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Abstract: The urgent need for effective, safe and equitably accessible vaccines to tackle the ongoing
spread of COVID-19 led researchers to generate vaccine candidates targeting varieties of immunogens
of SARS-CoV-2. Because of its crucial role in mediating binding and entry to host cell and its proven
safety profile, the subunit 1 (S1) of the spike protein represents an attractive immunogen for vaccine
development. Here, we developed and assessed the immunogenicity of a DNA vaccine encoding
the SARS-CoV-2 S1. Following in vitro confirmation and characterization, the humoral and cellular
immune responses of our vaccine candidate (pVAX-S1) was evaluated in BALB/c mice using two
different doses, 25 µg and 50 µg. Our data showed high levels of SARS-CoV-2 specific IgG and
neutralizing antibodies in mice immunized with three doses of pVAX-S1. Analysis of the induced IgG
subclasses showed a Th1-polarized immune response, as demonstrated by the significant elevation
of spike-specific IgG2a and IgG2b, compared to IgG1. Furthermore, we found that the immunization
of mice with three doses of 50 µg of pVAX-S1 could elicit significant memory CD4+ and CD8+ T cell
responses. Taken together, our data indicate that pVAX-S1 is immunogenic and safe in mice and is
worthy of further preclinical and clinical evaluation.

Keywords: SARS-CoV-2 vaccine; cellular and humoral immunogenicity; DNA vaccine

1. Introduction

The emergence and rapid spread of the severe acute respiratory syndrome-coronavirus-
2 (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19) pandemic,
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represent a serious public health and economic burden to humanity [1–4]. While the major-
ity of COVID-19 patients are either asymptomatic carriers or have mild symptoms, such as
fever, myalgia and cough, millions have suffered from life-threatening acute respiratory
infections and deaths. As of June 2021, around 178 million confirmed cases have been
reported with at least 3.8 million deaths [5]. Furthermore, the high transmissibility rate of
SARS-CoV-2 among humans as well as the emergence of new variants of concern (VOC) of
the virus pose significant obstacles toward controlling its spread [6–8], highlighting the
urgent need for the development of safe, effective and equitably accessible vaccines.

Hundreds of SARS-CoV-2 vaccines have been or are being developed using traditional
and innovative technology platforms [9]. Several of these vaccines were approved for emer-
gency use by multiple regulatory agencies across the globe. Examples of traditional vaccines
include killed/inactivated vaccines which demonstrated safety and efficacy in humans despite
the several potential risks that may still exist [10]. Other developers have adopted innova-
tive technologies and/or novel approaches for antigen design, gene expression and vector
optimization, including adenovirus-based vaccines [11–14] as well as mRNA vaccines [15].
Additional platforms being used include novel viral vectors, recombinant subunit proteins,
nanoparticles and plasmid DNA [16–18].

The spike (S) protein of SARS-CoV-2 is composed of a globular head S1 subunit
containing the receptor-binding domain (RBD), and a membrane-proximal S2 subunit
containing the fusion machinery of the virus [19]. Most of these aforementioned vaccines
rely on using either the full-length S protein or the RBD as the immunogen because of
their critical roles in viral entry and host tropism [19,20], and ability to elicit protective
immunity in animals and humans after vaccination or infection [9,10,21]. Use of full-
length S protein as immunogen, however, could be associated with undesired responses
by inducing non-neutralizing antibodies which may contribute to disease enhancement,
immunopathological inflammation and fatality [22–28]. As such, targeting the S1 subunit
could help minimize a potentially undesirable effect. Here, we evaluated the humoral and
cellular immunogenicity of a plasmid DNA vaccine candidate expressing the S1 subunit of
the S protein in an attempt to focus the immune response towards the neutralizing-epitope
rich domains.

2. Materials and Methods
2.1. Generation of DNA Construct

SARS-CoV-2 S1 coding sequence was PCR amplified from codon-optimized full-
length S gene (GenBank accession number: MN908947) synthesized by GenScript USA
Inc. (Piscataway, NJ, USA). The coding sequence of S1 (1–681 aa) was subcloned into the
mammalian expression vector pVAX1 under the control of the cytomegalovirus immediate-
early promoter, denoted as pVAX-S1. The construct was cloned between NheI and KpnI
restriction sites. The construct was then confirmed by restriction digestion and sequencing.
Bulk endotoxin-free preparations of pVAX-S1 and empty vector (pVAX) were prepared
using the GenElute™ HP Select Plasmid Gigaprep Kit (Sigma, Germany) for animal studies.

2.2. Detection of SARS-CoV-2 S1 Protein Expression by Western Blot

HEK-293A cells (70–90% confluent) in 6-well plates were transfected with 2 µg of
pVAX-S1, pVAX1, or pcDNA3.1 expressing full-length S protein (pcDNA-S) using Lipo-
fectamine 2000 Transfection Reagent (Invitrogen, Carlsbad, CA) according to the manu-
facturer’s instructions, followed by incubation at 37 ◦C in a 7% CO2 incubator for 48 h.
After that, media were removed, and transfected cells were then washed with phosphate-
buffered saline (PBS) and lysed with radioimmunoprecipitation assay buffer (RIPA buffer)
(Sigma, Germany). The lysates were subjected to Western blot analysis to test protein
expression using in-house anti-S (SARS-CoV-2) rabbit polyclonal antibodies at a 1:1000
dilution. These polyclonal antibodies were generated in house in rabbits using full-length
SARS-CoV-2 recombinant S protein (Sino biological, Beijing, China) and found specific
for SARS-CoV-2 S protein (Supplementary Figure S1). Additionally, β-actin was detected
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with anti β-actin antibodies at a 1:3000 dilution (OriGene Technologies, Inc., Rockville, MD,
USA) as a loading control.

2.3. Detection of SARS-CoV-2 S1 Protein Expression by Immunofluorescence

HEK-293A cells were seeded on cell culture slide and incubated at 37 ◦C in a 7%
CO2 incubator to be 70% confluent by the next day. Cells were then transfected with
1 µg of either pVAX-S1 or pVAX control plasmid using Lipofectamine 2000 Transfection
Reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions and
incubated at 37 ◦C in a 7% CO2 incubator for 36 h. The media was removed, cells were
washed with PBS, fixed with 4% formaldehyde at 4 ◦C for 10 min and permeabilized with
0.2% PBS-Triton X-100 (PBS-Triton) at 4 ◦C for 20 min. Cells were washed twice with PBS-
Triton and blocked with 2% goat serum/PBS-Triton at room temperature for 30 min. Cells
were then stained with in-house rabbit anti-S primary polyclonal antibodies at a 1:1000
dilution in 2% goat serum/PBS-Triton at 4 ◦C for 1 h. This was followed by three washes
and staining with Alexa Fluor-488 labeled goat anti-rabbit IgG H&L secondary antibody
(Abcam, UK) at 1:500 dilution in blocking buffer in the dark at room temperature for 1 h.
Cells were finally washed three times with PBS-Triton and mounted with VECTASHIELD
with DAPI counterstain antifade mounting medium (Vector Laboratories, Inc., Burlingame,
CA, USA). Images were captured using Olympus BX51 Fluorescence Microscope and
analyzed using ImageJ 1.53e Software.

2.4. Immunization and Samples Collection

6- to 8-week-old female BALB/c mice were provided from King Fahd Medical Re-
search Center (KFMRC) core animal facility, King Abdulaziz University (KAU). All animal
experiments were done according to guidelines and the approval of the Animal Care and
Use Committee (ACUC) at KFMRC and ethical approval from the bioethical committee at
KAU (approval number 04-CEGMR-Bioeth-2020). Mice were randomly divided into three
experimental groups (8 mice/group) and immunized with three doses of 25 µg or 50 µg of
pVAX-S1, or 50 µg of pVAX on days 0, 21 and 42. Mice were immunized intramuscularly
using customized needle-free Tropis system (PharmaJet, Golden, CO, USA). Serum samples
were collected every three weeks and mice were euthanized on day 63 to collect final bleed
and spleens for immune response analysis.

2.5. Binding Antibodies Measurement by Indirect ELISA

End-point titers of anti-S1 total IgG or its isotypes (IgG1, IgG2a and IgG2b) from
immunized mice were determined by ELISA, as previously described [29]. Briefly, 96-well
plates were coated with 1 µg/mL SARS-CoV-2 S1 protein (Sino Biological, Beijing, China) at
4 ◦C overnight. Plates were washed three times with PBS containing 0.1% Tween-20 (PBS-T)
before blocking with 5% skim milk in PBS-T for 1 h at room temperature. After washing,
2-fold serial dilutions of mouse sera, starting from 1:100, were added to wells and incubated
for 1 h at 37 ◦C. Then, peroxidase-conjugated rabbit anti-mouse IgG secondary antibodies
(Sigma, Germany) were added at the recommended concentrations and incubated for
1 h at 37 ◦C. After extensive washing, 3,3′,5,5′-tetramethylbenzidine (TMB) substrate
(KPL, Gaithersburg, MD, USA) was added for 30 min to develop a colorimetric reaction.
Finally, the reaction was stopped with 0.16 M sulfuric acid, and absorbance was read
spectrophotometrically at 450 nm on a Synergy 2 Multi-Detection Microplate Reader
(BioTek, Winooski, VT, USA). End-point titers were determined as the reciprocals of the
highest dilution with an OD above the cut-off value which was defined as the OD mean
from the control group plus three standard deviations (SDs).

2.6. Neutralizing Antibodies Measurement by Pseudovirus Neutralization Assay

To assess the ability of induced antibodies to inhibit virus entry, pseudovirus neutral-
ization assay was performed, as previously described [30]. Briefly, recombinant vesicular
stomatitis virus, expressing codon-optimized full-length SARS-CoV-2 S protein (GenBank
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accession number: MN908947) (rVSV-∆G/SARS-2-S*-luciferase pseudovirus), was gen-
erated in BHK21/WI-2 cells. Pseudovirus was collected and titrated on Vero E6 cells, as
previously described [30]. Then, neutralization the assay was conducted by co-incubating
two-fold serial dilutions of heat-inactivated mouse sera from vaccinated and control groups
started from 1:20 dilution (in duplicate) with media containing 5 × 104 relative luciferase
unit (RLU) of rVSV-∆G/SARS- 2-S*-luciferase pseudovirus for 1 h at 37 ◦C in a 7% CO2
incubator. The mixtures were then transferred onto confluent Vero E6 cell monolayers in
white 96-well plates and incubated for 24 h at 37 ◦C in a 7% CO2 incubator. Following that,
cells were lysed, luciferase activity was measured using Luciferase Assay System (Promega)
according to the manufacturer’s instructions, and luminescence activity was measured
using BioTek Synergy 2 microplate reader (BioTek, Winooski, VT, USA). Cell-only control
(CC) and virus control (VC) were included with each assay run. The median inhibitory
concentration (IC50) of neutralizing antibodies (nAbs) was determined using GraphPad
Prism version 9.0.2 software.

2.7. Determination of T Cell Response by Flow Cytometry

Single cell suspensions of splenocytes were prepared from each mouse in immunized
and control groups. One million splenocytes/well were re-stimulated with 5 µg/mL of a
pool of 15-mer peptides overlapping with 11 amino acid and covering the SARS-CoV-2 S1
protein (GenScript USA Inc, Piscataway, NJ, USA) for 6 h at 37 ◦C in a 7% CO2 incubator in
the presence of brefeldin A (BD Biosciences, San Jose, CA, USA) at a final concentration
of 1:1000. Phorbol myristate acetate/ionomycin was used as a positive control, and RPMI
1640 medium was used as a negative unstimulated control. Cells were then washed in
FACS buffer (PBS with 2% heat inactivated FBS) and stained with LIVE/DEAD™ Fixable
Near-IR Dead Cell Stain Kit, for 633 or 635 nm excitation (Invitrogen, Carlsbad, CA, USA)
for 30 min at room temperature. After washing with FACS buffer, cells were stained for
surface markers with Pacific Blue-conjugated anti-mouse CD8, Pacific Blue-conjugated
anti-mouse CD4, APC-conjugated anti-mouse CD44 antibody and Pe-Cy7-conjugated
anti-mouse CD62L antibodies (BioLegend, UK). The cells were then washed with FACS
buffer and fixed and permeabilized using Cytofix/Cytoperm Solution (BD Biosciences,
San Jose, CA, USA) according to the manufacturer’s protocol. For intracellular staining,
cells were labeled with FITC-conjugated anti–mouse IFN-γ (clone XMG1.2), PE-conjugated
anti-mouse TNF-α (clone MP6-XT22) and PerCP/Cy5.5–conjugated anti-mouse IL-2 (clone
JES6-5H4) antibodies (BioLegend, UK) for 20 min at 4 ◦C. Cells were then washed twice
with permeabilization buffer and once with FACS buffer. All data were collected using BD
FACSAria™ III flow cytometer (BD Biosciences, San Jose, CA, USA) and analyzed using
FlowJo v10 software (Tree Star). Analysis of polyfunctional T cells was done by Boolean
gating using FlowJo software from vaccinated animals, as previously described [31–33].

2.8. Statistical Analysis

Statistical analysis and graphical presentations were generated using GraphPad Prism
version 9.0.2 software (Graph-Pad Software, Inc., CA, USA). Statistical analysis was con-
ducted using the Mann–Whitney test or one-way analysis of variance with Bonferroni post
hoc test to adjust for multiple comparisons between groups. All values are represented as
mean ± SD and statistical significance is reported as *, p ≤ 0.05, **, p ≤ 0.01, ***, p ≤ 0.001,
and ****, p ≤ 0.0001.

3. Results
3.1. In Vitro Confirmation of Protein Expression from the Candidate Vaccine

The generated DNA vaccine candidate (Figure 1a) was evaluated for protein ex-
pression in vitro in HEK-293A cells prior to animal experiments. As shown in Figure 1b
and Supplementary Figure S2, Western blot analysis confirmed that the recombinant con-
struct was able to express S1 subunit protein at the expected molecular weight. A plasmid
expressing full-length S protein (pcDNA3.1-Full S) was used as a positive control. Simi-
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larly, immunofluorescence analysis showed the expression of SARS-CoV-2 S1 protein in
transfected cells (Figure 1c), suggesting that the expressed protein maintained structural
confirmation to be detected by polyclonal anti-S antibodies. As expected, no protein was
detected from cells transfected with the empty control plasmid pVAX (Figure 1b,c).
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Figure 1. Vaccine design and characterization. (a) DNA vaccine (pVAX-S1) map. The inserted gene (SARS-CoV-2 S subunit 1)
is indicated by orange color in the pVAX1 plasmid. (b) Western blot analysis. Figure shows bands of expressed full-length S
from cells transfected with pcDNA3.1-Full S (positive control) and S1 subunit protein expressed from pVAX-S1. Empty
pVAX was used as a negative control. (c) Immunofluorescence analysis. Cells transfected with pVAX-S1 or empty control
pVAX were stained with anti-SARS-CoV-2 S rabbit polyclonal antibodies. Scale bars are 50 µm. Red square is magnified to
scale bar of 10 µm. Merging and magnification were processed by ImageJ 1.53e.

3.2. Evaluation of Binding and Neutralizing Antibodies in Immunized Mice

Mice were intramuscularly immunized with 3 doses of 25 µg or 50 µg of pVAX-S1 in
a three-week interval regimen (Figure 2a). As a control, a group of mice was immunized
with 50 µg of empty control vector (pVAX). Vaccine-induced binding antibodies were
assessed by indirect ELISA from serum samples collected on weeks 3, 6 and 9. As shown
in Figure 2b, analysis of S1-specific total IgG showed significant levels after only 3 doses
with both doses of pVAX-S1 vaccine compared to control group (pVAX). No significant
difference was found between 25 µg and 50 µg of pVAX-S1. Determination of end-point
titers of S1-specific total IgG also confirmed the induction of significant levels of binding
antibodies in samples collected on week 9 from each immunized mouse (Figure 2c). Testing
the levels of IgG subclasses in samples collected on week 9 from mice immunized with
50 µg showed significantly higher levels of S1-specific IgG1, IgG2a and IgG2b compared to
the pVAX control group (Figure 2d). Furthermore, the high IgG2a:IgG1 and IgG2b:IgG1
ratios suggested a Th1-skewed immune response, as shown in Figure 2e. To investigate
whether the vaccine-induced antibodies were able to inhibit viral entry in cells, levels of
nAbs were determined using pseudovirus neutralization assay from samples collected
on week 9 in the 50 µg group. As shown in Figure 2f, immunized mice were only able
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to induce low levels of nAbs against SARS-CoV-2 pseudovirus in Vero cells. Collectively,
these results confirm the ability of the vaccine to elicit significant Th1-skwed humoral
immunity against SARS-CoV-2.
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experimental groups (n = 8) and immunized intramuscularly with three doses on days 0, 21 and 42 using 25 µg or 50 µg
of pVAX-S1, or 50 µg of pVAX1 using a customized needle-free Tropis system (PharmaJet, Golden, CO, USA). (b) Mean
optical density (OD) values of S1-specific binding total IgG at 1:100 dilution as determined by ELISA at 3, 6 and 9 weeks
after immunizations. (c) Mean end-point titers of S1-specific total IgG as determined by ELISA in samples collected on
week 9. (d) Mean OD values of S1-specific IgG1, IgG2a and IgG2b in pVAX-S1 (50 µg) and pVAX immunized animals as
determined by ELISA on week 9. (e) IgG2a:IgG1 and IgG2b:IgG1 ratios calculated from samples collected on week 9 from
immunized mice in the group that received the 50 µg dose of pVAX-S1. (f) The median inhibitory concentration (IC50) of
neutralizing antibodies (nAbs) was determined against rVSV-∆G/SARS-2-S*-luciferase pseudovirus as described in the
materials and methods. Data are depicted as mean ± SD. Statistical significance is reported as *, p ≤ 0.05, ***, p ≤ 0.001, and
ns, not significant.

3.3. Evaluation of Cellular Immune Response in Immunized Mice

Next, we investigated the overall memory CD4+ and CD8+ T cell response in 9-week
samples (3 weeks post last immunization) collected from mice immunized with 50 µg
dose of pVAX-S1 and pVAX. Re-stimulation with peptide pool covering the entire S1
protein resulted in significant levels of IFN-γ and TNF-α but not IL-2 from memory CD4+

T cells (CD4+CD62L−CD44+ T cells) from mice in pVAX-S1 group compered to control
group (Figure 3a). Similarly, antigen-specific CD8+CD62L+CD44+ central memory T cells
showed significant levels of IFN-γ and TNF-α but not IL-2 compared to pVAX control
group (Figure 3b). On the other hand, effector CD8+CD62L−CD44+ memory T cells only
produced IFN-γ at significant level compared to control group (Figure 3c).
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Figure 3. Overall memory T cells response in immunized mice. Histograms and FACS plots display overall IFN-γ, TNF-α
and IL-2 expression from ex vivo re-stimulated (a) memory CD4 (CD4+CD62L−CD44+ T cells), (b) central memory CD8
(CD8+CD62L+CD44+ T cells) and (c) effector memory CD8 (CD8+CD62L−CD44+ T cells). Data in histograms are shown
as percentages of induced cytokines from peptides-stimulated cells after subtracting levels produced by unstimulated
splenocytes from each mouse. Representative FACS plots are shown. Data are shown as mean ± SD for each group from
one experiment (n = 3). Statistical significance is reported as *, p ≤ 0.05, ***, p ≤ 0.001, and ****, p ≤ 0.0001.

Then, we looked at the polyfunctional (double- and triple-positive) as well as single-
cytokine–producing subpopulations of memory CD4+ and CD8+ T cells from immunized
mice as they represent a better indicator of the quality of cell-mediated immune response.
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Consistent with the overall secretion of S1-specific cytokines observed in Figure 3, cells
producing IFN-γ and TNF-α as only cytokines were significantly higher in the pAVX-S1
group compared to pVAX (Figure 4). This was observed in all tested subpopulations of
memory CD4+ and CD8+ T cells, despite the insignificant overall levels of TNF-α seen
in effector CD8+CD62L-CD44+ memory T cells (Figure 3c). While we found some higher
levels of S1-specific double- and triple-cytokines producing memory CD8+ and CD4+ T cells
in pAVX-S1 immunized mice compared to the pVAX control group, only double-positive
cells for both IFN-γ and TNF-α were found to be significantly higher in the pAVX-S1 group
compared to pVAX immunized animals. Pie charts also show that single- (i.e., IFN-γ and
TNF-α) and double-cytokine-producing cells (secreting both IFN-γ and TNF-α) dominated
the immune response in immunized animals. Additionally, as shown by the size of the
pie charts (Figure 4), pVAX-S1 elicited a greater overall magnitude of T cell responses, as
compared to the pVAX group. Specifically, the magnitude of memory CD4 T cells, central
memory CD8 T cells and effector memory CD8 T cells responses was higher by 20, 6.3 and
4.4 fold in pVAX-S1 group compared to pVAX group. Collectively, these data show that
pVAX-S1 could elicit significant memory CD4+ and CD8+ T cell responses in mice.

Vaccines 2021, 9, x FOR PEER REVIEW 8 of 12 
 

 

mice as they represent a better indicator of the quality of cell-mediated immune response. 
Consistent with the overall secretion of S1-specific cytokines observed in Figure 3, cells 
producing IFN-γ and TNF-α as only cytokines were significantly higher in the pAVX-S1 
group compared to pVAX (Figure 4). This was observed in all tested subpopulations of 
memory CD4+ and CD8+ T cells, despite the insignificant overall levels of TNF-α seen in 
effector CD8+CD62L-CD44+ memory T cells (Figure 3c). While we found some higher lev-
els of S1-specific double- and triple-cytokines producing memory CD8+ and CD4+ T cells 
in pAVX-S1 immunized mice compared to the pVAX control group, only double-positive 
cells for both IFN-γ and TNF-α were found to be significantly higher in the pAVX-S1 
group compared to pVAX immunized animals. Pie charts also show that single- (i.e., IFN-
γ and TNF-α) and double-cytokine-producing cells (secreting both IFN-γ and TNF-α) 
dominated the immune response in immunized animals. Additionally, as shown by the 
size of the pie charts (Figure 4), pVAX-S1 elicited a greater overall magnitude of T cell 
responses, as compared to the pVAX group. Specifically, the magnitude of memory CD4 
T cells, central memory CD8 T cells and effector memory CD8 T cells responses was higher 
by 20, 6.3 and 4.4 fold in pVAX-S1 group compared to pVAX group. Collectively, these 
data show that pVAX-S1 could elicit significant memory CD4+ and CD8+ T cell responses 
in mice. 

 
Figure 4. Polyfunctional memory T cell response in immunized mice. Bar graphs represent percentage of single-, double- 
and triple-cytokine–producing (a) memory CD4 (CD4+CD62L−CD44+ T cells), (b) central memory CD8 (CD8+CD62L+CD44+ 
T cells) and (c) effector memory CD8 (CD8+CD62L−CD44+ T cells) from samples collected on week 9. Data in histograms 
are shown as percentages of induced cytokines from peptide-stimulated cells after subtracting levels produced by unstim-
ulated splenocytes from each mouse. Pie charts summarize the various combinations of cytokine-producing cells in each 
immunization group. Slices are grouped and color coded based on the number of functions. They represent the proportion 
of each single-, double- and triple-cytokine-producing cell in each subpopulation of (a) memory CD4 (CD4+CD62L−CD44+ 
T cells), (b) central memory CD8 (CD8+CD62L+CD44+ T cells) and (c) effector memory CD8 (CD8+CD62L−CD44+ T cells) T 
cells. The size of the pie chart represents the magnitude of the specific influenza virus immune response induced. Data 
are shown as mean ± SD for each group from one experiment (n = 3). Statistical significance is reported as *, **, p ≤ 0.01, p 
≤ 0.05, ***, p ≤ 0.001, and ns, not significant. 

4. Discussion 
There is still an urgent need for multiple safe and protective vaccines against SARS-

CoV-2 to combat the ongoing COVID-19 pandemic [9]. DNA-based vaccines represent a 

Figure 4. Polyfunctional memory T cell response in immunized mice. Bar graphs represent percentage of single-, double- and
triple-cytokine–producing (a) memory CD4 (CD4+CD62L−CD44+ T cells), (b) central memory CD8 (CD8+CD62L+CD44+ T
cells) and (c) effector memory CD8 (CD8+CD62L−CD44+ T cells) from samples collected on week 9. Data in histograms are
shown as percentages of induced cytokines from peptide-stimulated cells after subtracting levels produced by unstimulated
splenocytes from each mouse. Pie charts summarize the various combinations of cytokine-producing cells in each immu-
nization group. Slices are grouped and color coded based on the number of functions. They represent the proportion of
each single-, double- and triple-cytokine-producing cell in each subpopulation of (a) memory CD4 (CD4+CD62L−CD44+ T
cells), (b) central memory CD8 (CD8+CD62L+CD44+ T cells) and (c) effector memory CD8 (CD8+CD62L−CD44+ T cells) T
cells. The size of the pie chart represents the magnitude of the specific influenza virus immune response induced. Data
are shown as mean ± SD for each group from one experiment (n = 3). Statistical significance is reported as *, **, p ≤ 0.01,
p ≤ 0.05, ***, p ≤ 0.001, and ns, not significant.

4. Discussion

There is still an urgent need for multiple safe and protective vaccines against SARS-
CoV-2 to combat the ongoing COVID-19 pandemic [9]. DNA-based vaccines represent a fast
and safe approach to develop vaccines for such unprecedented situations [34]. Numerous
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studies on SARS-CoV-2 and other pathogenic human CoVs such as MERS-CoV and SARS-
CoV have dementated that most of the nAbs that are generated due to either natural
infection or full-length S based vaccines target the S1 subunit, making S1 an attractive
and probably safer immunogen for vaccine development [35–39]. This is due to the fact
that S1 contains the RBD and the N-terminal motif (NTD) which are critical for mediating
binding to the host receptor. In this work, we successfully developed and evaluated the
immunogenicity of a new DNA vaccine candidate against SARS-CoV-2, encoding the
S1 subunit of the S protein. After the in vitro confirmation and characterization of S1
expression, we evaluated the immunogenicity and safety of the vaccine in mice. Overall,
our data showed that pVAX-S1 was able to induce strong antibody responses in mice
after a three-dose regimen of intramuscular immunization in a dose-dependent manner.
Furthermore, we showed that pVAX-S1 induced a Th1-biased protective immune response,
characterized by antibody production, predominantly, of IgG2a and IgG2b subclasses and
the secretion of significantly elevated levels of Th1 cytokines (IFN-γ and TNF-α) produced
by single- and double-cytokine-producing memory CD4+ and CD8+ T cells. Although the
determination of Th2 cytokines levels from S1-specific T cells could have provided further
evidence of the Th1 bias, the evaluation of IgG subclasses has been used as a surrogate
to reflect such changes. Interestingly, while the vaccine candidate induced high levels of
S1 specific Abs titers, we noticed that the level of the produced nAbs was relatively low,
which should be investigated for further improvement. This may be through novel antigen
design or the use of molecular adjuvants. Nonetheless, similar immune response induced
by a similar DNA vaccine provided protection in non-human primates [40], suggesting
protection through multiple mechanisms.

It is of note that several vaccine candidates have been developed using the S1 subunit
as an immunogen, such as the DNA vaccine-expressing S1 domain with a foldon trimer-
ization motif [40], live-attenuated YF17D, expressing S1 (YF-S1) [41], S1-Fc fusion subunit
protein [42], and S1 subunit protein alone (S1) or fused to the norovirus shell domain
(S1-S) [36]. These candidates used different technologies to test S1 immunogenicity in a
number of animal models. Similar to our work, a single-dose of YF-S1 in hamsters or two
doses of DNA vaccine-expressing S1-foldon in rhesus macaques induced significant levels
of binding antibodies and low-to-medium levels of nAbs compared to other tested vac-
cines, expressing full-length cleavable S protein, prefusion-stabilized S or other truncated
versions, such as those lacking the transmembrane or the cytoplasmic domains [40,41].
Additionally, consistent with our data, both of these S1-based vaccines induced highly
elevated levels of Th1-skewed T cell responses compared to other vaccines [40,41]. In-
terestingly, while YF-S1 failed to protect hamsters from viral replication [41], S1-foldon
DNA vaccine led to reduction in the viral RNA after SARS-CoV-2 challenge in rhesus
macaques [40]. On the other hand, other developed subunit vaccines, such as S1-Fc and
S1-S fusion proteins, elicited significantly high levels of nAbs in multiple animal models
that exceeded the levels observed in acutely infected individuals [33,39]. These previous
reports, as well as our current data, clearly show the potential of SARS-CoV-2 S1 as a
promising immunogen [36,40–42].

The use of S1 as an immunogen has been proposed for other highly pathogenic
coronaviruses, such as MERS-CoV and SARS-CoV, because of its potential high safety
profile compared to the use of full-length S. Although full-length S protein can induce
the highest immune response, some reports suggested its association with possible side
effects in the currently used COVID-19 vaccines [22,23]. Additionally, previous reports
on MERS-CoV, SARS-CoV and other coronaviruses have suggested that the use of a full-
length S based vaccine could lead to undesired immune response upon infection [24–28].
Although the exact mechanism of this vaccination-induced immunopathology and/or
disease enhancement has not been fully elucidated, it has been postulated that the non-
neutralizing epitopes within the S protein may be responsible for the harmful immune
response in vaccinated hosts [43,44]. These data suggested that using the neutralizing-
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epitope rich S1 subunit of the S protein could be a better approach to avoid any potential
safety concerns.

Within the past year and half, several COVID-19 vaccines have been approved for
emergency use with hundreds of others currently in different stages of clinical devel-
opment [9,45,46]. Among those that have been approved or in late stages of clinical
development are the nucleic acid-based vaccines. DNA and mRNA vaccines have several
advantages over other platforms. For example, these vaccines can be developed rapidly
without the need for the cultivation of the target pathogen and can be easily produced on a
large industrial scale. Furthermore, nucleic acid-based vaccines can be rapidly and easily
adapted to respond to potential mutations/variants. Compared to mRNA vaccines, which
require a cold-chain system, DNA vaccines are more thermo-stable with less stringent
storage conditions and easier formulation, enabling such technology to be a promising
platform for wide distribution across the globe. While no major side effects associated with
plasmid DNA vaccines were reported, especially for those developed for SARS-CoV-2 [18],
reports on the generation of autoantibodies or anti-DNA antibodies are still controver-
sial [47] and should be addressed in future studies, especially when high or multiple doses
are used.

In conclusion, our approach using plasmid DNA (pVAX) to encode the SARS-CoV-2
S1 as a proof of principle has demonstrated that S1 can lead to high humoral and cellular
immunity in mice with a predominant Th1-biased response. Such an approach can be
further enhanced by the use of an efficient adjuvant and improved method of delivery.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/vaccines9080852/s1, Figure S1. Specificity of the in-house rabbit anti-S (SARS-CoV-2) poly-
clonal antibodies, Figure S2. Western blot analysis.
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