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Public summary

- A national retrospective cohort study was performed to quantify the effects of environmental exposure

- Low temperature was observed to be associated with COVID-19 case fatality

- Exposure to ambient air pollution played a nonnegligible part in COVID-19 case fatality

- COVID-19 patients weremore susceptible to external environmental stimulus as COVID-19 progressed from the period of
symptom onset to diagnosis
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The evidence for the effects of environmental factors on COVID-19 case
fatality remains controversial, and it is crucial to understand the role of
preventable environmental factors in driving COVID-19 fatality. We thus
conducted a nationwide cohort study to estimate the effects of environ-
mental factors (temperature, particulate matter [PM2.5, PM10], sulfur
dioxide [SO2], nitrogen dioxide [NO2], and ozone [O3]) on COVID-19 case
fatality. A total of 71,808 confirmed COVID-19 cases were identified
and followed up for their vital status through April 25, 2020. Exposures
to ambient air pollution and temperature were estimated by linking the
city- and county-level monitoring data to the residential community of
each participant. For each participant, two windows were defined: the
period from symptom onset to diagnosis (exposure window I) and the
period from diagnosis date to date of death/recovery or end of the study
period (exposure window II). Cox proportional hazards models were used
to estimate the associations between these environmental factors and
COVID-19 case fatality. COVID-19 case fatality increased in association
with environmental factors for the two exposure windows. For example,
each10mg/m3 increase inPM2.5, PM10, O3, andNO2 inwindow Iwas asso-
ciated with a hazard ratio of 1.11 (95% CI 1.09, 1.13), 1.10 (95% CI 1.08,
1.13), 1.09 (95 CI 1.03, 1.14), and 1.27 (95% CI 1.19, 1.35) for COVID-19
fatality, respectively. A significant effect was also observed for low tem-
perature, with a hazard ratio of 1.03 (95% CI 1.01, 1.04) for COVID-19
case fatality per 1�C decrease. Subgroup analysis indicated that these ef-
fects were stronger in the elderly, as well as in those with mild symptoms
and living in Wuhan or Hubei. Overall, the sensitivity analyses also yielded
consistent estimates. Short-term exposure to ambient air pollution and
low temperature during the illness would play a nonnegligible part in
causing case fatality due to COVID-19. Reduced exposures to high con-
centrations of PM2.5, PM10, O3, SO2, and NO2 and low temperature would
help improve the prognosis and reduce public health burden.

Keywords: temperature; air pollution; COVID-19; fatality; cohort study
INTRODUCTION
At the end of 2019, an outbreak of novel coronavirus (SARS-CoV-2) swept

across the globe.1–3 Although various control measures have been imple-
mented, such as stay-at-home orders, quarantine, social distancing and
shielding, the global pandemic continues, and the numbers of cases and
deaths still increase. It is therefore critical to identify key modifiable risk fac-
tors that affect the case fatality of COVID-19.4–7
ll
Environmental factors, especially air pollution and temperature, have been
widely identified to be associated with increasing risk of adverse health out-
comes, such as for ischemic heart disease, stroke, diabetes, chronic obstruc-
tive pulmonary disease, and respiratory infection.8–11 Emerging evidence in-
dicates potential links between exposure to polluted air and COVID-19
mortality and fatality.12,13 Recent epidemiological studies indicated that
higher concentrations of pollutants were associated with worse outcome
of COVID-19. For example, a multicity study from China illustrated that
long-term exposure to higher levels of particulate matter was associated
with increased COVID-19 case fatality.14 Wu et al. performed an ecological
regression analysis and observed positive effects of higher historical PM2.5

exposures on county-level COVID-19 mortality rates in the United States.15

A hierarchical spatial analysis in England reported adverse effects of NO2

on COVID-19mortality, but thiswas not found for PM2.5.
16 In addition, several

ecological studies have elucidated detrimental effects of NO2, with increasing
COVID-19 fatality in North America, Europe, and some developed Asian
cities.13,15,17 However, a systematic review of environment and COVID-19
noted some common limitations, such as ecological fallacy due to the use
of an aggregated dataset without detailed personal information and adjust-
ment for the individual-level covariates, and these limitations raise concerns
about biased or spurious associations.18

Toxicological evidence suggests that short-term or long-term environ-
mental exposures could cause pulmonary inflammation and oxide stress,
altering host immune response to viral infections.19–21 It is thus reasonable
to hypothesize that exposure to ambient air pollutants and unfavorable tem-
perature could exacerbate the condition of COVID-19 and increase its case
fatality. This study used a national retrospective cohort design to quantify
the effects of short-term exposure to ambient low temperature and air pollu-
tion (PM2.5, PM10, SO2, NO2, and O3) on COVID-19 case fatality in China.
RESULTS
Of the 657 cities and 2,862 counties/districts in mainland China, 321 cities

and 1,676 counties/districtswere affected by COVID-19 infection, accounting
for about half of the geographic regions in China. A total of 71,808 confirmed
COVID-19 cases were included in this nationwide retrospective cohort study.
The distribution of the fatality rates across the 321 cities is illustrated in Fig-
ure S1. The average age of study participants was 51.43 years, ranging from
1 to 103 years; 49.60% of the participant were females, and 58.29% of partic-
ipants were home-related workers. Among the included cases, 3,934 died of
COVID-19 during the follow-up (through April 25, 2020), resulting in an overall
The Innovation 2, 100139, August 28, 2021 1

mailto:linhualiang@mail.sysu.edu.cn
mailto:liuqiyong@icdc.cn
https://doi.org/10.1016/j.xinn.2021.100139
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xinn.2021.100139&domain=pdf


Table 1. Characteristics of study participants by survival status in China

Variable Deceased (n = 3,934) Alive (n = 67,874) p valueb

Environmental factors

Exposure window Ia

Temperature (�C) 5.26 ± 2.82 5.73 ± 4.11 0.0029

Relative humidity (%) 81.43 ± 9.41 79.18 ± 11.36 <0.0001

PM2.5 (mg/m
3) 54.01 ± 14.92 51.87 ± 20.25 <0.0001

PM10 (mg/m
3) 62.32 ± 16.33 60.81 ± 22.38 <0.0001

O3 (mg/m
3) 54.71 ± 7.73 55.84 ± 8.45 <0.0001

SO2 (mg/m
3) 7.43 ± 2.01 7.75 ± 3.49 <0.0001

NO2 (mg/m
3) 22.78 ± 5.81 20.34 ± 6.38 <0.0001

Exposure window IIa

Temperature (�C) 7.27 ± 3.04 16.27 ± 2.06 <0.0001

Relative humidity (%) 79.47 ± 6.30 66.44 ± 10.45 <0.0001

PM2.5 (mg/m
3) 44.71 ± 15.62 29.62 ± 7.23 <0.0001

PM10 (mg/m
3) 53.95 ± 16.76 55.57 ± 11.31 <0.0001

O3 (mg/m
3) 55. 13 ± 9.31 80.33 ± 9.82 <0.0001

SO2 (mg/m
3) 7.41 ± 1.80 9.46 ± 2.63 <0.0001

NO2 (mg/m
3) 20 .94 ± 6.17 28.98 ± 7.02 <0.0001

Age group (n, %) <0.0001

<25 years 6 (0.15) 3,493 (5.15)

25–64 years 1,146 (29.13) 50,111 (73.83)

R65 years 2,782 (70.72) 14,270 (21.02)

Sex (n, %) <0.0001

Male 2,515 (63.93) 33,659 (49.59)

Female 1,419 (36.07) 34,215 (50.41)

Days between symptom onset and diagnosis (n, %) <0.0001

<7 days 1,362 (4.34) 29,995 (95.66)

7–14 days 1,557 (5.89) 24,859 (94.11)

R14 days 1,015 (7.23) 13,020 (92.77)

Occupation (n, %) <0.0001

Medical-related 21 (0.53) 2,614 (3.85)

Service-related 15 (0.38) 1,709 (2.52)

Office worker 226 (5.74) 15,435 (22.74)

Homemaker 3,226 (82.00) 38,632 (56.92)

Others 446 (11.34) 9,484 (13.97)

Residence (n, %) <0.0001

Permanent 2,476 (62.94) 48,055 (70.80)

Temporary 1,458 (37.06) 19,819 (29.20)

Severity (n, %) <0.0001

Mild 806 (20.49) 28,088 (41.38)

Moderate 597 (15.18) 28,199 (41.55)

Table 1. Continued

Variable Deceased (n = 3,934) Alive (n = 67,874) p valueb

Severe 1,285 (32.66) 10,081 (14.85)

Critical 1,246 (31.67) 1,506 (2.22)

Hospital transfer (n, %) 0.1754

No 2,927 (74.40) 49,825 (73.41)

Yes 1,007 (25.60) 18,049 (26.59)

Note: PM2.5, particulatematter with an aerodynamic diameter%2.5 mm; PM10,
particulatematter with an aerodynamic diameter%10 mm; SO2, sulfur dioxide;
NO2, nitrogen dioxide; O3, ozone.
aExposure window I represents themean exposure value from the date of symptom
onset to the date of diagnosis; exposure window II represents the mean exposure
value from the date of diagnosis to the date of death or the end of the study.
bp values were calculated by t test, c2 test or Fisher’s exact test, as appropriate.
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case fatality rate of 5.48%. There was no loss to follow-up, and the average
duration of the follow-up was 81.75 days (SD = 18.01).

Table 1 presents summary statistics for environmental factors using the
two exposure windows and individual-level characteristics by survival status.
Compared with those who survived, deceased individuals tended to be older
(16.31% for ageR65 years versus 0.20% for age<25 years, p< 0.001), male
(6.95% versus 3.98%, p < 0.001), homemakers (7.70% versus 0.80%, p <
0.001), and migrants (6.85% versus 4.90%, p < 0.001). In critical group that
was initially classified, almost half of COVID-19 deaths were identified
(45.27%). For exposure window I, there were significant differences in
weather conditions between the two groups, with relatively lower tempera-
tures (5.26�C ± 2.82�C) and higher relative humidity (81.43% ± 9.41%) in
the deceased group. In addition, there were significant differences in ambient
air pollution for the deceased and survived groups, with more highly polluted
air for the deceased group compared with the survivor group (54.01 versus
51.87 mg/m3 for PM2.5, 62.32 versus 60.81 mg/m

3 for PM10, and 22.78 versus
20.34 mg/m3 for NO2). Significant disparities of environmental factors esti-
mated using window II were also identified. To address concerns about
the imbalance of sample size for deceased and survivor groups, we conduct-
ed a random resampling of the survivor group to create a subgroup with the
same sample size as the deceased group (n = 3,934) and the findings of this
resampling analysis were consistent with the full sample results (Table S2).
Moreover, we drew maps showing the distribution of air pollution and
weather during the relevant period (Figures S2–S7). Table S3 summarizes
the Spearman correlation coefficients among key study variables. There
aremoderate- or low-correlation coefficients between air pollution andmete-
orological factors (0.01 % |r| % 0.59, except for the high correlation coeffi-
cient between PM2.5 and PM10, r = 0.96).

Table 2 shows the effect estimates of environmental factors on COVID-19
fatality for two exposure windows (window I and window II). Generally, it was
observed that adverse environmental factors were associated with higher fa-
tality rates for COVID-19 in crude and adjusted models. Specifically, the re-
sults of the crude model were relatively consistent with those from the
adjusted model. We observed significant effects of PM2.5, PM10, and NO2,
whichwere stronger inwindow II. In the adjustedmodel for exposurewindow
I, each 1�C decrease in temperature and each 10 mg/m3 increase in air pollu-
tion (PM2.5, PM10, and NO2) concentrations was associated with an HR of
1.03 (95% CI 1.01, 1.04), 1.11 (95% CI 1.09, 1.13), 1.10 (95% CI 1.08, 1.13),
and 1.27 (95% CI 1.19, 1.35), respectively, for fatality due to COVID-19.

Figure 1 shows the exposure-response curves of the effects of environ-
mental factors (exposure window I) on COVID-19 fatality. Overall, the temper-
ature curve has a downward trend, although there is a small rise when
temperature is below freezing. With the exception of SO2, all air pollutants
showed curves with upward trends as the concentrations increase; these re-
lationships were monotonic and approximately linear.

The associations of environmental factors with COVID-19 varied by a few
characteristics (Table 3). Stronger effects occurred in the elderly, as well as
www.cell.com/the-innovation
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Table 2. Hazard ratios and 95% CIs for case fatalities due to COVID-19 associated
with environmental factors of two exposure windows in China

Variable

Hazard ratio (95% CI)

p valueb

Exposure window Ia Exposure window IIa

Crudec Adjustedd Crudec Adjustedd

Temperature 1.02 (1.01,
1.03)

1.03 (1.01,
1.04)

1.27 (1.26,
1.28)

3.20 (3.15,
3.25)

<0.01

PM2.5 1.05 (1.04,
1.07)

1.11 (1.09,
1.13)

1.56 (1,54,
1.58)

1.39 (1.36,
1.42)

<0.01

PM10 1.04 (1.02,
1.05)

1.10 (1.08,
1.13)

1.43 (1.42,
1.44)

1.18 (1.16,
1.21)

<0.01

NO2 1.69 (1.93,
1.75)

1.27 (1.19,
1.35)

1.22 (1.14,
1.30)

1.37 (1.29,
1.45)

0.08

SO2 0.70 (0.62,
0.79)

1.10 (0.95,
1.27)

1.13 (0.91,
1.40)

1.51 (1.22,
1.88)

0.20

O3 0.84 (0.81,
0.87)

1.09 (1.03,
1.14)

1.27 (1.21,
1.33)

1.25 (1.20,
1.30)

<0.01

Note: PM2.5, particulatematter with an aerodynamic diameter%2.5 mm; PM10,
particulatematter with an aerodynamic diameter%10 mm; SO2, sulfur dioxide;
NO2, nitrogen dioxide; O3, ozone.
aExposure window I represents themean exposure value from the date of symptom
onset to the date of diagnosis; exposure window II represents the mean exposure
value from the date of diagnosis to the date of death or the end of the study.
bEstimated using likelihood ratio test by comparing adjusted HRs for different
windows.
cCrude model, without any adjustment.
dMultivariate model, adjusted for age, sex, occupation, residence, severity of illness,
location, transfer history, temporal trend, lockdown, city-level GDP, hospital beds
per 1,000 persons, temperature (only for the pollutants), and relative humidity.
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those with mild symptoms and living in Wuhan or Hubei. In particular, for an
increase of 10 mg/m3 in air pollutant (PM2.5, PM10, and NO2) concentration,
the estimated HRs were slightly larger in those R65 (p < 0.01). The HRs
for COVID-19 fatality related to each 10 mg/m3 increase in NO2 were higher
and significant for mild patients compared with severe cases. In addition,
almost all significant associationswere observed across subgroups of Hubei
Province and outside Hubei, although higher effects occurred in Hubei (p <
0.05). This relatively consistent pattern was also observed in Wuhan and
outside Wuhan. No significant differences were observed in the subgroups
before and after city lockdown.

Sensitivity analyses (Table S4) demonstrated that the effects of air pollu-
tion remainedrobustas thedegreesof freedomofparameterschanged from
2 to 6. For example, the magnitude of HRs for COVID-19 fatality associated
with each 10 mg/m3 increase in PM10 remained at the level of 1.10.When the
association between environmental factors and case fatality due to COVID-
19wasexploredusing thecurrent symptomonsetdateanddiagnosisaswell
as corresponding lag days, there were significant effects of environmental
factors on COVID-19 fatality across lag days (Figures S8 and S9). In addition,
the estimated effects of the primary pollutant varied slightly when an adjust-
mentwasmade for asecondpollutant (TableS5).Theexceptionwas forNO2

and O3, whose effects were rendered nonsignificant after adjustment for
PM2.5 and PM10, respectively. We also obtained similar results for combined
exposure windows compared with exposure window II (Table S6).
DISCUSSION
In this nationwide retrospective cohort study of COVID-19 patients in

China, short-term exposure to ambient environmental factors during the
illness course, including low temperature and PM2.5, PM10, NO2, SO2, and
O3, contributed to increasing risk of death. Several exposure windows were
used to examine the effects, and the estimates remained robust. To the
best of our knowledge, this is the first study to explore the association of ex-
posures to key environmental factors and COVID-19 fatality using nationwide
data from low- and middle-income countries with high air pollution levels.
ll
Air pollutants were critical environmental drivers in triggering COVID-19
fatality. These findings are consistent with a previous study that provided ev-
idence for an association between higher air pollution and increased risk of
dying from SARS.22 In addition, emerging research has reported that chronic
exposure to polluted air might result in a higher risk of dying from COVID-
19.23 A recent study using county-level data for the United States found
that an 8% (95% CI 2%, 15%) increase in the COVID-19 death rate was asso-
ciated with an increase of 1 mg/m3 in PM2.5.

24 Long-term exposure to NO2

has also been identified as an important contributor to fatality due to
COVID-19.12 The significant associations between other major ambient pol-
lutants (e.g., SO2 and O3 levels) and increased COVID-19 deaths were high-
lighted in a recent study in England.17 However, a cross-sectional national
study in the United States did not observe significant associations of PM2.5

and O3 with COVID-19 fatality.13 In general, our evidence was derived from
a nationwide cohort study with a wider exposure range, providing relatively
accurate and convincing estimates.

Further,while numerousstudieshave focusedon the linkbetweenCOVID-
19 transmission and temperature,25,26 the impact of temperature onCOVID-
19 outcomes has not been widely studied. We observed that lower temper-
ature was associated with a greater HR of COVID-19 fatality. These findings
were consistent with one recent study from Wuhan, China, which reported
that higher ambient temperature was related to a lower case fatality rate
due to COVID-19.27 However, the role of ambient temperature in COVID-19
fatality might be rather intricate due to the adverse effects of high and low
temperatures on human health.28–30 Other seasonal data are required to
determine the overall comprehensive effects of temperature.

Most COVID-19 cases were admitted in hospitals, particularly, Fangcang
shelter hospitals in Wuhan, and these were large and temporary hospitals
built by convertingpublic venues.31 In theFangcangshelter hospitals or infec-
tious disease zones of designated hospitals, the ventilation systems main-
tained air exchange fromoutside to inside, ensuring the plausibility and accu-
racy of exposure assessment. Although the underlying molecular
mechanisms of environmental pollutants and temperature on COVID-19
outcomes remain to be determined, prior studies offered some insight as
to potential biological plausibility.19,32–34 Exposure to air pollutants can
induce systemic oxidative stress and enhance inflammation, interacting
with SARS-CoV-2 (the virus that causes COVID-19) to damage lymphocytes
and impair the immune system.35 Elevated inflammatory factors and im-
mune dysfunction might trigger the cytokine storm syndrome and develop
into acute respiratory distress syndrome, which was associated with
COVID-19 disease severity and death.36 In addition, short-term effects of
cold temperatures on health mainly can result in restricted immune function
and lead to changes in autonomic nervous system function, inflammatory
response, and oxidative stress.37 In these situations, the symptoms of
COVID-19 would progress, and the patient’s condition would further
deteriorate.

This study adds new evidence on the association between environmental
factors and COVID-19 fatality. Comprehensive understanding of the role that
external environmental factorsplay in triggeringcase fatalitydue toCOVID-19
has valuable implications. Althoughwedo not need another reason to reduce
exposure to a poor environment, reporting these associations enriches the
long list of thehealth effectsof air pollution.Morecrucial is that thesefindings
shouldbeexpanded tochangeclinical practiceorpublic health programming,
including identificationofpatientswithpoorprognosisatearlystages,guiding
resource allocation, and improvement of prognosis. Findings suggest that
COVID-19 patients living in regions with high adverse environmental factors
may be more vulnerable to complications from the virus, specifically higher
risk for death. These environmental factors are key modifiable variables
relatedtoCOVID-19 fatality.Hence,allCOVID-19patientsshouldpayattention
toself-protection todecrease theirexposure toenvironmental stimuli, suchas
staying in a warmer environment and avoiding severe air pollution outside.

The results of stratified analyses indicated that those over age 65 were
more susceptible to COVID-19 death, which was in line with a previous
study.38 We also observed inconsistent associations across subgroups of
Hubei Province and outside Hubei. The reason for this may be due to a
The Innovation 2, 100139, August 28, 2021 3



Figure 1. Exposure-response curves for the effects of environmental factors The exposure-response curves for exposure to ambient temperature (A), PM2.5 (B), PM10 (C),
NO2 (D), SO2 (E), and O3 (F) versus case fatality due to COVID-19 (exposure window I) are shown. The solid and dashed lines represent log (hazard ratio) values and the 95%
CIs, respectively. Definition of abbreviations: CI, confidence interval; PM2.5, particulate matter with an aerodynamic diameter %2.5 mm; PM10, particulate matter with an
aerodynamic diameter %10 mm; SO2, sulfur dioxide; NO2, nitrogen dioxide; O3, ozone.
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high proportion of severe and critical cases and/or insufficient amounts of
medical services in Hubei Province due to it being an epicenter. In addition,
we observed a stronger effect of environmental exposures in mild cases
compared with severe ones, which could be explained by the scenario that
among the severe, there was a portion of COVID-19 intensive care cases
(about 19.5% of severe cases) likely admitted to the intensive care unit
with lower opportunity to be exposed to external environment factors.39 How-
ever, although patients were admitted to thewards, theywere still affected by
the external environment exposures, as there is continuous circulation be-
tween indoor and outdoor air.

Two exposure windows were used to examine the association of air pollu-
tion and temperature with COVID-19 fatality, and the estimates varied some-
what. We observed effects estimation of window II > window I, suggesting
that patients were more susceptible to external environmental stimuli as
COVID-19 progressed from the period of symptom onset to diagnosis. An un-
derlying mechanism linking this phenomenon might be that the body system
and internal environment experienced distinct changes in innate immune
response and inflammation activation as the disease progressed, causing
the body to enter a more susceptible and vulnerable state.40,41 Therefore, the
casesduring thissensitiveperiodshouldbegivenhigherpriorityandmorecare.

Strengths and limitations
Our study has several strengths: the large sample size of a stable target

population, a longitudinal study with individual-level information, clear tempo-
rality between exposure and outcomes, the lengthof the follow-up fromonset
through vital outcomes, and adjustment for a wide range of covariates using
regression models. It is recognized that the effects of environmental drivers
on health outcomes mainly depend on the approaches with which they are
evaluated. In this study, several exposure windows were used to evaluate
environmental short-term effects, which in turn added to the robustness of
the findings.
4 The Innovation 2, 100139, August 28, 2021
Our study also has some limitations. As this study used exposure data
based onmeasurements from fixed air monitoring stations as the surrogate
for individual exposure, exposure misclassification may be one concern.
Nevertheless, this exposure assessment approach has been widely used
to develop exposure estimations for large air pollution epidemiological
studies, and previous studies reported that applying the monitoring values
as personal exposure tended to cause underestimation of effects.42 The
observed effects may still contain residual confounding due to unavailability
of other individual behavioral risk factors and unmeasured time-varying con-
founding factors. Althoughsome relevant individual variables, suchasunder-
lying health conditions, BMI, and smoking, were not included in the analysis
due todataunavailability,weadjusted for clinical severity asoneproxy for the
unmeasured clinical information.43 In addition, our cohort was followed until
April 25, 2020. This decision was due to data availability, although that time
may not be sufficient to capture all outcomes. Moreover, although we have
added one binary variable to the model to control for the effects of city lock-
down, it is still insufficient to account for the lockdown effects on the associ-
ations due to lack of detailed controlled measures across different cities.

Conclusion
This study suggests that short-term exposure to air pollution and low tem-

perature could increase the case fatality due to COVID-19 in China. Research
on how environmental factors may drive COVID-19 case fatality is crucial to
guiding clinical practice and public health programming to curb influences
related to the outbreak.

MATERIAL AND METHODS
Study population and design

This retrospective cohort study used theNational Notifiable Disease Reporting Sys-
tem of China to enroll all confirmed COVID-19 cases from December 8, 2019, through
April 15, 2020. Cases were followed up for vital status until April 25, 2020. Eligible
www.cell.com/the-innovation
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Table 3. Subgroup analysis for the associations of COVID-19 fatality with environmental exposure

Variable

Temperaturea PM2.5
a PM10

a NO2
a SO2

a O3
a

HR (95% CI) p valueb HR (95% CI) p valueb HR (95% CI) p valueb HR (95% CI) p valueb HR (95% CI) p valueb HR (95% CI) p valueb

Age 0.02 <0.01 <0.01 <0.01 0.11 0.58

<65 1.00 (0.97, 1.02) 1.06 (1.02, 1.10) 1.05 (1.01, 1.09) 1.11 (1.00, 1.24) 0.89 (0.68, 1.17) 1.07 (1.00, 1.17)

R65 1.04 (1.02, 1.06) 1.14 (1.11, 1.17) 1.13 (1.11, 1.16) 1.34 (1.23, 1.45) 1.16 (0.98, 1.38) 1.10 (1.04, 1.16)

Sex 0.81 0.64 0.52 0.15 0.50 0.32

Male 1.07 (0.98, 1.17) 1.04 (0.96, 1.14) 1.07 (1.00, 1.17) 1.22 (1.13, 1.33) 1.03 (0.86, 1.23) 1.07 (1.01, 1.13)

Female 1.09 (0.97, 1.23) 1.07 (1.00, 1.17) 1.12 (1.00, 1.25) 1.35 (1.21, 1.51) 1.14 (0.90, 1.45) 1.12 (1.04, 1.20)

Severity <0.01 0.09 0.10 <0.01 0.08 0.39

Mild 1.13 (1.08, 1.20) 1.18 (1.11, 1.27) 1.16 (1.09, 1.23) 1.62 (1.36, 1.94) 1.91 (1.05, 3.51) 1.18 (1.04, 1.35)

Severe 1.01 (1.00, 1.03) 1.11 (1.09, 1.13) 1.10 (1.08, 1.12) 1.25 (1.16, 1.34) 1.10 (0.96, 1.27) 1.11 (1.06, 1.17)

Location <0.01 <0.01 <0.01 <0.01 0.86 <0.01

Wuhan 1.15 (1.12, 1.18) 1.23 (1.19, 1.28) 1.19 (1.15, 1.23) 1.44 (1.33, 1.57) 1.12 (0.69, 1.79) 1.19 (1.11, 1.28)

Non-Wuhan 1.00 (0.98, 1.02) 1.06 (1.03, 1.09) 1.06 (1.03, 1.09) 1.04 (0.93, 1.16) 1.07 (0.92, 1.25) 1.03 (0.96, 1.09)

Province <0.01 0.11 0.03 0.03 <0.01 0.07

Hubei 1.12 (1.09, 1.15) 1.04 (1.00, 1.05) 1.08 (1.03, 1.13) 1.65 (1.55, 1.76) 1.38 (1.12, 1.71) 1.12 (0.96, 1.32)

Non-Hubei 1.02 (1.00, 1.05) 1.09 (1.04, 1.15) 1.02 (1.00, 1.04) 1.33 (1.11, 1.59) 0.71 (0.57, 0.89) 0.96 (0.92, 1.00)

Lockdownc 0.29 0.11 0.07 0.16 0.06 <0.01

After 1.05 (1.02, 1.09) 1.07 (1.02, 1.13) 1.06 (1.02, 1.11) 1.17 (1.04, 1.32) 0.86 (0.51, 1.22) 0.93 (0.53, 1.33)

Before 1.03 (1.01, 1.04) 1.12 (1.09, 1.14) 1.11 (1.08, 1.14) 1.30 (1.19, 1.42) 1.37 (1.16, 1.62) 1.21 (1.14, 1.29)

Note: HR, hazard ratio; PM2.5, particulate matter with an aerodynamic diameter%2.5 mm; PM10, particulate matter with an aerodynamic diameter%10 mm; SO2,
sulfur dioxide; NO2, nitrogen dioxide; O3, ozone.
aAll the environmental factors were estimated using exposure window I (mean exposure value from the date of symptom onset to the date of diagnosis). The effects of
environmental factors were estimated using the adjusted model, adjusted for age, sex, temperature (only for the pollutants), relative humidity, occupation, residence,
severity of the illness, location, transfer history, temporal trend, and lockdown.
bp values were estimated using likelihood ratio test by comparing different subgroups, and p < 0.05 indicates statistical significance.
cLockdown: on January 23, 2020, the central government of China imposed a lockdown in Wuhan and other cities in Hubei.

Report
T
he

Innovation
participants included those: (1) diagnosed as confirmed COVID-19 cases with a pos-
itive viral nucleic acid test result on oropharyngeal swab samples in strict accordance
with national criteria and (2) who had complete medical and epidemiological informa-
tion, including severity of the illness, date of symptom onset, and date of diagnosis. A
total of 1,752 cases (2.38%) were excluded from 73,560 original cases due to unavail-
ability of environmental exposure data. The remaining 71,808 COVID-19 cases were
included in this analysis. General demographic and illness-related characteristics
were obtained from the National Notifiable Disease Reporting System of China,
including age, sex, birth date, occupation, residential location, severity of the illness,
hospital transfer history, date of symptom onset, date of diagnosis, and date of death
(for the deceased).

Approval to conduct this study was obtained from the Biomedical Research Ethics
Review Committee of Sun Yat-sen University School of Public Health (no. 2020016).

Estimation of environmental exposures
Daily ambient air pollution data (PM2.5, PM10, NO2, SO2, and O3) during the study

period were obtained from China’s National Real-Time Publishing Platform for Daily
Air Quality, which included 1,256 monitors at the end of 2015, with the number in
each city ranging from 1 to 17. There is a series of supporting standards and regula-
tions for air-quality monitoring process and choice of location, which could ensure
representativeness of the general background levels of air pollution for the popula-
tion’s daily air pollution exposure.44 Due to the unavailability of each case’s detailed
residential address, city-wide average data were used to represent exposure based
on the exposure windows. Each participant’s exposures were estimated by matching
residential city with air pollution concentration in the corresponding city. Considering
possible differences and susceptibility of short-term exposure to adverse environ-
mental factors at different stages of COVID-19, we divided the exposures into different
periods. Exposurewindow I represents the period of time fromsymptomonset to diag-
nosis, indicating the environmental exposure before hospitalization or quarantining.
Exposure window II includes the time from date of diagnosis to date of death or recov-
ll
ery or end of the study period and represents participants’ environmental exposures
during treatment. In addition, we combined the two exposure windows to create
one exposure window for the full course of symptomatic disease (i.e., symptom onset
to death or recovery or end of the study). This complete exposure window was calcu-
lated for each participant to assess overall effects of the environmental factors. The
county-level daily temperature (�C) and relative humidity (%) were obtained from the
National Meteorological Monitoring Center. Mean temperature was then calculated
for each case for each of the aforementioned exposure windows.

Statistical analysis
Student’s t test was used to examine statistical differences for the continuous vari-

ables according to the vital status and expressed asmean ± standard deviation (SD).
Categorical variables were presented with percentages, and chi-square tests were
used to evaluate differences. Spearman’s correlation coefficients were estimated
among study variables to exclude the potential multicollinearity.

Cox proportional hazards models were applied to estimate the association be-
tween COVID-19 fatality and the two exposures of air pollution and temperature.
Schoenfeld residuals were performed to evaluate the proportional hazards assump-
tion and no violations were observed (p > 0.05). Univariate analysis was conducted,
and thenmultivariatemodels were generated to control for potential confounding fac-
tors. Two criteria were used to select covariates for the final adjusted model: (1) vari-
ables known or hypothesized to be risk factors for COVID-19 fatality according to the
previous study38 and (2) variables significantly associatedwith COVID-19 fatality in the
univariate analysis (Table S1). Based on these criteria, the following variables were
included in the model: sex (male or female), age (<25 years, 25–65 years, and R65
years), occupation (medical-related, service-related, office worker, homemaker, and
others), residence (permanent or temporary), clinically diagnosed severity of the illness
(mild, moderate, severe, and critical), location (Wuhan or non-Wuhan), transfer to a
higher-level hospital (yes or no), and relative humidity and temperature. Nonparametric
smoothingwas done byway of a natural smoothing splines function for trend on days
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included in the model to account for the natural temporal trend of associations and
other potential factors related to COVID-19 fatality. The temporal trend, temperature,
and relative humidity were characterized by natural cubic splines for their potentially
nonlinear relationship, with 3 degrees of freedom for each based on previous
studies.45,46 In addition, to account for the effects of city lockdown, we determined
whether the date of symptoms of onset for each case occurred before or after the
city lockdown in each city and added one binary variable to the model. The Chinese
government committed to paying for all COVID-19-related hospital bills for every pa-
tient. In theory, thiswould eliminate confounding bysomehealthandmedical variables
related to access to care and resources. Despite this, we included city-level per-capita
GDP and hospital beds per 1,000 persons (each as derived from the China Health Sta-
tistical Yearbook2019) in themodel to adjust for potential confoundingbias. Details of
the overall model are illustrated in the supplemental information (Text S1 and S2). We
also plotted the exposure-response relationship curves between environmental fac-
tors and COVID-19 fatality with natural cubic spline functions with 3 degrees of
freedom in the regression model to examine the nonlinear relationship. Hazard ratios
(HRs) and 95% confidence intervals (CIs) were computed for COVID-19 fatality asso-
ciated with per �C decrease in temperature or per 10 mg/m3 increase in each air
pollutant.
Subgroup analysis
Stratified analyses bysex (male and female), agegroup (<65 years andR65years),

location (Wuhan and non-Wuhan), and the clinically diagnosed severity of illness (mild
[including the originalmild andmoderate] and severe [including the original severe and
critical]) were performed to examinepotential effectmodifiers. In addition, considering
the potential disparities in medical resources, treatment supplies, and public health in-
terventionsby region and time, study participantswere divided into those living outside
of Hubei Province and within Hubei, before lockdown and after lockdown. Separate
Coxmodels for each subgroup described abovewere applied to obtain corresponding
HRs for environmental factors. The statistical difference between subgroups was

calculated as follows: E1 � E2 ± 1:96 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSE1Þ2 + ðSE2Þ2

q
. E1 , E2 , SE1 , and SE2 pre-

sented the effect estimates and corresponding SDs in two subgroups.47 Considering
the possible type I errors introducedbymultiple runsof the likelihood ratio test, wecon-
ducted the Bonferroni correction of likelihood ratio test for testingmultiple hypotheses
to avoid potential type I errors.48
Sensitivity analysis
Several sensitivity analyses were performed to examine the robustness of our es-

timates. First, we conducted two-pollutant models with adjustment for a second air
pollutant to assess the independent effect of the primary one. Second, different de-
grees of freedom from 2 to 6 for temperature and relative humidity were specified
to examine the impact of alternative degrees of freedom on the estimated effects
of environmental factors. Finally, other exposure windowswere assigned to the partic-
ipants, including single-day exposure prior to symptom onset date and diagnosis date
(lag0 to lag3 for air pollution, lag0 to lag10 for temperature). Considering the accumula-
tive effects of environmental factors, the associations between the exposures and
COVID-19 were examined using multiday lag structures: a moving average of the cur-
rent day and the previous 1, 2, and 3 or more days (lag01, lag02, and lag03 for air pollu-
tion; lag03, lag05, lag07, and lag010 for temperature).

Statistical analyses were performed by R software. A value of two-tailed p < 0.05
was considered statistically significant.
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