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Abstract

In recent years, the trigonometric families of continuous distributions have found a place of

choice in the theory and practice of statistics, with the Sin-G family as leader. In this paper,

we provide some contributions to the subject by introducing a flexible extension of the Sin-G

family, called the transformed Sin-G family. It is constructed from a new polynomial-trigono-

metric function presenting a desirable “versatile concave/convex” property, among others.

The modelling possibilities of the former Sin-G family are thus multiplied. This potential is

also highlighted by a complete theoretical work, showing stochastic ordering results, study-

ing the analytical properties of the main functions, deriving several kinds of moments, and

discussing the reliability parameter as well. Then, the applied side of the proposed family is

investigated, with numerical results and applications on the related models. In particular, the

estimation of the unknown model parameters is performed through the use of the maximum

likelihood method. Then, two real life data sets are analyzed by a new extended Weibull

model derived to the considered trigonometric mechanism. We show that it performs the

best among seven comparable models, illustrating the importance of the findings.

1 Introduction

Recent advances in probability distribution theory and applications have seen the rise of vari-

ous general families of distributions, successfully applied for different statistical problems. In

this regard, a nice survey can be found in [1]. Here, we put the light on the trigonometric fami-

lies of continuous distributions, i.e., those defined by a cumulative distribution function (cdf)

involving trigonometric functions (sine, cosine, tangent, cotangent, and various combinations

of these). The pioneer work is about the Sin-G family developed by [2–5]. As indicated by its

name, it is defined around the sine function; the corresponding cdf is given by

Fðx; zÞ ¼ sin
p

2
Gðx; zÞ

h i
; x 2 R; ð1Þ

where G(x;z) is a baseline cdf of a continuous distribution with parameter(s) vector denoted
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by z. It is now demonstrated that the Sin-G family has the ability to provide flexible statistical

models to fit data of various nature. Also, it is a simple alternative to the model derived to the

baseline distribution, without the addition of parameter. For instance, in [2], the exponential

distribution is used as a baseline to construct the SinE model, which reveals to suitably fit the

famous bladder cancer patients data of [6]. Also, he has the better fit as compared to some clas-

sical models such as the former exponential one, having better Akaike information criteria

(AIC), Bayesian information criteria (BIC) and Kolmogorov-Smirnov (KS) test values. On the

other side, based on the inverse Weibull distribution (see [7]), the SinIW model was intro-

duced by [4], with application to the so-called Guinea pigs data by [8], providing better BIC in

comparison to some other solid models. A“free for all” R package on the SinIW model is pro-

vided in [9]. As a matter of fact, the qualities of the models derived to the Sin-G family have

inspired other general families of continuous distributions also centered around trigonometric

functions, such as the Cos-G family by [5], CS-G family by [10], NSin-G family by [11],

TransSC-G family by [12], SinTL-G family by [13], SinKum-G family by [14], and SinEOF-G

family by [15]. The majority of these families are based on the Sin-G structure, with no addi-

tional tuning parameters or transformations.

In this paper, we go further the Sin-G family by proposing a new extended version of it,

called the transformed Sin-G (TS-G) family. The corresponding cdf is derived to (1), with the

use of a simple one-parameter polynomial-trigonometric transformation. This transformation

has the following features: (i) it is analytically simple and includes the non-transformed case,

(ii) it has the properties of a continuous cdf, that is, has its values into the unit interval, is con-

tinuous, almost everywhere differentiable and increasing, and (iii) it can be convex or concave,

or none of them, for well-identified values of the parameter. Thanks to its versatility, this trans-

formation significantly enhances the flexible properties of (1), and the baseline cdf as well.

Thus, the TS-G family distinguishes itself from other modified Sin-G families by its overall

simplicity, original polynomial-trigonometric functions, and the advantage of flexible kurtosis,

skewness, versatile distribution tails, and various hazard rate shapes, as a result of the consid-

ered transformation. Thus, the TS-G family can provide interesting models for diverse fitting

purposes. This practical aspect, along with important theoretical results, are developed in this

study.

The rest of the paper is organized as follows. The basics on the TS-G family are presented in

Section 2. Also, an emphasis is put on a special distribution of the family based on the Weibull

distribution, motivated by its desirable shapes characteristics in the modelling sense. In Section

3, interesting properties of the TS-G family are studied, including stochastic ordering results,

equivalence properties, critical points analysis, series expansion involving known exponen-

tiated functions, moments, and reliability parameter. In Section 4, by adopting a statistical

approach, the TS-G model parameters are estimated with the maximum likelihood method,

supported by a simulation study. Then, applications of this special model are addressed in Sec-

tion 5, showing how the new family can be of interest to fit various data sets, outperforming

seven other solid extended or modified Weibull models of the literature. Section 6 formulates

concluding remarks.

2 Basics on the TS-G family

In this section, the TS-G family is defined, with motivations and discussions.

2.1 On a special polynomial-trigonometric function

The following result presents some interesting features of a simple polynomial-trigonometric

function, which will be at the basis of the TS-G family.
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Proposition 1 Let λ 2 [0, 1] and Tλ(x) be the following parametric function:

TlðxÞ ¼ sin
p

2
x

� �
� l

p

2
x cos

p

2
x

� �
; x 2 ½0; 1�; ð2Þ

with Tλ(x) = 0 if x< 0 and Tλ(x) = 1 if x> 1. Then, the following properties hold:

• Tλ(x) has the properties of a continuous cdf,

• Tλ(x) can be convex or concave according to the values of λ. In particular, for λ 2 [0, 1/3],

Tλ(x) is concave and, for λ 2 [1/2, 1], Tλ(x) is convex.

• For λ 2 (1/3, 1/2), Tλ(x) can be neither convex nor concave.

Proof. First of all, the following inequality holds: for y 2 [0, π/2], we have

sin ðyÞ � y cos ðyÞ; ð3Þ

(see [16]). Let us now prove the first point of the proposition. Since λ 2 [0, 1], it follows from

(3) that 0� T1(x)�Tλ(x)�sin[(π/2)x] � 1. Also, Tλ(x) satisfies Tλ(0) = 0 and Tλ(1) = 1, it is

continuous, differentiable and, by differentiating on x, we have

d
dx

TlðxÞ ¼
p

2
ð1 � lÞ cos

p

2
x

� �
þ l

p

2
x sin

p

2
x

� �h i
:

As a sum of positive functions, we have dTλ(x)/dx� 0, so Tλ(x) is increasing. We conclude

that Tλ(x) has the properties of a continuous cdf. For the second point of the proof, let us

notice that, by differentiating on x, we have

d2

dx2
TlðxÞ ¼

p2

4
ð2l � 1Þ sin

p

2
x

� �
þ l

p

2
x cos

p

2
x

� �h i
:

Therefore, if λ 2 [0, 1/3], it follows from 2λ − 1� −1/3 and (3) that

d2

dx2
TlðxÞ � �

p2

12
sin

p

2
x

� �
�
p

2
x cos

p

2
x

� �h i
� 0:

That is, Tλ(x) is concave. On the other hand, if λ 2 [1/2, 1], we have d2 Tλ(x)/dx2� 0 as a

sum of positive functions, implying that Tλ(x) is convex.

Now, for λ = 2/5 2 (1/3, 1/2), we have

d2

dx2
Tlð0:1Þ ¼ 0:07592538 > 0;

d2

dx2
Tlð0:8Þ ¼ � 0:08606892 < 0;

implying that Tλ(x) can be neither convex nor concave. As a visual approach, if we set

U‘ðxÞ ¼ d2Tl‘
ðxÞ=dx2, with λℓ = ℓ/2 + (1 − ℓ)/3 and ℓ 2 {0.1, 0.2, . . ., 0.9}, so that λℓ 2 (1/3, 1/

2), Fig 1 shows that Uℓ(x) can be positive and negative, implying that T lðxÞ is neither convex

nor concave for the considered values of λ. This concludes the proof of Proposition 1.

One can remark that the function Tλ(x) defined by (2) can be written as

TlðxÞ ¼ T�
l
f sin ½ðp=2Þx�g, where

T�
l
ðxÞ ¼ x � l arcsin ðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2
p

; x 2 ½0; 1�:

One can establish that the function T�
l
ðxÞ has the properties of a cdf, which is not men-

tioned in the existing literature.

In view of Proposition 1, the transformation function T�
l
ðxÞ allows to “convexify (or not)”

the convex cdf s(x) = sin[(π/2)x], x 2 [0, 1], while keeping its cdf properties. This ability is not
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satisfied by some other simple transformation functions, as the power transformation, i.e.,

T��
g
ðxÞ ¼ xg with γ> 0, for instance. This aspect is the driving force behind the TS-G family,

which aims to expand the Sin-G family in a straightforward manner to open new statistical

perspectives. We show the convex/concave properties of the function Tλ(x) given by (2) in Fig

2, by considering several values for λ.

2.2 Definition

By taking the benefits of the flexibility of Tλ(x) given by (2) as described in Proposition 1, the

proposed TS-G family of continuous distributions is defined by the following cdf:

Fðx; l; zÞ ¼ sin
p

2
Gðx; zÞ

h i
� l

p

2
Gðx; zÞ cos

p

2
Gðx; zÞ

h i
; x 2 R; ð4Þ

where λ 2 [0, 1] and, as usual, G(x;z) is a baseline cdf of a continuous distribution with param-

eter(s) vector denoted by z.

That is, by considering the transformations Tλ(x) and T�
l
ðxÞ discussed above, we have F(x;λ,

z) = Tλ[G(x;z)] or, equivalently, Fðx; l; zÞ ¼ T�
l
f sin ½ðp=2ÞGðx; zÞ�g, motivating the name of

“transformed Sin-G family”. One can notice that the cdf of the former Sin-G family is derived

by taking λ = 0. Also, based on Proposition 1 and the convex/concave properties of T�
l
ðxÞ, we

argue that the overall flexibility of the cdf of the former Sin-G family provided by (1) is

enhanced. This is concretized by the addition of the modulating polynomial-cosine term λ(π/

2)G(x;z)cos[(π/2)G(x;z)], which opens up a whole new world of possibilities.

Also, one can write F(x;λ, z) as a simple mixture of two cdfs of the TS-G family itself: F(x;0,

z) and F(x;1, z), with the weights 1 − λ and λ, respectively, i.e.,

Fðx; l; zÞ ¼ ð1 � lÞFðx; 0; zÞ þ lFðx; 1; zÞ:

Hence, the role of λ is to balance F(x;0, z) and F(x;1, z), each reaching different targets in

terms of statistical modelling.

Fig 1. Plots of the function Uℓ(x) for ℓ 2 {0.1, 0.2, . . ., 0.9}.

https://doi.org/10.1371/journal.pone.0250790.g001
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Among the other functions of interest, the survival function (sf) of the TS-G family is given

by

Sðx; l; zÞ ¼ 1 � sin
p

2
Gðx; zÞ

h i
þ l

p

2
Gðx; zÞ cos

p

2
Gðx; zÞ

h i
; x 2 R:

Upon an almost everywhere differentiation of F(x;λ, z) with respect to x, the corresponding

probability density function (pdf) is given by

f ðx; l; zÞ ¼
p

2
gðx; zÞ

(

l
p

2
Gðx; zÞ sin

p

2
Gðx; zÞ

h i
þ ð1 � lÞ cos

p

2
Gðx; zÞ

h i
)

; ð5Þ

where g(x;z) is the pdf of the baseline distribution, i.e., obtained by an almost everywhere dif-

ferentiation of G(x;z).

Another important function of the TS-G family, specially when the support of the baseline

distribution is (0, +1), is the hazard rate function (hrf) defined by

hðx; l; zÞ ¼

p

2
gðx; zÞfl

p

2
Gðx; zÞ sin

p

2
Gðx; zÞ

h i
þ ð1 � lÞ cos

p

2
Gðx; zÞ

h i
g

1 � sin
p

2
Gðx; zÞ

h i
þ l

p

2
Gðx; zÞ cos

p

2
Gðx; zÞ

h i ; x 2 R: ð6Þ

For the importance of the sf and hrf, in reliability analysis mainly, we may refer the reader

to [17], and the references therein.

Fig 2. Plots of the function Tλ(x) for λ 2 {0.1, 0.2, . . ., 1}.

https://doi.org/10.1371/journal.pone.0250790.g002
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2.3 A special distribution: The TSW distribution

Naturally, each choice for G(x;z) gives a new TS-G distribution. Here, we focus our attention

on the Weibull distribution as baseline, i.e., defined by the following cdf:

Gðx; a; bÞ ¼ 1 � e� axb ; x > 0; ð7Þ

and G(x;α, β) = 0 if x� 0, where α> 0 and β> 0 are scale and shape parameters, respectively.

As a main interest, the Weibull distribution is known to be an alternative to the exponential

distribution, offering more flexible hazard rate shapes; decreasing and increasing shapes can

be observed. It has been involved with success in a plethora of applications requiring the analy-

sis of lifetime and reliability data. In this regard, we may refer the reader to [18–20].

We thus aim to extend the Weibull distribution, along with their properties, via the use of

the TS-G family. That is, by inserting (7) into (4), we introduce the TSW distribution defined

by the following cdf:

Fðx; l; a; bÞ ¼ sin
p

2
ð1 � e� axbÞ

h i
� l

p

2
ð1 � e� axbÞ cos

p

2
ð1 � e� axbÞ

h i

¼ cos
p

2
e� axb

h i
� l

p

2
ð1 � e� axbÞ sin

p

2
e� axb

h i
; x > 0;

and F(x;λ, α, β) = 0 if x� 0, where the second expression is obtained after some trigonometric

manipulations.

Also, the corresponding sf, pdf and hrf are, respectively, given by

Sðx; l; a;bÞ ¼ 1 � cos
p

2
e� axb

h i
þ l

p

2
ð1 � e� axbÞ sin

p

2
e� axb

h i
; x > 0;

and S(x;λ, α, β) = 1 if x� 0,

f ðx; l; a;bÞ ¼
p

2
abxb� 1e� axb l

p

2
ð1 � e� axbÞ cos

p

2
e� axb

h i
þ ð1 � lÞ sin

p

2
e� axb

h in o

; x > 0;

and f(x;λ, α, β) = 0 if x� 0, and

hðx; l; a;bÞ ¼

p

2
abxb� 1e� axb l

p

2
ð1 � e� axbÞ cos

p

2
e� axb

h i
þ ð1 � lÞ sin

p

2
e� axb

h in o

1 � cos
p

2
e� axb

h i
þ l

p

2
ð1 � e� axbÞ sin

p

2
e� axb

h i ;

x > 0;

and h(x;λ, α, β) = 0 if x� 0.

After some graphical investigations, the curvature properties of the functions of the TSW

distribution reveal to be desirably versatile. Evidence can be seen in Fig 3, which displays some

plots of the corresponding pdf and hrf for various values of the parameters.

In particular, Fig 3(a) indicates that the pdf of the TSW distribution has various skewness

shapes (near symmetrical, left, right, bathtub, reversed-J shapes, mainly), along with different

kurtosis properties. Fig 3(b) reveals that the corresponding hrf possesses versatile shapes, such

as decreasing, increasing, bathtub (classic and upside-down) and reversed-J shapes. These

observations imply that the TSW distribution is adequate to fit heterogeneous data sets. In our

study, this aspect will be developed in Section 5, where the TSW distribution is used to fit two

real life data sets. Also, it will be compared with other extended or modified Weibull models,

and the results will be quite favorable to the TSW model.

PLOS ONE The transformed Sin-G family

PLOS ONE | https://doi.org/10.1371/journal.pone.0250790 May 11, 2021 6 / 22

https://doi.org/10.1371/journal.pone.0250790


3 Notable mathematical properties

Here, we explore some mathematical properties of interest satisfied by the TS-G family.

3.1 Stochastic ordering results

Stochastic ordering results are crucial to understand a certain hierarchy existing between the

distributions, with consequence on their comparison from the modelling point of view. In the

framework of the TS-G family, the following result presents some relations involving the cdf of

the TS-G family (beyond the following immediate stochastic ordering property: F(x;λ, z)�F
(x;0, z)).

Proposition 2 The following inequalities hold:

• If λ2� λ1� 0, we have F(x;λ2, z)�F(x;λ1, z).

• For λ 2 [0, 2/π], we have F(x;λ, z)�F�(x;z), where

F�ðx; zÞ ¼ Gðx; zÞ 1 � cos
p

2
Gðx; zÞ

h in o

is a valid cdf.

Proof. Based on (4), since λ2� λ1 and the involved functions are positive, we have

sin
p

2
Gðx; zÞ

h i
� l2

p

2
Gðx; zÞ cos

p

2
Gðx; zÞ

h i
� sin

p

2
Gðx; zÞ

h i
� l1

p

2
Gðx; zÞ cos

p

2
Gðx; zÞ

h i
;

implying the desired inequality.

Fig 3. Selection of plots for (a) the pdf and (b) the hrf of the TSW distribution.

https://doi.org/10.1371/journal.pone.0250790.g003
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For the second point, the following inequality holds: for y 2 [0, π/2], we have sin(y)�y(2/π)

(see [16]). Hence, based on (4), since λ 2 [0, 2/π], we have

Fðx; l; zÞ � Gðx; zÞ � l
p

2
Gðx; zÞ cos

p

2
Gðx; zÞ

h i

� Gðx; zÞ � Gðx; zÞ cos
p

2
Gðx; zÞ

h i
¼ F�ðx; zÞ:

Then, one can remark that F�(x;z) is the cdf of the rv Z = max(X, Y), where X is a rv having

the (baseline) cdf G(x;z) and Y is a rv having the cdf of the Cos-G family (see [5]), with X and

Y independent.

The following result is about a likelihood stochastic ordering of the TS-G family. We refer

the reader to [21] for the details on the concept of likelihood stochastic order.

Proposition 3 Let X1 be a rv having the cdf F(x;λ1, z) and X2 be a rv having the cdf F(x;λ2, z).

Then, if λ2� λ1, we have X1� X2 in the likelihood stochastic ordering sense.
Proof. Following [21], we have X1� X2 in the likelihood stochastic ordering sense if and

only if the following ratio function is decreasing with respect to x:

rðx; l1; l2; zÞ ¼
f ðx; l1; zÞ

f ðx; l2; zÞ
; x 2 R;

where f(x;λ1, z) and f(x;λ2, z) are the corresponding pdfs of F(x;λ1, z) and F(x;λ2, z), respec-

tively. That is, by using (5), we have

rðx; l1; l2; zÞ ¼
l1

p

2
Gðx; zÞ sin

p

2
Gðx; zÞ

h i
þ ð1 � l1Þ cos

p

2
Gðx; zÞ

h i

l2

p

2
Gðx; zÞ sin

p

2
Gðx; zÞ

h i
þ ð1 � l2Þ cos

p

2
Gðx; zÞ

h i ; x 2 R:

Upon an almost everywhere differentiation with respect to x, after some developments, we

get

d
dx

rðx; l1; l2; zÞ ¼ ðl1 � l2Þ
pgðx; zÞ½pGðx; zÞ þ sin ½pGðx; zÞ��

4 l2

p

2
Gðx; zÞ sin

p

2
Gðx; zÞ

h i
þ ð1 � l2Þ cos

p

2
Gðx; zÞ

h in o2
;

which is negative if and only if λ2� λ1, implying the desired result.

3.2 Equivalence properties

Here, some equivalence properties of crucial functions of the TS-G family are discussed, which

can be helpful to find their limits and also, understand the tails properties of the distribution.

As G(x;z)!0, we establish that

Fðx; l; zÞ �
p

2
ð1 � lÞGðx; zÞ; f ðx; l; zÞ �

p

2
ð1 � lÞgðx; zÞ; hðx; l; zÞ �

p

2
ð1 � lÞgðx; zÞ:

Also, as G(x;z)!1, we have

Fðx; l; zÞ � 1 �
p2

4
l½1 � Gðx; zÞ�; f ðx; l; zÞ �

p2

4
lgðx; zÞ; hðx; l; zÞ �

gðx; zÞ

1 � Gðx; zÞ
:

In each case, we see how the new parameter λ modulates the limits; it has a strong effect in

this regard, except for the hrf when G(x;z)!1.
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In the case of the TSW distribution as described in Subsection 2.3, the following equiva-

lence hold. As x! 0, we have

Fðx; l; a; bÞ �
p

2
ð1 � lÞaxb; f ðx; l; a; bÞ �

p

2
ð1 � lÞabxb� 1

and

hðx; l; a; bÞ �
p

2
ð1 � lÞabxb� 1:

Therefore, we obtain limx! 0 f(x;λ, α, β) = limx! 0 f(x;λ, α, β) = ℓ with ℓ = +1 if β< 1,

ℓ = (π/2)(1 − λ)α if β = 1 and ℓ = 0 if β> 1.

Also, as x! +1, we have

Fðx; l; a;bÞ � 1 �
p2

4
le� axb ; f ðx; l; a;bÞ �

p2

4
labxb� 1e� axb

and

hðx; l; a;bÞ � abxb� 1:

Hence, we have limx! +1 f(x;λ, α, β) = 0 in all the situations, and limx! +1 h(x;λ, α, β) =

ℓ with ℓ = 0 if β< 1, ℓ = α if β = 1 and ℓ = +1 if β> 1.

3.3 Critical points

Some analytical facts about the critical points of functions of the TS-G family are now pre-

sented. First of all, the study of critical point(s), i.e., mode(s), of f(x;λ, z) informs us on the

possible singularities of the related model. A critical point of f(x;λ, z), say x�, is solution of the

following non-linear equation: df(x;λ, z)/dx = 0, which is equivalent to be solution of the fol-

lowing more tractable non-linear equation: d{log[f(x;λ, z)]}/dx = 0, i.e.,

dgðx; zÞ=dx
gðx; zÞ

þ
p

2
gðx; zÞ

ð2l � 1Þ sin
p

2
Gðx; zÞ

h i
þ
p

2
lGðx; zÞ cos

p

2
Gðx; zÞ

h i

l
p

2
Gðx; zÞ sin

p

2
Gðx; zÞ

h i
þ ð1 � lÞ cos

p

2
Gðx; zÞ

h i ¼ 0:

Then, the nature of x� depends on the values of Z ¼ d2f log ½f ðx; l; zÞ�g=dx2jx¼x� . More spe-

cifically, x� is designated as a local maximum point if η< 0, an inflection point if η = 0, and a

local minimum point if η> 0.

The same methodology can be applied to study the critical points for h(x;λ, z), which can be

useful to identify specific hazard rate shapes (monotonic, bathtub, S. . .) for a modelling aim.

Let us just mention that a critical point for h(x;λ, z) is solution of the following non-linear

equation: d{log[h(x;λ, z)]}/dx = 0, i.e.,

dgðx; zÞ=dx
gðx; zÞ

þ
p

2
gðx; zÞ

ð2l � 1Þ sin
p

2
Gðx; zÞ

h i
þ
p

2
lGðx; zÞ cos

p

2
Gðx; zÞ

h i

l
p

2
Gðx; zÞ sin

p

2
Gðx; zÞ

h i
þ ð1 � lÞ cos

p

2
Gðx; zÞ

h i

þ

p

2
gðx; zÞ l

p

2
Gðx; zÞ sin

p

2
Gðx; zÞ

h i
þ ð1 � lÞ cos

p

2
Gðx; zÞ

h in o

1 � sin
p

2
Gðx; zÞ

h i
þ l

p

2
Gðx; zÞ cos

p

2
Gðx; zÞ

h i ¼ 0:
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Clearly, in most of the cases, the critical points of f(x;λ, z) and h(x;λ, z) have not closed-

forms. They can however be determined as numerical values by using mathematical softwares,

as Mathematica, Python, R, Maltlab. . .

Concerning the TSW distribution, numerical investigations, supported by Fig 3 as well,

show that it is unimodal, with a corresponding hrf that can have one critical point.

3.4 A series expansion

The following result establishes a new representation of the pdf of the TS-G family involving

exponentiated baseline pdfs. Such results are common for the pdfs of modern general families

of continuous distributions (see, e.g., [4, 11, 22]).

Proposition 4 For any x such that G(x;z)<1, the following series expansion holds:

f ðx; l; zÞ ¼
Xþ1

k¼0

aku2kþ1ðx; zÞ;

where ak = (π/2)2k+1(−1)k[1 − λ(2k + 1)]/(2k + 1)! and υγ = γg(x;z)G(x;z)γ−1, with γ = 2k + 1.

Proof. Owing to the series expansions of the sine and cosine functions, after some develop-

ments, we get

Fðx; l; zÞ ¼ sin
p

2
Gðx; zÞ

h i
� l

p

2
Gðx; zÞ cos

p

2
Gðx; zÞ

h i
;

¼
Xþ1

k¼0

ð� 1Þ
k

ð2kþ 1Þ!

p

2
Gðx; zÞ

h i2kþ1

� l
p

2
Gðx; zÞ

Xþ1

k¼0

ð� 1Þ
k

ð2kÞ!
p

2
Gðx; zÞ

h i2k

¼
Xþ1

k¼0

ak½Gðx; zÞ�
2kþ1

:

We end the proof of Proposition 4 by differentiating the above function with respect to x.

Proposition 4 is of interest because the properties of most of the exponentiated standard

distributions are well known, and thus, can be used to determine those of the TS-G family.

Also, from the practical point of view, it allows us to define some integral terms by the means

of (infinite) sums, which sometimes give less error than compute the integral directly. In this

regard, we refer to the discussion in [22].

In the setting of the TSW distribution, we have

f ðx; l; a; bÞ ¼
Xþ1

k¼0

aku2kþ1ðx; a;bÞ;

where υ2k+1(x;z) denotes the pdf of the exponentiated Weibull distribution, defined with

power parameter 2k + 1 (see [23]), i.e.,

u2kþ1ðx; a; bÞ ¼ ð2kþ 1Þabxb� 1e� axbð1 � e� axbÞ2k; x > 0;

and υ2k+1(x;α, β) = 0 if x� 0. Further details about the exponentiated Weibull distribution can

also be found in [24, 25].

3.5 Generalities on the moments

Let X be a rv having the cdf F(x;α, β, z) given by (4) (and the pdf f(x;α, β, z) given by (5)) and ϕ
(x) be a function. Then, assuming that it makes mathematical sense, the expectation of ϕ(X) is
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obtained as

Y�ðXÞ ¼ E½�ðXÞ� ¼
Z þ1

� 1

�ðxÞf ðx; l; zÞdx

¼
R þ1
� 1

�ðxÞ
p

2
gðx; zÞ l

p

2
Gðx; zÞ sin

p

2
Gðx; zÞ

h i
þ ð1 � lÞ cos

p

2
Gðx; zÞ

h in o
dx

¼ Ið1Þ� þ Ið2Þ� ;

where, by denoting QG(u;z) the inverse function of G(x;z),

Ið1Þ� ¼ l
p2

4

Z þ1

� 1

�ðxÞgðx; zÞGðx; zÞ sin
p

2
Gðx; zÞ

h i
dx

¼ l
p2

4

Z 1

0

�½QGðu; zÞ�u sin
p

2
u

� �
du

and

Ið2Þ� ¼ ð1 � lÞ
p

2

Z þ1

� 1

�ðxÞgðx; zÞ cos
p

2
Gðx; zÞ

h i
dx

¼ ð1 � lÞ
p

2

Z 1

0

�½QGðu; zÞ� cos
p

2
u

� �
du:

These two integrals can be determined analytically, depending on the complexity of the

function ϕ[QG(u;z)]. In all the situations, for given baseline cdf and λ, Θϕ(X) can be calculated

by the means of numerical techniques, implemented in any mathematical software.

Also, for an alternative analytical treatment, Proposition 4 implies that

Y�ðXÞ ¼
Xþ1

k¼0

ak

Z þ1

� 1

�ðxÞu2kþ1ðx; zÞdx: ð8Þ

For practical purposes, the sum can be truncated to a large enough integer K, providing a

suitable approximation of Θϕ(X). Some derivations of Θϕ(X) are presented in Table 1, which

follow from several specific choices of ϕ(x). As an example of application, the mth raw

moments of a rv X following the TSW distribution can be derived from (8) and the mth raw

moments of the exponentiated Weibull distribution with power parameter 2k + 1 as estab-

lished in [26].

Table 1. Specific measures and functions derived to Θϕ(X) according to the choice of ϕ(x).

Θϕ(X) ϕ(x)

mean (μ�) x
variance (x − μ�)2

mth raw moment xm

mth central moment (x − μ�)m

mth inverse moment x−m

mth logarithmic moment [log(x)]m

mth descending factorial moment x(x − 1)(x − 2). . .(x −m + 1)

mth incomplete moment with respect to t xm if x� t, and 0 elsewhere

(m, q)th probability weighted moment xm F(x;λ, z)q

moment generating function with respect to t etx

characteristic function with respect to t eitx

https://doi.org/10.1371/journal.pone.0250790.t001
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3.6 Reliability parameter

The general definition of the reliability parameter can be formulated as follows. Let X1 and X2

be two continuous rvs that can be compared based on a scenario that makes sense in a random

system. Then, the corresponding reliability parameter can be defined as

R ¼ PðX2 < X1Þ ¼
R R

fy<xgf ðx; y; xÞdxdy;

where f(x, y;ξ) denotes the joint pdf of (X1, X2), with ξ as parameter(s) vector. Details and appli-

cations of R in a concrete setting can be found in [27, 28], and the references therein.

The following result concerns the expression of R for the TS-G family in a specific setting.

Proposition 5 Let X1 and X2 be two independent rvs having the cdfs F(x;λ1, z) and F(x;λ2, z),

respectively. Then, we have

R ¼
1

2
þ

1

16
ðl1 � l2Þðp

2 � 4Þ:

Proof. Owing to the independence of X1 and X2, and (4) and (5), and after some integral

calculus, we arrive at

R ¼ PðX2 < X1Þ ¼

Z þ1

� 1

Fðx; l2; zÞf ðx; l1; zÞdx

¼

Z þ1

� 1

sin
p

2
Gðx; zÞ

h i
� l2

p

2
Gðx; zÞ cos

p

2
Gðx; zÞ

h in o
�

p

2
gðx; zÞ l1

p

2
Gðx; zÞ sin

p

2
Gðx; zÞ

h i
þ ð1 � l1Þ cos

p

2
Gðx; zÞ

h in o
dx

¼
p

2

Z 1

0

sin
p

2
u

� �
� l2

p

2
u cos

p

2
u

� �n o
l1

p

2
u sin

p

2
u

� �
þ ð1 � l1Þ cos

p

2
u

� �n o
du

¼
1

2
þ

1

16
ðl1 � l2Þðp

2 � 4Þ:

This ends the proof of Proposition 5.

In Proposition 5, when X1 and X2 are identically distributed, i.e., λ1 = λ2, we get R = 1/2.

Also, Proposition 5 is useful to have a simple estimate of R based on estimates of λ1 and λ2.

Indeed, if l̂1 and l̂2 are estimates of λ1 and λ2, respectively, then the plugging approach sug-

gests the following estimate for R:

R̂ ¼
1

2
þ

1

16
ðl̂1 � l̂2Þðp

2 � 4Þ:

However, more research into the application of this formula to real-world data is needed.

4 Maximum likelihood estimation

Here, an inferential study of the TS-G family is proposed, estimating the parameters of the

TS-G model by the maximum likelihood method.

4.1 The basics

The maximum likelihood method is commonly employed in parametric estimation because of

its overall simplicity and the theoretical guarantees ensuring strong convergence properties on

the obtained estimates. In this regard, the reader will find everything in [29]. We may also

refer to [30–32] for modern applications of this method. In the context of the TS-G family, the
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theoretical basics of the maximum likelihood method are described below. Let x1, . . ., xn be n
observed values of a rv having the cdf given by (4). Then, the log-likelihood function for the

parameters λ and z, supposed to be unknown, is defined as

‘ðl; zÞ ¼
Xn

i¼1

log ½f ðxi; l; zÞ� ¼ n log
p

2

� �
þ
Xn

i¼1

log ½gðxi; zÞ�

þ
Xn

i¼1

log l
p

2
Gðxi; zÞ sin

p

2
Gðxi; zÞ

h i
þ ð1 � lÞ cos

p

2
Gðxi; zÞ

h in o
:

Then, the maximum likelihood method suggests the estimates given by l̂ and ẑ, which is

possibly a vector of estimates, making ‘ðl̂; ẑÞmaximal, among all the possible values for λ and

z. They are called maximum likelihood estimates (MLEs). From the ideal mathematical point

of view, they are the solutions the following system of equations: @ℓ(λ, z)/@λ = 0 and @ℓ(λ, z)/

@z = 0, with

@‘ðl; zÞ

@l
¼
Xn

i¼1

p

2
Gðxi; zÞ sin

p

2
Gðxi; zÞ

h i
� cos

p

2
Gðxi; zÞ

h i

l
p

2
Gðxi; zÞ sin

p

2
Gðxi; zÞ

h i
þ ð1 � lÞ cos

p

2
Gðxi; zÞ

h i

and

@‘ðl; zÞ

@z
¼
Xn

i¼1

@gðxi; zÞ

@z

1

gðxi; zÞ
þ

p

2

Xn

i¼1

@gðxi; zÞ

@z

ð2l � 1Þ sin
p

2
Gðxi; zÞ

h i
þ
p

2
lGðxi; zÞ cos

p

2
Gðxi; zÞ

h i

l
p

2
Gðxi; zÞ sin

p

2
Gðxi; zÞ

h i
þ ð1 � lÞ cos

p

2
Gðxi; zÞ

h i :

In most of the cases, the analytical expressions for l̂ and ẑ seem not possible. However, for

given baseline cdf and λ, they can be approximated numerically by iterative techniques. Com-

mon routines are the optim function of the R software or PROC NLMIXED of the SAS

(Statistical Analysis System) software. Also, one can determine the standard errors (SEs) of the

MLEs which follow from the inverse of the observed information matrix. By assuming that z

contains several parameters, say m, this observed information matrix is defined by

J ¼ f� @2
‘ðl̂; ẑÞ=@ci@cjgi;j¼1;...;mþ1

, where ψ1 = λ, and ψ1+r denotes the rth component of z. From

the SEs, one can construct asymptotic confidence intervals of the parameters, among others.

A statistical aspect of the TS-G family that is not investigated in this study is the identifiabil-

ity. Numerical experiments show no particular problem on this property, but the rigorous the-

ory remains to be developed with precise mathematical tools.

The rest of the study is devoted to the empirical and real life applications of the TS-G model

with the consideration of the MLEs of the parameters.

4.2 Simulation

Here, we illustrate the practical aspect of the MLEs in the setting of the TSW model, i.e., based

on the TSW distribution presented in Subsection 2.3. More precisely, we propose a graphical

simulation approach illustrating the numerical behavior of the MLEs l̂, â and b̂, of λ, α and β,

respectively. The R software is used in this regard.

We proceed as follows. We generate N = 3000 samples (x1, . . ., xn) of size n = 10 to 50 from

a rv following the TSW distribution with the two following sets of parameters: S1 : ðl ¼
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0:3; a ¼ 3;b ¼ 5Þ and S2 : ðl ¼ 0:1; a ¼ 3:5; b ¼ 4:5Þ. We also calculate the empirical mean

squared errors (MSEs) of the MLEs defined as, for h = λ, α, β,

dMSEh ¼
1

N

XN

i¼1

ðĥi � hÞ2;

where the index i refers to the ith generated samples. The results of this simulation study are

presented in Figs 4 and 5 for S1 and S2, respectively.

Fig 4. Plots of the empirical MSEs of the TSW model parameters for S1 : ðλ ¼ 0:3;α ¼ 3; β ¼ 5Þ for (a) λ, (b) α and (c) β.

https://doi.org/10.1371/journal.pone.0250790.g004
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As a prime observation, we see that, in all the situations, when the sample size increases, the

empirical MSEs approach the axis y = 0. This illustrates the “numerical convergence” of the

MLEs to the true values of the parameters.

5 Applications

Thanks to its desirable flexible properties, the TSW model aims to be applied in concrete sce-

narios, such as the fit of real life data. We share this finding by considered the two following

well-referenced real life data sets.

Fig 5. Plots of the empirical MSEs of the TSW model parameters for S2 : ðλ ¼ 0:1;α ¼ 3:5; β ¼ 4:5Þ for (a) λ, (b) α and (c) β.

https://doi.org/10.1371/journal.pone.0250790.g005
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“The first data set”. The first data set finds its source in [28]. It contains the tensile strength

(with unit in GPa) for single carbon fibers. This data set is given by: {0.312, 0.314, 0.479,

0.552, 0.700, 0.803, 0.861, 0.865, 0.944, 0.958, 0.966, 0.997, 1.006, 1.021, 1.027, 1.055, 1.063,

1.098, 1.140, 1.179, 1.224, 1.240, 1.253, 1.270, 1.272, 1.274, 1.301, 1.301, 1.359, 1.382, 1.382,

1.426, 1.434, 1.435, 1.478, 1.490, 1.511, 1.514, 1.535, 1.554, 1.566, 1.570, 1.586, 1.629, 1.633,

1.642, 1.648, 1.684, 1.697, 1.726, 1.770, 1.773, 1.800, 1.809, 1.818, 1.821, 1.848, 1.880, 1.954,

2.012, 2.067, 2.084, 2.090, 2.096, 2.128, 2.233, 2.433, 2.585, 2.585}.

“The second data set”. The second data set, often called breaking stress of carbon fibers data

set, was used by [33]. This data set is given by: {3.70, 2.74, 2.73, 2.50, 3.60, 3.11, 3.27, 2.87,

1.47, 3.11, 3.56, 4.42, 2.41, 3.19, 3.22, 1.69, 3.28, 3.09, 1.87, 3.15, 4.90, 1.57, 2.67, 2.93, 3.22,

3.39, 2.81, 4.20, 3.33, 2.55, 3.31, 3.31, 2.85, 1.25, 4.38, 1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79,

4.70, 2.03, 1.89, 2.88, 2.82, 2.05, 3.65, 3.75, 2.43, 2.95, 2.97, 3.39, 2.96, 2.35, 2.55, 2.59, 2.03,

1.61, 2.12, 3.15, 1.08, 2.56, 1.80, 2.53}.

In addition, seven successful models are considered for comparison, also defined as

extended or modified versions of the Weibull model and having two, or three or four tuning

parameters. Namely, we consider the four-parameter generalized modified Weibull (GMW)

model by [34], four-parameter Kumaraswamy Weibull (KW) model by [35], four-parameter

beta Weibull (BW) model by [6], four-parameter odd log-logistic modified Weibull

(OLLMW) model by [36], three-parameter transmuted Weibull (TW) model by [37], three-

parameter modified Weibull (MW) model by [38] and the former two-parameter sine Weibull

(SW) model by [3].

As criteria of goodness-of-fits to compare these models, we chose the Cramér-Von Mises

(CVM), Anderson-Darling (AD) and KS statistics, with the corresponding KS p-values. Also,

the AIC is calculated. For the use of the AIC in applied frameworks, one may refer to [39–41].

The global rule is the following ones. The smaller the values of the CVM, AD, KS statistics and

AIC, and the larger the values of the KS p-values, the better the fit of the corresponding model

to the considered data. The R software is used.

Table 2. CVM, AD, KS with p-value, MLEs and SEs for the first data set.

Model CVM AD KS p-value MLEs (SEs)

TSW 0.0152 0.1322 0.0385 1.0000 0.7896 0.4807 2.4826 -

(λ, α, β) (0.1687) (0.1702) (0.4224) -

GMW 0.0184 0.1649 0.0421 0.9960 4.5031 0.4927 0.3401 0.8561

(a, α, γ, λ) (9.1201) (0.7698) (1.0690) (0.2833)

KW 0.0226 0.1984 0.0475 0.9977 0.7268 0.1621 1.0308 3.5369

(α, β, γ, θ) (0.0052) (0.0186) (0.0218) (0.0086)

BW 0.0256 0.2217 0.0480 0.9973 0.3585 3.7827 0.7813 5.7953

(α, β, γ, θ) (1.9772) (1.2906) (0.4103) (18.9342)

OLLW 0.0228 0.1664 0.04675 0.9982 0.0729 0.5845 0.0146 22.3637

(α, β, γ, θ) (0.1025) (0.1487) (0.0384) (29.5884)

TW 0.0428 0.3266 0.3145 0.0000 2.7732 1.4508 -0.5636 -

(α, β, λ) (0.4919) (0.1420) (0.4269) -

MW 0.0195 0.1733 0.0431 0.9995 0.0180 0.1892 3.3740 -

(α, β, θ) (0.0609) (0.0780) (0.5227) -

SW 0.0236 0.2076 0.0442 0.9902 0.1291 3.0852 - -

(α, β) (0.0275) (0.2951) - -

https://doi.org/10.1371/journal.pone.0250790.t002
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Tables 2 and 3 list the values of the CVM, AD, KS with p-value, and the MLEs and their cor-

responding SEs of the models parameters for the first and second data sets, respectively.

Tables 2 and 3 indicate that the smallest CVM, AD and KS and the largest KS p-value are

for the TSW model; it is the best model with the considered criteria. In particular, it

Table 4. The � ‘̂ and AIC for the first data set.

Distribution � ‘̂ AIC

TSW 48.4389 102.8779

GMW 48.7195 106.0641

KW 48.7684 105.5368

BW 48.8954 105.7908

OLLW 49.3799 106.7600

TW 48.7059 103.4118

MW 48.9583 103.9166

SW 49.5012 103.0024

https://doi.org/10.1371/journal.pone.0250790.t004

Table 5. The � ‘̂ and AIC for the second data set.

Distribution � ‘̂ AIC

TSW 85.1358 176.2717

GMW 85.3731 178.7462

KW 85.60939 179.2188

BW 85.9184 179.8368

OLLW 85.5593 179.1187

TW 85.5453 177.0907

MW 85.52304 177.0461

SW 86.6910 177.3820

https://doi.org/10.1371/journal.pone.0250790.t005

Table 3. CVM, AD, KS with p-value, MLEs and SEs for the second data set.

Model CVM AD KS p-value MLEs (SEs)

TSW 0.0554 0.3538 0.0694 0.9079 0.7440 0.0679 2.7694 -

(λ, α, β) (0.1915) (0.0504) (0.5096) -

GMW 0.0653 0.3939 0.0760 0.8394 5.4737 0.4343 0.1493 0.5167

(a, α, γ, λ) (7.9525) (0.6457) (0.5395) (0.1722)

KW 0.0703 0.4501 0.0825 0.7591 0.6536 0.1738 0.0664 3.8782

(α, β, γ, θ) (0.0230) (0.0416) (0.0142) (0.0171)

BW 0.0846 0.5041 0.0812 0.7761 0.1864 4.0715 0.7592 6.9449

(α, β, γ, θ) (0.4201) (1.2708) (0.3673) (2.7517)

OLLW 0.1032 0.54558 0.0780 0.8160 0.0729 0.5845 0.0146 22.3637

(α, β, γ, θ) (0.0301) (0.0828) (0.0256) (23.3981)

TW 0.1260 0.6700 0.3669 0.0000 2.9256 2.7531 -0.5906 -

(α, β, λ) (0.4828) (0.2294) (0.3744) -

MW 0.0640 0.40134 0.0795 0.7974 0.0165 0.0144 3.7146 -

(α, β, θ) (0.0206) (0.0079) (0.4069) -

SW 0.0863 0.4937 0.09003 0.6584 0.0165 3.1733 - -

(α, β) (0.0064) (0.3016) - -

https://doi.org/10.1371/journal.pone.0250790.t003
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outperforms the former SW model corresponding to λ = 0. That is, we see that the parameter λ

of the TSW model is estimated “far from zero”, i.e., the corresponding MLEs are l̂ ¼ 0:7896

and l̂ ¼ 0:7440, for the first and second data set, respectively. This points out the importance

of the transformed sine technique to obtain suitable fits of these data, in comparison to the for-

mer SW model.

Fig 6. Several fits of the TSW model for the first data set: (a) estimated pdf over the histogram, (b) estimated cdf over the empirical cdf, (c) estimated sf over the

empirical sf and (d) P-P plot.

https://doi.org/10.1371/journal.pone.0250790.g006
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Tables 4 and 5 present the minus estimated log-likelihood, i.e., � ‘̂ ¼ � ‘ðl̂; â; b̂Þ for the TSW

model, and AIC values of the model parameters for the first and second data set, respectively.

According to Tables 4 and 5, since it has the lowest AIC for the two data sets, the TSW

model can be considered as the best one.

We now provide a graphical visualization of the nice fitting results of the TSW model.

That is, Figs 6 and 7 display several fits of the TSW model. In particular, the histograms of

Fig 7. Several fits for the TSW model for the second data set: (a) estimated pdf over the histogram, (b) estimated cdf over the empirical cdf, (c) estimated sf over

the empirical sf and (d) P-P plot.

https://doi.org/10.1371/journal.pone.0250790.g007
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the both data sets are plotted, along with the curves of the corresponding estimated pdfs, i.e.,

f ðx; l̂; â; b̂Þ, the curves of the estimated cdfs, i.e., Fðx; l̂; â; b̂Þ, are plotted over the ones of the

corresponding empirical cdfs of the data, the curves of the estimated sfs, i.e., Sðx; l̂; â; b̂Þ, are

plotted over the curves of corresponding empirical sfs of the data, and Probability-Probability

(P-P) plots are provided.

In all the graphics, we see that the red curves fit well the corresponding black curves, attest-

ing the efficiency of the TSW model in this data fitting exercise.

6 Concluding remarks

Based on a new one-parameter transformation function, we provide an original extension of

the Sin-G family of continuous distributions, introducing the transformed Sin-G (TS-G) fam-

ily. We discuss how an additional parameter λ can enhance the flexibility of the cdf of the for-

mer Sin-G family, with nice consequences for modelling purposes. An emphasis is put on the

transformed Sin Weibull (TSW) distribution, showing a high potential in the analysis and

modelling of lifetime data. Some general mathematical features of the TS-G family are estab-

lished. Then, a statistical approach is adopted; the maximum likelihood estimates (MLEs) for

the TS-G model parameters are discussed. The TSW model is highlighted, demonstrating that

it is more capable of fitting data than seven rival models, some of which have more parameters.

The TS-G family can find a broader use in all areas dealing with modern data as a result of its

qualities. For example, it can be used to construct models in multivariate analysis, regression,

classification, and other statistical fields of importance. In addition, the transformation Tλ(x)

or T�
l
ðxÞ can be used to efficiently extend other existing families of distributions. These view-

points necessitate additional developments, which we plan to incorporate in future works.
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