intestine of CD patients

NOTCH1 and HES1 mRNA levels, tested by qRT-PCR, were

expressed in the small intestine of active CD patients (RQ6SEM:

3.461.3 and 1.460.2, respectively vs controls) and of GFD patients

(RQ6SEM: 6.564.7 and 0.760.1, respectively vs controls).

NOTCH1 and HES1 proteins are underexpressed in the
small intestine of CD patients

We next investigated the protein expression of NOTCH1 and of

HES1, which is a well known target gene of the Notch receptor

family, in small intestinal biopsies from CD patients and controls.

Figure 2 shows the results obtained for NOTCH1. NOTCH1 was

homogeneously distributed in the intestinal villi and crypts of

controls and higher expressed in crypts of controls than in crypts of

active and GFD CD patients (panel A, B).

In Figure 2 (panel C) are also the images converted for

automated analysis (white: unstained cells, yellow/orange: low/

moderately stained cells, brown: intensely stained cells). Signif-

icantly more intensely stained and less unstained cells (p = 0.02)

Table 1. General characteristics of studied celiac patients
(active CD and GFD) and control children (CTRL).

Characteristics# Subjects

Active CD
(n = 20)

GFD‘

(n = 9)
CTRL
(n = 11)

Sex Female (%) 55 55 45

Age (Years) 4.361.3 7.662.5 6.161.0

Clinical presentation:

Gastrointestinal symptoms (%) 80 22 82

Villous atrophy % (Marsh stage){ TIIIB 15 T0 56 T0 64

TIIIC 85 TI 44 TI 36

Positive tTG or EMA (IgA)1 19 3 0

Familiarity for:

CD (%) 20 22 0

Other autoimmune diseases (%) 5 11 0

#Data are expressed as percentage (%) or as mean 6 standard error of the
mean (SEM)

‘At gluten free diet from at least 2 years.
{According to [41].
1Only 1 active CD patient was negative for these antibodies but was positive for
both AGA IgG/IgA antibodies. Borderline tTG values in 3/9 GFD patients were
attributed to reported sporadic gluten ingestion.

doi:10.1371/journal.pone.0029094.t001

MiRNAs Expression in Celiac Small Intestine
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were detected in controls than in the two groups of CD patients,

whereas no statistical significant difference was observed between

the two CD groups (Figure S3, panel A and Figure S4). These

results indicate that NOTCH1 is less expressed in the small

intestine of active and GFD CD patients than in controls.

Figure 3 shows the results obtained for HES1. HES1 was

homogeneously distributed in the intestinal villi and crypts of

controls and higher expressed in crypts of controls than in crypts

of active and GFD CD patients (panels A and B). In Figure 3

(panel C) are also the images converted for automated analysis

(white: unstained cells, yellow/orange: low/moderately stained

cells, brown: intensely stained cells). Significantly more intensely

stained cells were detected in controls than in CD patients

(p = 0.02) and significantly less unstained cells were detected in

controls than in active CD patients (p = 0.03), whereas no

statistical significant difference was observed between the two

CD groups (Figure S3, panel B and Figure S5). These results

indicate that HES1 is less expressed in the small intestine of

active and GFD CD patients with respect to controls. The above

findings confirm that NOTCH1 signaling is reduced in patients

affected by CD.

KLF4 protein is reduced and the number of goblet cells is
significantly lower in the small intestine of CD patients
versus controls

We also investigated the protein expression of KLF4, another

selected target gene of miR449a, in small intestinal villi from GFD

patients and controls, lacking the villous architecture in active CD

patients. We found that the levels of this protein (mean6SEM)

were significantly lower in villi from GFD patients vs controls,

respectively 29.065.0 vs 79.063.0 (p,0.0001) (Figure S6, panel

A). Since KLF4 negatively regulates cellular proliferation, we

examined the effect of inhibition of KLF4 on the proliferation of

intestinal crypts with the proliferation marker Ki67. The results

show that the number of Ki67 positive cells is higher in the crypts

of CD patients than in controls (Figure S6, panel B). Because

KLF4 is also involved in the differentiation and maturation of

secretory goblet cells we examined these cells by immunohisto-

chemistry and using anti-MUC-2 antibodies. We detected

statistically fewer MUC-2-stained cells (mean6SEM) in the crypts

of active CD patients (18.061.6) and GFD patients (15.063.0)

than in controls (35.067.7) (p = 0.04) (Figure 4A and B).

Moreover, there were fewer goblet cells in the villi of GFD

Figure 1. miRNA expression pattern in small intestine of CD patients. miRNA expression in the small intestine of patients with active CD
(Panel A) and of CD patients on a GFD (Panel B). Data are expressed as percentage of miRNAs tested (n = 365). White areas, miRNAs whose expression
levels were similar in the two CD groups and controls; gray areas, miRNAs not expressed; black areas, miRNAs whose expression levels differed
between CD patients and controls (up-regulated q(RQ$2.0) or down-regulated Q(RQ#0.5)).
doi:10.1371/journal.pone.0029094.g001
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patients (7.061.8) than in controls (20.064.9) (p = 0.04) (data not

shown). This finding demonstrates that the differentiation of the

secretory goblet cells is impaired in small intestine of CD patients.

Expression of beta-catenin
Because NOTCH1 and also KLF4 interact with the WNT

pathway to influence the intestinal stem cell fate, we investigated

the WNT pathway using beta-catenin antibodies. By counting the

beta-catenin positive nuclei/crypt for each patient we observed

higher even if not statistical significant mean percentage beta-

catenin positive nuclei/crypt in active CD and GFD patients than

in controls, respectively 57.0611.5 and 37.064.6 vs 27.064.6

(Figure S7). This finding suggests that cellular proliferation is

increased in the small intestine of CD patients.

Discussion

A very recent study established the importance of miRNAs in

the differentiation and function of the mouse intestinal epithelium

[16], whereas there are no data about miRNAs expression in

human CD small intestine. Our study reveals that the expression

of about 20% of miRNAs tested in the small intestine differed

among CD and control children irrespective of whether the

disease was active or not. Particularly, the miR-449a showed the

highest expression level in CD patients than in controls. The miR-

449 (a and b) cluster is embedded into an intronic sequence of the

mRNA-encoding gene CDC20B on Chr 5q11.2 [17]. MiR-449a

seems to be regulated through activation of its host gene, CDC20B,

and both were induced by the cell cycle regulator E2F1 [19]. The

mature miR-449a sequence is evolutionarily conserved across a

variety of species (monkey, horse, rodents, and dogs) and therefore

it probably exerts an important function [20]. The bioinformatics

search for putative target genes of miR-449a revealed about one

hundred proteins, among these several belonged to the Notch

pathway, i.e., NOTCH1, KLF4 (a NOTCH1 transcription factor)

[21], DLL1, LEF1 and NUMBL. Our strategy to choose

NOTCH1 gene among the other putative miRNA-target genes

was based on many studies highlighting that cellular formation of

the villi in small and large intestine is affected by signaling

pathways such as Notch, Wnt and BMP [22–25]. Notably,

deregulation of the intestinal epithelial formation has been

reported in several intestinal diseases such as Crohn, ulcerative

colitis and colon cancer [26]. Further, NOTCH1 and KLF4 genes

are both involved in the control of mouse intestinal epithelial

homeostasis [18,27]. In fact, in mouse intestine, also in

cooperation with WNT signals, NOTCH1 guides cell proliferation

and differentiation [18] and KLF4 inhibition by NOTCH1 or

KLF4 deletion was shown to reduce the differentiation and

maturation of goblet cells [21,27–29]. The Notch family is

constituted by single transmembrane receptors that, in mammals,

after interaction with ligands (DLL1,3,4 and Jagged 1–2) undergo

proteolytic cleavage and finally translocate into the nucleus where

they activate target gene transcription [30].

After confirmed the interaction between miR-449a and both

NOTCH1 and KLF4 mRNA, we measured the NOTCH1 and

KLF4 protein levels in small intestinal biopsies of CD children.

NOTCH1-positive cells were significantly fewer in biopsies from

active and GFD CD patients versus controls. Similar results were

also obtained for HES1, a target gene of NOTCH1 [31]. Globally,

these data indicate that the NOTCH1 pathway is deregulated in

intestinal epithelium of CD children, irrespective of whether the

disease is active or not, and that this alteration could be related to

the very high miR-449a expression. Accordingly, in a very recent

report miR449 by repressing the Delta/Notch pathway was

elegantly shown to control the human airway epithelium and

vertebrate multilciliogenesis [32]. In our patients we also observed

fewer KLF4-positive cells in small intestinal villi from GFD patients

than in controls, and, moreover, Ki67 signals were higher in crypts

from CD patients versus controls. These two results are in agree-

ment with data very recently reported in a mouse KLF4DELTAIS

model [27] and indicate a higher proliferation rate in our CD

patients in the presence of reduced KLF4 expression [27]. In

parallel the number of goblet cells was significantly lower in the two

CD groups than in control children. Ciacci et al [33] previously

reported fewer goblet cells/mm2 in untreated (29.1) and in treated

CD patients (42.2) than in controls (50.5), although the differences

were statistically significant only in untreated patients (p,0.02).

The WNT pathway in the small intestine of our CD patients,

evaluated based on beta-catenin expression level, did not differ

Table 2. List of miRNAs (n = 30) differently expressed in CD
patients and controls but with similar expression levels both
in active CD and GFD children.

MiRNA Active CD GFD

up-regulated miRNAs

miR-449a 55.18616.45 15.4367.69

miR-492 48.88614.56 26.8669.00

miR-644 47.8068.80 37.53618.85

miR-503 19.8462.36 20.5568.07

miR-196a 11.0662.84 8.4561.01

miR-504 5.5460.83 8.0262.86

miR-500 5.4960.70 7.8861.56

miR-330 3.8460.45 2.4860.11

miR-182 2.9560.42 2.7560.13

down-regulated miRNAs

miR-105 0.3760.03 0.2560.03

miR-409-5p 0.3560.04 0.3160.05

miR-631 0.3460.03 0.2760.04

miR-659 0.3360.03 0.3060.05

miR-379 0.3060.05 0.2360.10

miR-566 0.2960.02 0.2360.03

miR-512-3p 0.2760.03 0.2660.04

miR-614 0.2660.02 0.2160.02

miR-380-5p 0.2560.03 0.2860.04

miR-135a 0.2160.05 0.3860.05

miR-124a 0.2060.02 0.2160.05

miR-600 0.1960.02 0.2260.06

miR-618 0.1860.03 0.3260.07

miR-616 0.1760.04 0.1160.03

miR-189 0.1560.05 0.2160.06

miR-576 0.1560.04 0.4060.10

miR-412 0.1360.03 0.1860.01

miR-202 0.1260.06 0.1760.08

miR-299-5p 0.1160.01 0.1560.05

miR-323 0.1160.01 0.2360.08

miR-219 0.1060.01 0.2760.08

Data are reported as RQ# levels (mean6SEM).
#RQ = 22delta deltaCT represents miRNA fold change in CD patients vs mean value

obtained in control patients.
doi:10.1371/journal.pone.0029094.t002
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from that of control children. This result is in agreement with the

western blot data reported by Ciccocioppo et al [34] and by Juuti-

Uusitalo et al [7]. However, we observed a more evident nuclear

localization of beta-catenin, albeit not statistically significant, in

the small intestinal crypts from our active and GFD CD patients

than in controls, which suggests activation of the WNT pathway.

The latter finding is in agreement with a previous study of human

CD [7] and with the increased mRNA levels of the genes in

the WNT pathway, including beta-catenin, observed in the

KLF4DELTAIS mouse [27]. Globally, our data support increased

cellular proliferation in the small intestinal epithelium in CD

patients. As it is well known, active CD is characterized by an

inversion of the differentiation/proliferation program of the

intestine with a reduction in the differentiated compartment, up

to complete villous atrophy, and an increase of the proliferative

compartment, with crypt hyperplasia [7,8]. Furthermore, although

GFD intestinal mucosa is characterized by an apparently normal

mucosal architecture, it can also be associated with increased crypt

cell proliferation (Barone M. V. et al., personal communication).

Our data are in contrast with those obtained in mouse models, in

which NOTCH1 activation resulted in a reduction of goblet cells

consequent to HES-1 dependent repression of Math1 (intestinal

secretory cell differentiation factor) [18] and in which NOTCH1

inhibited the expression of KLF4 [35]. However, our data are in

agreement with a recent report of increased proliferation, reduced

differentiation and goblet cells maturation associated with down-

regulation of the expression of components of the Notch pathway

(HES1, DLL1, JAG1) in the small intestine of the KLF4DELTAIS

mouse [27]. The authors for the latter article hypothesized that

KLF4 was involved in a feed-back loop by positively regulating

Notch signaling. Our results are suggestive that an altered

NOTCH1 and KLF4 expression could lead to the reduction of

goblet cells in the small intestine of CD patients. The maintenance

of a correct number of functional goblet cells is required for the

homeostasis of the intestinal mucosal environment, and deficien-

cies in the mucin composition renders the mucosa more

susceptible to damaging agents in the lumen [36–38]. In fact,

loss of goblet cell function leads to spontaneous colitis in mice [39].

Moreover, an altered mucous layer and increased rod-shaped

bacteria and interferon-gamma mRNA levels were found in

Figure 2. Decreased expression of NOTCH1 in small intestine of CD patients compared with controls. An example of NOTCH1
immunohistochemistry in small intestine. A. Low magnification picture of the intestinal sections (Original magnification 106). B. Intestinal crypts
(Original magnification 406). Note the homogeneous distribution of NOTCH1 in crypts and along the villi in control sample, whereas in active CD and
GFD samples the signals were prevalently detected in the crypts. Higher levels of NOTCH1 were detected in the intestinal crypts of controls than in
crypts of active and GFD CD samples. C. Images converted for automated analysis (white: unstained cells, yellow/orange: low/moderately stained
cells, brown: intensely stained cells). These results indicate that NOTCH1 is less expressed in the small intestine of active and GFD CD samples
compared with controls. (CTRL: controls; GFD: gluten free diet; CD: celiac disease).
doi:10.1371/journal.pone.0029094.g002
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intestine from CD patients [40]. Based on these experimental data,

we suggest that the mucus layer in our CD children could be

altered so deranging the protective function of the mucosal barrier

that interfaces with the environment. In our study, the observed

small intestine alterations are not related to inflammation; in fact,

they occurred in both the active CD and GFD patients. The major

criticism in our work is the gap between the results of the miRNA

array with NOTCH1 gene in a vivo system, however the lack of a

celiac animal model at moment, prevent us from this further

validation of our data. Nevertheless, our first description of

miRNA pattern in celiac disease and of the correlation of miRNA

449a over expression with NOTCH pathway could pave the way

for further research in this field. However, our choice to study

Notch pathway doesn’t exclude that other relevant biological

pathways in addition to it could be miRNA-deregulated in the

celiac intestine. Further deeper investigation are necessary to test

this hypothesis.

In conclusion we first demonstrate a miRNA mediated gene

regulation in small intestine of CD patients. We also highlighted a

reduced NOTCH1 pathway in our patients, irrespective of whether

Figure 3. Decreased expression of HES1 in small intestine of CD patients compared with controls. An example of HES1
immunohistochemistry in small intestine. A. Low magnification picture of the examined intestinal sections (Original magnification 106). B. Intestinal
crypts (Original magnification 406). Note the homogeneous distribution of HES1 in crypts and along the villi in control sample, whereas the signals
were prevalently detected in the crypts of active CD and GFD samples. Higher levels of HES1 were detected in the intestinal crypts of controls than in
crypts of active and GFD CD samples. C. Images converted for automated analysis (white: unstained cells, yellow/orange: low/moderately stained
cells, brown: intensely stained cells). These results indicate that HES1 is less expressed in the small intestine of active and GFD CD samples compared
with controls. (CTRL: controls; GFD: gluten free diet; CD: celiac disease).
doi:10.1371/journal.pone.0029094.g003

MiRNAs Expression in Celiac Small Intestine
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the disease was active or not. We suggest that NOTCH pathway

could be constitutively altered in the celiac small intestine and could

drive the increased proliferation and the decreased differentiation of

intestinal cells towards the secretory goblet cell lineage.

Materials and Methods

Ethics approval
The study was conducted according to the Helsinki II

declaration and it was approved by the Ethics Committee of the

School of Medicine Federico II, Naples, Italy.

Written informed consent was obtained from the parent/guardian

of all children involved in our study before their enrollment.

Patients and controls
Forty-four children were recruited, in a two months period,

among patients attending the Department of Paediatrics of the

University of Naples Federico II where the European Laboratory

for the Investigation of Food-Induced Diseases (ELFID) is also

present. In our center about 40 biopsies are monthly performed

and about 50% of them are usually indicative of CD. Twenty/44

children were diagnosed celiacs according to the criteria

established by the European Society for Paediatric Gastroenter-

ology, Hepatology and Nutrition (ESPGHAN) [41]; the CD was

excluded based on both absence of CD antibodies and slight or no

abnormalities in the mucosal architecture in 15/44 children. In

four of these latter children (4/15) the final diagnoses were IgA

deficiency (2 cases), De George syndrome (1 case) and autoim-

mune thyroiditis (1 case), these subjects were excluded from the

study to avoid potentially confounding diseases. In the other 11/15

CD-negative children the final diagnoses were: Helicobacter pylori

infection, recurrent vomiting, food refusal or reflux esophagitis,

they were our enrolled controls. Nine out 44 children were CD

patients on gluten free diet for at least 2 years undergoing CD

Figure 4. Decreased expression of MUC2 in small intestine of CD patients compared with controls. Immunohistochemistry of goblet
cells in small intestine. A. An example of staining for MUC-2 shows fewer MUC-2 stained cells in active and in GFD CD samples than in controls.
(Original magnification 206). B. MUC2 stained cells evaluated in CD patients (6 active CD and 6 GFD patients) and in controls (n = 4). Data are
expressed as mean of the number of goblet cells/crypt measured in 10 crypts/children. Significantly fewer stained cells were detected in active and
GFD CD samples than in controls (p = 0.04). These results indicate that MUC2 is less expressed in small intestine of active and GFD CD patients
compared with controls. (CTRL: controls; GFD: gluten free diet; CD: celiac disease).
doi:10.1371/journal.pone.0029094.g004

MiRNAs Expression in Celiac Small Intestine

PLoS ONE | www.plosone.org 7 December 2011 | Volume 6 | Issue 12 | e29094



follow-up in the same study period of the active CD patients and

controls. There was no statistically significant difference in mean

age at diagnosis among the groups evaluated (4.361.3 years old in

active CD subjects, 7.662.5 in GFD subjects, and 6.161.0 in

controls [mean6SEM]). About 50% of each group was girls. From

all participants, we collected a fasting serum sample, a blood

sample with EDTA, and a small intestine biopsy sample.

Biochemical parameters
Anti-Endomysium IgA were detected by indirect immunofluo-

rescence on rhesus monkey esophagus substrate (Eurospital,

Trieste, Italy); tTG IgA, anti-gliadin (AGA) IgA/IgG were

analyzed by ELISA with human recombinant tTG as antigen

(DIA Medix Corp., Miami, FL, USA).

Histopathological analysis
Architectural abnormalities were classified according to the

modified Marsh classification: normal mucosa (T0), intraepithelial

lymphocytosis (TI), intraepithelial lymphocytosis and crypt hyper-

plasia (TII), intraepithelial lymphocytosis, crypt hyperplasia and

villous atrophy (partial TIIIA, subtotal TIIIB, total TIIIC) [42].

DNA and RNA extraction
Genomic DNA was extracted using the Nucleon BACC 2 kit

(Amersham Biosciences Europe, Milan, Italy). Total RNA,

including miRNAs, was extracted from small intestinal biopsy

samples using the Mirvana extraction kit (Applied Biosystems,

Foster City, CA, USA).

HLA typing
DQ2/DQ8 HLA CD-associated molecules were identified by

using primers and the PCR conditions of a commercial kit (BAG

Health care GmbH, Lich, Germany), which allows to identify the

HLA-alleles coding DQ2/DQ8 molecules.

MiRNAs evaluation
TaqMan low density arrays (TLDA), micro fluidic cards were

used to detect and quantify mature miRNAs (Applied Biosystems’

7900HT) according to manufacturer’s instructions (see Materials

and Methods S1 for details). We considered differently expressed

in CD vs controls, the miRNAs whose mean RQ levels were #0.5

(down-regulated) or $2.0 (up-regulated).

Bioinformatic approach
The prediction of putative target genes of miRNAs was

determined using miRecords (http://mirecords.biolead.org/),

which is an integration of 11 established miRNA target prediction

programs. The lists of target genes that were predicted by two or

more programs were then combined and analyzed using the Gene

Ontology Tree Machine (GOTM) (http://bioinfo.vanderbilt.edu/

gotm/) and KEGG database (http://www.genome.ad.jp/kegg/).

Finally, we identified the biological pathways that contained at

least two up- or down-regulated genes with a statistically

significant probability (p,0.01).

Quantitative real-time polymerase chain reaction (qRT-
PCR) of miRNAs and mRNAs

The levels of a group of deregulated miRNAs (up-regulated

miR-449a, down-regulated miR-124a, and similar to controls

expressed miR-564) were also evaluated with TaqMan miRNA

assays (Applied Biosystems) to validate the array results.

mRNA expression levels of neurogenic locus notch homolog

protein 1 (NOTCH1) and of hairy and enhancer of split 1 (HES1)

were measured in small intestinal tissues by qRT-PCR using single

TaqMan mRNA assays (Applied Biosystems) according to the

manufacturer’s instructions and using the housekeeping gene beta-

actin as control. Reverse transcription reactions were performed

with the High Capacity cDNA Reverse Transcription Kit (Applied

Biosystems). The expression levels of miRNAs and mRNAs were

quantified using the ABI Prism 7900HT Sequence Detection

System 2.3 software.

Transfection and inhibition experiments
The oligonucleotides, plasmids (pGL3-control, pRL-NOTCH1-

encoding, pRL-KLF4-encoding and mutated pR-KLF4-encoding,

firefly luciferase and Renilla luciferase, respectively) and human

embryonic kidney cell lines (HEK293 cell line, ATCC number

CRL-1573, supplied by the Centre for Applied Microbiology and

Research, Salisbury, Wiltshire, UK) used for cell transfection

experiments are described in detail in the online Materials and

Methods S1.

Forty-eight hours after transfection, we measured firefly and

Renilla luciferase activities using a dual luciferase assay according

to the manufacturer’s instructions (Promega, Naples, Italy).

Protein evaluation by immunohistochemistry
Given the small amount of sample available for each patient (1–

2 mg of intestinal tissue/patient) we tested the expression of

selected proteins by immunohistochemistry instead of by western

blotting. The NOTCH1, HES1, MUC-2, KLF4, Ki67 and beta-

catenin proteins were identified on formalin-fixed paraffin-

embedded small intestinal tissue blocks in CD patients and in

controls. We randomly selected six active CD, six GFD and four

controls (see Materials and Methods S1 for details). We also tested

the specificity of our NOTCH1 and HES1 signals evaluating two

different human tissue samples where it is known NOTCH1 and

HES1 be present or absent respectively, that are colon cancer and

endothelial wall (Figure S8).

Scanning and automated image analysis of NOTCH1 and
HES1

To increase precision, we automated the quantification of the

immunohistochemical signals. Sections of the small intestine were

scanned with the NanoZoomer 2.0 system (Hamamatsu, Japan),

equipped with a 206, 0.7 Numerical Aperture Plan-Apochromat

lens, using a lens of 0.23 mm pixel size. The compressed jpeg files

were transferred to the Definiens Analyst LS5.0 system (Definiens

AG, Germany) that counted the NOTCH1, HES1 and beta-

catenin -positive and -negative cells and quantified the staining

signal (see materials and methods S1 for Definiens Analyst

software details). The Definiens Analyst software (Definiens AG,

Germany) is based on cognition network technology that is a

semantic network of objects and their mutual relationships. Two

rule sets, using cognition network language, were specifically

written for this evaluation to automatically detect and measure the

small intestinal area and to count positive and negative crypt cells.

The signal was classified as intensely stained, low/moderate

stained and unstained. Thus, both the percentage and intensity of

labeled cells were taken into account. The detection and exclusion

of areas not belonging to crypt were visually checked for all image

files. Ten crypts/patient were counted.

Immunohistochemical analysis of MUC-2, KLF4 and beta-
catenin

Because the MUC-2 staining of goblet cells was patchy, we

picked ten crypts from each slide and manually counted the
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number of goblet cells stained in each crypt. We also evaluated

MUC-2 staining of villi, when possible, i.e., in GFD patients and

controls. We also evaluated KLF4-positive villi (in GFD patients)

and both beta-catenin- and Ki67-positive nuclei/crypt in each

subject. Two independent observers evaluated the immunohisto-

chemical slides.

Statistics
All variables were expressed as mean6standard error of the

mean (SEM). Student t’s test and ANOVA were used to compare

group means and p values,0.05 were considered significant.

Statistically significant (p,0.01) miRNA-regulated pathways were

selected by the GOTM program.

Supporting Information

Materials and Methods S1

(DOC)

Figure S1 Bioinformatics analysis of miR-449a putative
target genes. miR-449a putative target genes with most favor-

able context score, selected by bioinformatics, were sorted into

pathways using GOTM(http://bioinfo.vanderbilt.edu/webgestalt/)

and then combined into functional groups. (http://mirecords.

biolead.org/interactions.php?species=Homo+sapiens&mirna_acc

=hsa-miR-449a&targetgene_type=refseq_acc&targetgene_info=&

v=yes&search_int=Search) (http://www.targetscan.org/cgibin/

targetscan/vert_50/targetscan.cgi?species=Human&gid=&mir_sc

=&mir_c=&mir_nc=&mirg=hsa-miR-449a). In each functional

group are reported the genes belonging to NOTCH pathway/

total gene number.

(TIF)

Figure S2 The luciferase assay confirms that miR-449a
inhibits the expression of NOTCH1 and KLF4. In

HEK293 cells co-transfected or with pRL-NOTCH1 vector

(panel A) or with pRL-KLF4 vector (panel B), a pre-miR-449a

concentration of 100 nmol/L was sufficient to significantly reduce

(respectively, p = 0.001 and p = 0.002) Renilla luciferase activity

versus control values. No inhibition of the Renilla luciferase

expression was observed in mutant 39UTR of KLF4-mRNA with

miR-449a, so confirming the miR-449a/39UTR KLF4-mRNA

direct interaction (panel B). We didn’t verify the interaction miR-

449a/39UTR NOTCH1 being this latter recently validated by

Marcet B et al [32].

(TIF)

Figure S3 Automated Counts of NOTCH1 and HES1
stained/unstained cells. A. Automated counts of NOTCH1

stained/unstained cells (reported in Figure 2) in small intestine

from CD patients (6 active CD and 6 GFD patients) and from

controls (n = 4). Data are expressed as mean percent of intensely

stained, low-moderately stained and unstained cells of the total

intraepithelial cells (IECs) counted in ten crypts. The numbers of

intensely stained and unstained cells were significantly (p = 0.02)

higher and lower, respectively, in CTRL than in active CD and

in GFD patients. B. Automated counts of HES1 stained/

unstained cells (reported in Figure 3) in small intestine from

CD patients (6 active CD and 6 GFD patients) and from controls

(n = 4). Data are expressed as mean percent of intensely stained,

low-moderately stained and unstained cells of the total intraep-

ithelial cells (IECs) counted in ten crypts. The number of

intensely stained cells was significantly higher in controls versus

CD and GFD patients (p = 0.02) and the number of unstained

cells was significantly lower in CTRL than in active CD patients

(p = 0.03). (CTRL: controls; GFD: gluten free diet; CD: celiac

disease).

(TIF)

Figure S4 Other examples of NOTCH1 immunohisto-
chemistry in CD patients. Examples of NOTCH1 immuno-

histochemistry in 4 CD patients (2 active CD: TIII Marsh stage and 2

GFD: TI and T0 Marsh stage) and 2 controls (T0 Marsh stage). The

images show that the low expression levels of NOTCH1 in intestinal

mucosa from CD patients were always present from TIII to T0 Marsh

stage. (CTRL: controls; GFD: gluten free diet; CD: celiac disease).

(TIF)

Figure S5 Other examples of HES1 immunohistochem-
istry in CD patients. Examples of HES1 immunohistochemistry

in 4 CD patients (2 active CD: TIII Marsh stage and 2 GFD: TI and

T0 Marsh stage) and 2 controls (T0 Marsh stage). The images show

that the low expression levels of HES1 in intestinal mucosa from CD

patients were always present from TIII to T0 Marsh stage. (CTRL:

controls; GFD: gluten free diet; CD: celiac disease).

(TIF)

Figure S6 Decreased KLF4 and increased Ki67 expres-
sion in small intestine from CD patients compared with
controls. A. KLF4 staining of small intestinal villi in GFD

patients and Controls (Original magnification 206). A statistically

significant reduced KLF4-positive cells/villi were counted in GFD

patients than in controls, respectively 29.065.0 vs 79.063.0

(mean6SEM) (p,0.0001). B. Increased Ki67 signal is present in

small intestinal crypts of active CD, GFD patients than in controls

(Original magnification 206). (CTRL: controls; GFD: gluten free

diet; CD: celiac disease).

(TIF)

Figure S7 Increased expression of beta-catenin in small
intestine from CD patients compared with controls.
Immunostaining with beta-catenin in small intestinal crypts from

active CD, GFD and controls. We counted the beta-catenin

labeled nuclei. Similar counts of beta-catenin labelled nuclei were

detected in the crypts of the small intestine in all groups. However,

higher even if not statistical significant mean percentage counts

(beta-catenin positive nuclei/crypt) were obtained in active CD

and GFD than in controls, respectively 57.0611.5 and 37.064.6

vs 27.064.6 (Original magnification 636). (CTRL: controls; GFD:

gluten free diet; CD: celiac disease).

(TIF)

Figure S8 Specificity of NOTCH1 and HES1 signals by
immunohistochemistry. Specificity controls of NOTCH1 and

HES1 antibodies. Positive NOTCH1 (A) and HES1 (B) immuno-

staining signals obtained in human colon cancer and negative

NOTCH1 (C) and HES1 (D) immunostaining signals obtained in

human endothelial wall.

(TIF)

Table S1 MiRNAs differently expressed in active and
GFD CD patients.
(DOC)
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