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ABSTRACT The effective population size Ne is a key parameter in population genetics and evolutionary biology, as it quantifies the
expected distribution of changes in allele frequency due to genetic drift. Several methods of estimating Ne have been described, the most
direct of which uses allele frequencies measured at two or more time points. A new likelihood-based estimator cNB for contemporary
effective population size using temporal data is developed in this article. The existing likelihood methods are computationally intensive and
unable to handle the case when the underlying Ne is large. This article tries to work around this problem by using a hidden Markov
algorithm and applying continuous approximations to allele frequencies and transition probabilities. Extensive simulations are run to
evaluate the performance of the proposed estimator cNB; and the results show that it is more accurate and has lower variance than
previous methods. The new estimator also reduces the computational time by at least 1000-fold and relaxes the upper bound of Ne to
several million, hence allowing the estimation of larger Ne: Finally, we demonstrate how this algorithm can cope with nonconstant Ne

scenarios and be used as a likelihood-ratio test to test for the equality of Ne throughout the sampling horizon. An R package “NB” is now
available for download to implement the method described in this article.
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THE effective size of a population is a key concept in pop-
ulation genetics that links together such seemingly dispa-

rate quantities as the equilibrium levels of genetic variation
and linkage disequilibrium, the size of temporal changes in
allele frequencies, the probability of fixation of a new muta-
tion, and others (Charlesworth and Charlesworth 2010). Of-
ten Ne is estimated from information on mutation rates and
standing levels of nucleotide variation (Charlesworth 2009).
In most species there is some level of population differentia-
tion (i.e., individuals from geographically distant areas are
more genetically different than those from the same loca-
tion), and in this case standing levels of genetic variation
within a local population give estimates of the effective pop-
ulation size summed across all subpopulations of the species

(Charlesworth and Charlesworth 2010). Standing levels of
variation also reflect effective population sizes over many
thousands or millions of generations.

For some purposes it is more interesting to estimate the
current (or recent) size of a local subpopulation. In these cir-
cumstances it is common to use fluctuations in allele frequencies
over multiple generations to estimate Ne; with larger fluctua-
tions indicating a smaller variance effective population size
(Krimbas and Tsakas 1971; Waples 1989). This follows from
the fact that the variance of genetic drift experienced in a pop-
ulation is a function of Ne and can be quantified under the
Wright–Fisher model. The variance of genetic drift in one gen-
eration is pð12 pÞ=ð2NeÞ for a diploid population with effective
population size Ne and initial allele frequency p [for haploid
populations, pð12 pÞ=Ne]. Hence it is possible to estimate the
effective population size of a closed population by investigating
the magnitude of temporal changes in allele frequencies.

One approach to estimating Ne from temporal samples is
to use F-statistics (Krimbas and Tsakas 1971; Nei and Tajima
1981; Pollak 1983; Waples 1989; Jorde and Ryman 2007).
F-statistics can be obtained by calculating the standardized
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variance of gene frequency change, after sampling error is
taken into consideration. The F-statistics are moment-based
estimators, making them easy to compute. They tend to be
slightly biased upward in general and suffer from large bias
when rare alleles are used (Waples 1989; Wang 2001).

Another class of temporal estimators uses the likelihood
approach. Williamson and Slatkin (1999) proposed the full-
likelihood approach in estimating Ne (see also Anderson et al.
2000; Wang 2001; Berthier et al. 2002). There are several
advantages of using maximum likelihood over the F-statistics.
For example, the maximum-likelihood estimator has a lower
variance and smaller bias, resulting in more precise estimates
(Williamson and Slatkin 1999; Wang 2001). It also allows
a more flexible sampling scheme, that allele frequency data
can be collected from more than two time points. On the
downside, the likelihood methods are computationally de-
manding compared to the F-statistics, because they make
use of the full distributional information of the allele fre-
quency across generations. Numerical maximization of the
likelihood function is usually involved, and the associated
computational difficulties increase with more loci and longer
sampling horizons. As a result, the likelihood methods are not
suitable for populations with large Ne. The Ne used in pre-
vious simulation studies were limited to between 20 and
100 diploid individuals only (Williamson and Slatkin 1999;
Anderson et al. 2000; Wang 2001; Berthier et al. 2002).

It is unfortunate that computing difficulties limit the use
of the current likelihood approaches, despite their precision
and rigorous statistical basis. Waples (1989) and Pollak (1983)
both commented that indirect (genetic) methods for estimat-
ing Ne are necessary only if Ne is large, but this is precisely the
case in which the temporal methods are less reliable. This
study aims to provide an alternative likelihood-based estimator
that solves the problems in the current likelihood methods.
Therefore the new estimator should (1) be computationally
compact, (2) be able to work with a wide range of Ne; and
(3) be mostly unbiased and have at least the same degree of
precision as the other methods.

Theory

The full-likelihood model and MLNE

The full-likelihood model was developed by Williamson and
Slatkin (1999) and is used as the basic model in this article.
The full-likelihood function for two samples is

LðNeÞ ¼ f ðx0; xtjNeÞ

¼
X

p0;pt
f ðx0jp0Þf ðxtjptÞf ð ptjp0;NeÞf ð p0jNeÞ

(1)

(Williamson and Slatkin 1999, equation 4), where x0; xt are
the sampled allele counts and p0; pt are the underlying true
allele frequencies. For sampling, it is assumed that the sam-
ples are taken with replacement; hence f ðx0jp0Þ and fðxtjptÞ
are binomially and independently distributed with n being
the number of sampled diploid individuals:

fðxijpiÞ ¼ 2n!
xi!ð2n2 xiÞ! pxii ð12 piÞ2n2xi ; for i ¼ 0; t: (2)

The probability f ðptjp0;NeÞ is calculated using the forward
transition matrix M. Each element of M, fmgij   ; is the prob-
ability of the population drifting from the state having i
copies to j copies of an allele. Under the Wright–Fisher
model, the transition matrix for biallelic loci can be obtained
from a binomial distribution. As the possible number of alleles
runs from 0 to 2Ne; the dimension of the transition matrix M is
ð2Ne þ 1Þ3 ð2Ne þ 1Þ: Clearly a computational issue arises
here. For a moderately large Ne; say Ne ¼ 10; 000; the dimen-
sion of the transition matrix becomes 20,0012 (which is
�400 million), and this is the number of transition probabilities
that needs to be calculated to fill in the matrix M. Furthermore,
if the two samples were taken from t generations apart,M has to
be multiplied by itself t times to get the transition probabilities
for t generations ahead. For large Ne it may not be feasible to
compute every element in the matrixM and multiply a matrix of
such a size, even with the advance of computing power.

For the likelihood function itself, p0 and pt are nuisance
(unobserved, latent state) parameters that need to be mar-
ginalized out by summing over all possible combinations of
p0 and pt: For more than two samples, the likelihood func-
tion becomes

LðNeÞ ¼ f ðx0; x1; . . . ; xtjNeÞ

¼
X

p0;p1;...;pt

�
fðx0jp0Þf ðx1jp1Þ . . . fðxtjptÞ
3 f ð ptjpt21Þ . . . fð p1jp0;NeÞf ð p0jNeÞ

�
(3)

(Williamson and Slatkin 1999, equation 6), where p0; p1; . . . ; pt
are the underlying true allele frequencies and treated as nui-
sance parameters. To marginalize out the underlying allele
frequencies, we need to sum over all possible values of
p0; p1; . . . ; pt; and the number of summations equals the num-
ber of nuisance parameters. Closed-form expressions of the sum-
mations may not exist, and they are calculated numerically in
this case. Although the form of the likelihood function is explicit,
it is computationally intensive to evaluate and maximize it.

While no software appears to be available for the full-
likelihood model, the software package MLNE was created
to implement the pseudolikelihood approach proposed by
Wang (2001) and Wang and Whitlock (2003). The pseudo-
likelihood omits some of the insignificant transition proba-
bilities in the matrix M and hence reduces computational
effort. However, it is still computationally demanding and
the computation time increases rapidly with increasing Ne

(Wang 2001). Currently, the upper bound for Ne that MLNE
can handle is �38,000 on a 64-bit Windows machine with
16 GB of memory.

A continuous approximation

While the Wright–Fisher model assumes discrete allele fre-
quencies, Fisher (1922) first applied differential equations
to model the dynamics of allele frequencies over time. Kimura

286 T.-Y. J. Hui and A. Burt



(1955) derived the complete solution of the differential equa-
tion, using the method of moments. The core assumption of
the continuous approximation is that Ne is sufficiently large
that the moments of the continuous distribution converge to
the exact moments. To visualize the model, the process can
be represented as a hidden Markov model (Figure 1) (a sim-
ilar diagram appeared in Anderson et al. 2000). Here
p0; . . . ; pt are the underlying true allele frequencies according
to the Wright–Fisher model, and x0; . . . ; xt are observations
from the system. We define x0; . . . ; xt as allele counts; hence
they are positive integers running from 0; . . . ; 2n (assum-
ing the species is diploid). We aim to derive the joint relation-
ship among all the observations x0; . . . ; xt and then infer the
parameter Ne governing the process. We investigate the com-
ponents in this likelihood and hence derive our estimator cNB:

As with the Wright–Fisher model, this model also assumes
nonoverlapping generations, an isolated population, and con-
stant effective population size Ne: Other genetic forces includ-
ing selection and mutation are assumed to be insignificant
relative to genetic drift (Waples 1989; Williamson and Slatkin
1999; Wang 2001).

Two samples: In the two-sample model, we assume only
two samples x0; xt are obtained. In a later section the model
is extended to handle multiple sampling events. The likeli-
hood function is the joint density of our two observations x0
and xt is

LðNeÞ ¼ f ðxt; x0jNeÞ ¼ f ðxtjx0;NeÞ fðx0Þ: (4)

This is the simplest form of the likelihood function for our
parameter of interest Ne; given our observed values. We can
see that x0 is the initial observed allele count and has no
relationship with Ne: Therefore f ðx0Þ does not play a role in
maximizing the likelihood and can be treated as a constant.
We can then rewrite the likelihood function as follows:

LðNeÞ} fðxtjx0;NeÞ: (5)

By considering the unobserved nuisance parameters, the
likelihood function becomes

LðNeÞ} f ðxtjx0;NeÞ
¼

Z 1

0

Z 1

0
f ðxtjptÞf ð ptjp0;NeÞfð p0jx0Þdptdp0: (6)

Equation 6 is the continuous analogy of Equation 1, with
summations being replaced by integrals. The terms of the
likelihood function have the same meaning as in Equation 1:
f ðxtjptÞ is the sampling allele counts at generation t,
f ðptjp0;NeÞ is the transition probability that plays the same
role as the Wright–Fisher matrix in the full-likelihood model,
and the last term fðp0jx0Þ is the distribution of initial allele
frequency conditioning on the initial observation. The inte-
grals are to “sum over” all possible values of the underlying
allele frequencies. In the following paragraphs we evaluate
each part of the likelihood function and finally derive the
general formula for the likelihood function.

The starting allele frequency is unknown in general. We
may assume p0 is uniformly distributed [equivalent to betað1; 1Þ�
before any observations are taken, because it brings no addi-
tional parameters to the system (Williamson and Slatkin
1999). If x0 is sampled binomially from p0 under Equation
2, then by Bayes’ rule, the conditional distribution of p0jx0
follows a beta distribution (e.g., chap. 7.2.3 in Casella and
Berger 2002):

fð p0jx0Þ ¼ f ðx0jp0Þf ð p0ÞR 1
0 f ðx0jp0Þf ð p0Þdp0

� betaðx0 þ 1; 2n2 x0 þ 1Þ:

(7)

In fact, f ðp0jx0Þ has the same role as f ðx0jp0Þfð p0jNeÞ in the
full-likelihood model in Equation 1.

Next, for the transition probability f ð ptjp0;NeÞ; a continu-
ous distribution is used to model allele frequency instead of
the discrete transition matrix in the full-likelihood model.
The probability density function of pt given p0 under genetic
drift is

f ðptjp0;NeÞ � betaðdp0; dð12 p0ÞÞ; (8)

where d is called the “drift parameter” that controls the
amount of drift:

d ¼ ð121=2NeÞt
12 ð12 1=2NeÞt

: (9)

The drift parameter is a function of Ne and the sampling
interval t. It is derived from the continuous model of genetic
drift by Kimura (1955) for sufficiently large Ne and is a pop-
ular method to model the change in allele frequency due to
genetic drift (Kitakado et al. 2006; Song et al. 2006). For the
special case of t ¼ 1; d reduces to 2Ne 2 1:

After obtaining the formulas for f ðp0jx0Þ and f ð ptjp0;NeÞ;
the integral with respect to p0 in the likelihood function
(Equation 6) can be calculated in advance. Let us rewrite
the likelihood function:

LðNeÞ}
Z 1

0
f ðxtjptÞ

� Z 1

0
fð ptjp0;NeÞf ð p0jx0Þdp0

�
dpt:

(10)

The inner integral forms a hierarchical process that p0 is
distributed as beta given the initial observation x0 and pt
also follows another beta distribution conditioning on p0:
An exact solution may not exist for this type of integral. Here
we propose to use another beta distribution to approximate

Figure 1 Hidden Markov model representing the structure of the pro-
cess. p0; . . . ;pt is the sequence of true allele frequencies propagating
according to the Wright–Fisher model but they are unobserved.
x0; . . . ; xt are the realizations or the sampled allele frequencies.
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the integral. The parameters in this new beta distribution
can be obtained by matching the first two moments:

Z 1

0
f ð ptjp0;NeÞ fð p0jx0Þdp0

� beta
�
a9 ¼ dðx0 þ 1Þ

2nþ 2þ d
;b9 ¼ dð2n2 x0 þ 1Þ

2nþ 2þ d

�
:

(11)

The goodness of fit of this approximation is examined in the
Appendix.

The final piece of the likelihood function is f ðxtjptÞ; which
is the sampling allele count given the underlying true allele
frequency pt: If the samples are taken with replacement, then
it is binomially distributed as described in Equation 2. Now,
putting all the elements together, the likelihood function
becomes

LðNeÞ} f ðxtjx0Þ

¼
Z 1

0
fðxtjptÞf ð ptjx0;NeÞdpt

¼
Z 1

0

2n!
xt!ð2n2 xtÞ! p

xt
t ð12 ptÞ2n2xt

3  
1

B
�
a9;b9

� pa921
t ð12 ptÞb921dpt

¼ 2n!
xt!ð2n2 xtÞ!

1
B
�
a9;b9

� Z 1

0
pxtþa921
t ð12 ptÞ2n2xtþb921dpt

¼ 2n!
xt!ð2n2 xtÞ!

B
�
xt þ a9; 2n2 xt þ b9

�
B
�
a9;b9

� ;

(12)

where BðÞ is a beta function. This integral has a closed-form
solution with f ðptjx0;NeÞ being a beta distribution and the
binomial sampling of f ðxtjptÞ: The resultant probability mass
function is a beta-binomial distribution with three parame-
ters: 2n;  a9; and b9: We can see from Equations 10 and 12
that the integrals (which play the same role as the summa-
tions in the full-likelihood model) can be evaluated separately
with either a closed-form expression or an approximate solu-
tion, yielding a much simplified likelihood. The relationship
between the two samples x0 and xt is now established through
a beta-binomial distribution. We define cNB as the value of Ne at
which the likelihood function attains its maximum, condition-
ing on the observations. Hence cNB is the maximum-likelihood
estimator (MLE) of the parameter Ne: For many unlinked loci,
the joint likelihood is calculated as the product of each of the
individual likelihoods for the loci.

Three or more samples

The likelihoodmodel can be extended tomore than two sampling
events, as shown in Figure 1. Here we assume samples are taken
from successive generations, giving a sequence of observations
x0; x1; . . . ; xt: Similar to equation 4, the likelihood function is
the joint density of the observations:

LðNeÞ ¼ fðxt; xt21; . . . ; x1; x0jNeÞ: (13)

If we let Xi ¼ ðx0; x1; . . . ; xiÞ be all the observations up to
time i,

LðNeÞ ¼ f
�
xtjXt21

	
f
�
xt21jXt22

	
. . . f

�
x1jX0

	
fðx0Þ:

(14)

We prefer Equation 14 because it illustrates the time de-
pendency among the observations. Again f ðx0Þ contains no
information about Ne and can be neglected. By using the
same argument as in the two-sample case, each f ðxijXi21 Þ
is a beta-binomial distribution. The parameters within each
beta-binomial distribution are functions of d and the preced-
ing observations. The remaining question becomes how the
parameters in each beta-binomial distribution are obtained.
The calculation of the parameters can be generalized by the
following four recurring equations,

a9ðiÞ ¼
daði21Þ

1þ aði21Þ þ bði21Þ þ d

b9ðiÞ ¼
dbði21Þ

1þ aði21Þ þ bði21Þ þ d

aðiÞ ¼ xi þ a9ðiÞ

bðiÞ ¼ 2n2 xi þ b9ðiÞ;

(15)

with initial values

að0Þ ¼ x0 þ 1

bð0Þ ¼ 2n2 x0 þ 1;

with i runs from 1; . . . ; t: As a result, each of the xi (given all
previous observations) follows a beta-binomial distribution,
with parameters

f ðxijXi21 Þ � beta-binomialð2n; a9ðiÞ;b9ðiÞÞ: (16)

Moreover, the underlying allele frequency pi given all obser-
vations up to i follows a beta distribution:

f
�
pijXi

� � betaðaðiÞ;bðiÞÞ: (17)

Since the sample sizes and time steps are known, the only
parameter remaining in the system is Ne; the effective pop-
ulation size. The whole likelihood function is the product of
multiple beta-binomial distributions. Therefore the MLE can
be obtained by choosing a value of Ne ¼ cNB that maximizes
the likelihood function.

Computer Simulations

The first objective of the simulation study was to compare
the performance of the proposed cNB estimator with those of
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the existing methods. The MLNE routine (Wang andWhitlock
2003) and the Fc statistic (Nei and Tajima 1981; Waples
1989) were used as benchmarks. In each iteration, we first
simulated the allele frequencies with known Ne across t gen-
erations according to the Wright–Fisher model. Multiple in-
dependent biallelic loci were run at a time, and samples were
then taken with replacement with a sample size of n diploid
individuals (a total of 2n alleles), as described in Equation 2.
Initial allele frequencies were drawn from the uniform distri-
bution. The three methods were then applied to produce
three estimates. For cNB; the likelihood function was formed
using either Equation 5 or Equation 14, depending on the
number of sampling events, and the likelihood function was
maximized numerically. The lower and upper bounds for
searching for the maxima were taken to be 50 and 107; re-
spectively. For MLNE the upper bounds for Ne were restricted
to 38,000 because of computing limitations. Fc estimates were
calculated within the MLNE package. The asymptotic 95%
confidence intervals (C.I.) for MLNE and cNB were also calcu-
lated by finding the range of Ne in which the log-likelihood
dropped by 2 units from its maximum value. Simulations
were repeated 1000 times for each parameter setting. Simu-
lations were run in R (R Core Team 2013).

Summary statistics for the three estimators are shown in
Table 1. Ne was chosen to be 1000 or 5000. Sample sizes
(per generation) were fixed to be 10% of the true population
size. Table 1 shows that all three methods slightly overesti-
mated the underlying Ne; while cNB had the smallest bias in
all cases investigated. In the two-sample scenario there was
little difference among the three methods; however, cNB con-
sistently had the smallest variance and bias. For three sam-
ples, the differences of the three methods became more
pronounced so that the likelihood methods (MLNE andcNB) outperformed their moment-based counterpart in terms
of having smaller standard deviation and bias. The standard
deviation of Fc-based estimates was often twice that of the
likelihood estimates. This result is consistent with the idea

that the likelihood methods are better able to combine data
from more than two samples. Within the likelihood family,
the mean width of the 95% C.I. was also calculated. The C.I.
using cNB is slightly narrower than MLNE given the same
significance level, with similar coverage. In short, all the
examined scenarios suggested that cNB was superior to the
MLNE and Fc estimators.

A second set of simulations examined the bias and con-
sistency of the new estimator for a range of Ne values. As the
central assumption of the method is that Ne is sufficiently
large for a continuous approximation to be valid, it is inter-
esting to investigate the performance of the cNB estimator over
a wide range of Ne; including small values. A plot of the bias
against true Ne is found in Figure 2. For the smaller values of
Ne; cNB slightly underestimated the population size by ,2%,
while for Ne ¼ 500 and onward cNB was slightly biased up-
ward by no more than 2%. This graph supports that cNB is
unbiased throughout a wide range of true Ne from 50. Thus,
the new estimator provides an inferential statistic that is not
available through prior methods.

Nonconstant Ne and Likelihood-Ratio Tests

Given three or more samples over time, we can consider the
possibility that Ne is different in each sampling interval. This
can be done through modifying Equation 15 to allow non-
constant d. It is also possible to use the same approach to fit
a dynamic model to the data. For example, Wang (2001)
demonstrated fitting an exponential growth model with two
parameters: initial Ne and growth rate. In general, a likeli-
hood-ratio test (LRT) can be constructed to compare models
and hypotheses. The test statistic is twice the difference in
the log-likelihood values under the null and alternative hy-
potheses and is asymptotically chi-square distributed with
degrees of freedom equal to the difference in the number
of parameters between the two models. The following sim-
ulated example illustrates how a LRT is constructed.

Table 1 Simulation results

True Ne n Method Mean (SD) 2.5% 97.5% Mean C.I. width Coverage

Two samples (sample at t = 0, 8)
1000 100 Fc 1,059.7 (253.5) 699.8 1,657.8 — —

MLNE 1,080.7 (260.7) 711.3 1,695.4 1,283.3 960cNB 1,033.2 (247.3) 684.1 1,604.8 1,195.5 956
5000 500 Fc 5,272.4 (1,164.5) 3,534.1 8,056.8 — —

MLNE 5,276.7 (1,166.7) 3,539.9 8,083.9 6,046.3 970cNB 5,217.1 (1,149.6) 3,501.6 7,958.1 5,957.4 967
Three samples (sample at t = 0, 4, 8)

1000 100 Fc 1,107.8 (638.8) 661.8 2,050.7 — —

MLNE 1,076.6 (243.9) 734.9 1,704.6 1,134.2 957cNB 1,030.9 (226.8) 709.4 1,605.4 1,054.0 960
5000 500 Fc 5,567.7 (2,038.2) 3,165.9 10708.0 — —

MLNE 5,254.0 (1,153.4) 3,530.2 8,198.1 5,427.4 950cNB 5,202.0 (1,138.5) 3,495.9 8,008.4 5,352.2 953

For each parameter setting, 1000 replicate populations were simulated and all three methods are used to estimate Ne: The true Ne; sample size per generation, and number
of temporal samples are shown. A total of 500 unlinked loci are used in each run and the initial allele frequencies are sampled from the uniform distribution. The mean,
standard deviation, 2.5 and 97.5 percentiles of the 1000 runs are reported. For MLNE and cNB; the mean width of the 95% confidence interval (C.I.) is also computed. The last
column shows the number of C.I.’s (of 1000 simulations) that cover the true value Ne:
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Consider a three-sample case with samples taken at t ¼ 0; 4;
and 8, in which we wish to test whether Ne is constant through-
out the sampling period. This can be done by setting up the
following hypotheses: H0: Ne is constant vs. H1: there are two
distinct Ne’s for the period between t ¼ 0 and t ¼ 4 and be-
tween t ¼ 4 and t ¼ 8: We can fit two models representing the
two hypotheses to the data, one with a single Ne and the other
with two different Ne’s. Under the null hypothesis (i.e., given H0

is true), the test statistic asymptotically follows a chi-square
distribution with 1 d.f. This can be verified by simulating
5000 replicates as shown in Figure 3.

The statistical power of the test can be exemplified by
setting up a specific alternative hypothesis. For example, if
the underlying population drops from 10,000 in t ¼ 0;   4 to
1000 in t ¼ 4;   8; then the power of the test is the probability
of rejecting the null hypothesis. There are several parame-
ters controlling the power, one of which is the sample size, n
(Figure 4). In the particular example shown, a sample size of
n ¼ 100 is required to attain a power of 80%.

Computational Effort

With the use of the beta and binomial distributions in modeling
genetic drift and sampling events, closed-form solutions for the
integrals in Equations 11 and 12 are obtained. As a result, the
likelihood function (Equation 14) is much simplified and no
longer involves summations over all the nuisance parameters
as in the full-likelihood model (Equation 1). The comparison of
the computation time between MLNE and cNB is shown in
Figure 5. For the MLNE package, increases in Ne lead to
increases in the number of elements in the transition matrix
and therefore in the computing time (Williamson and Slatkin
1999; Wang 2001). For cNB; continuous approximation is used
and the structure of the transition probabilities is approxi-
mately the same for all Ne: Hence the computing time remains
low for any Ne: For both MLNE and cNB; computing time
increases with the number of loci used in a similar fashion,

but cNB remains several thousand times faster than MLNE.
The speed advantage of cNB also becomes more distinct with
increasing sampling interval, because cNB does not require cal-
culation of the power of the transition matrix. It should be
noted that the two methods are not coded in the same pro-
gramming language (Fortran for MLNE and R for cNB), so these
results should not be considered a direct comparison of the
two algorithms. However, it likely underestimates the speed
advantage of cNB over MLNE because R is a script language,
which is typically slower than a compiled language like For-
tran. Nevertheless, the new method speeds up estimation by
a factor of 1000–10,000 for large Ne without sacrificing
accuracy.

Real Example

A real data set from Cuveliers et al. (2011) was used to
demonstrate the use of cNB: Six temporal samples spanning
.10 generations were collected between 1957 and 2007 to
infer the effective population size of North Sea sole. The
sample sizes were �135–220 individuals per generation
with 11 microsatellite markers being genotyped. The num-
ber of alleles in these loci ranges from 13 to 39. We used cNB

to estimate the overall Ne throughout the entire sampling
horizon. The effective population size during the period was
estimated to be 2512 with finite 95% confidence limits of
1661 and 4365. The published estimate using MLNE (Wang
2001) was 2169 (C.I. = 1221–5744), while the estimate from
the F-statistic (Waples 1989) was 2247 (C.I. = 1127–8370).
The complete result can be found in table 2 of Cuveliers et al.
(2011, p. 3561). We found that all three estimates mostly
overlap with each other, indicating the consistency among
the temporal estimators. The estimate from cNB is slightly
larger than those obtained by MLNE and F-statistics, but it is
the most precise one with the narrowest confidence interval.cNB also showed a significant reduction in computing time; it is
�600 times faster than MLNE in this particular example.

Figure 2 Plot of bias of the cNB estimator against true Ne: The bias (solid
line) is quantified as the percentage difference relative to the true Ne:

Sample size was 10% of the true Ne with 1000 loci. Two samples were
taken 10 generations apart. The bias approaches 0 (red dotted line) if the
estimator is unbiased.

Figure 3 Histogram of the likelihood-ratio test statistic under H0 for 5000
simulations. Three temporal samples were drawn in each replicate. The
red line represents the theoretical density of a chi-square distribution with
1 d.f.
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Discussion

The model

In theory, the full-likelihood model (Williamson and Slatkin
1999) for estimating Ne from temporal samples should be
the most accurate but is not practical because of computa-
tional limitations. MLNE, as a derivation of the full-likelihood
model, intentionally omits some of the smaller transition
probabilities to enhance computational feasibility. The cNB es-
timator is also an approximation to the full likelihood, but
makes use of the continuous approximation to simplify the
calculations. Previous studies by Williamson and Slatkin (1999)
and Wang (2001) showed that the maximum-likelihood meth-
ods are more accurate and precise than the F-statistics, and this
article further confirms that cNB is no exception. The comparison
between MLNE and cNB showed that cNB is a better alternative to
MLNE in a moderately large Ne scenario. In our examined casescNB produces a smaller variance and narrower confidence inter-
val than MLNE, yielding a more precise estimate of Ne: The bias
of cNB is also negligible, indicating that the approximations hold
over a wide range of true Ne:

Perhaps the most important feature of cNB is in relaxing
the Ne upper bound. Since the dimension of the Wright–
Fisher transition matrix is determined by Ne; MLNE stops
the calculation when Ne exceeds a certain value. The current
threshold on my workstation is �38,000 while the user
manual from MLNE suggests 50,000. This upper bound also
applies to the calculation of the upper confidence interval,
making the practical range of true Ne even smaller. cNB

relaxes this bound to over several million without causing
computational issues. As a result, precise estimation of con-
temporary Ne can be applied to more species. Another dis-
tinct advantage is the computing speed, which is increased
by a factor of $1000 in most scenarios. Most calculations incNB are done within seconds. Field biologists may not appre-
ciate this improvement as most of their time is spent on data
collection; however, with the anticipated advance in DNA se-
quencing technology, large amounts of loci can be sequenced at
a time with low cost. The ability of existing software to handle

such a data set is questionable. Furthermore, with the increas-
ing popularity of the use of computer simulation in population
genetics (such asms by Hudson 2002), in which the computing
time is multiplied by the number of repeated simulations, cNB

provides an efficient algorithm to help scientists evaluate their
simulations rapidly and accurately.

Usage

As discussed above, cNB is designed for moderately large Ne

populations and this explains why our simulations focused

Figure 4 Statistical power against sample size. A specific H1 was chosen
as described in the text, with 1000 independent loci.

Figure 5 Comparison of computational effort (in seconds) between
MLNE and cNB: A shows the computational time against true Ne: Ne of
50,000 was not run for MLNE because this exceeds the limits of the soft-
ware. B shows the computational time against the number of loci used in
each iteration. C plots the computing time against sampling interval.
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in these scenarios. Although we showed that cNB is unbiased
even for small values of Ne; we suggest using the full-likelihood
method for the extremely small Ne problem (when Ne , 100).
In determining sample size, it has to be viewed relative to the
true Ne of the population. It is shown in our simulations that
sampling 10% of the individuals is able to estimate Ne accu-
rately, with the use of �500 independent loci. Interested
readers can refer to Waples (1989) and Wang (2001) for
more details about the effect of sampling effort on temporal
methods.

Excluding rare alleles is not unusual in population genetics
studies. For instance, LDNE (Waples and Do 2008) imposes
several cutoffs for rare alleles. Wang (2001) showed that the
moment-based F-statistics induces bias with rare alleles, while
the likelihood methods are less sensitive to small allele fre-
quency as they make use of the full distributional information
of the Wright–Fisher model. We analyzed empirically the
goodness of fit of the beta distribution in modeling allele
frequency in the Appendix. We showed that the approxima-
tion is indistinguishable from the true continuous model
when frequent alleles are used, and it still holds when the
observed allele frequency is down to �0.05. As a result we
suggest that in most cases it is safe to include alleles with
observed allele frequency .5%.

In the review by Luikart et al. (2010) they emphasized the
desirability of developing new methods that are able to distin-
guish between moderate and large Ne and that future devel-
opment of Ne estimators should allow for the possibility of
genotyping many loci. The methods developed here allow
for expansion in these two directions, both for estimating
effective population sizes and for testing for significant dif-
ferences (or trends) in population sizes from temporally
spaced samples.

R package

An R package “NB” has been created to implement cNB as
described in this article. The package allows more flexibility,
including unevenly temporal-spaced samples and noncon-
stant sample size. As demonstrated in our worked example,
multiallelic loci are accepted in the R package through the
use of Dirichlet-multinomial distribution. It also contains
a sample data set and a help document to describe the usage
of the package. It is available for download at http://cran.r-
project.org/web/packages/NB/.
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Appendix

Since the approximation stated in Equation 8 is one of the several key ideas in this article to speed up the current estimation
of Ne; it is essential to evaluate how good the approximation is. Equation 8 in the main text is

Z 1

0
f ð ptjp0;NeÞf ð p0jx0Þdp0

� beta
�
a9 ¼ dðx0 þ 1Þ

2nþ 2þ d
;   b9 ¼ dð2n2 x0 þ 1Þ

2nþ 2þ d

�
:

The left-hand side of Equation 8 is considered as a hierarchical relationship, that pt is distributed as beta given a value of p0; while p0
itself is also distributed as beta conditioning on the initial observed count x0 (which is a fixed value). Two sources of randomness are
involved and the integral sums over all possible values of the intermediate p0: However, this kind of integration seldom has an
analytical solution. In this article we suggest that this integral can be well approximated by another beta distribution, as suggested in
Equation 8.

We examined how close the approximation is to the actual integral. Two values of Ne were studied: 1000 and 5000, with
eight generations between the two samples taken. Sample size was set to 10% of the true Ne: Under these settings, both low
allele frequency (0.1) and even allele frequency (0.5) scenarios were tested. Plots of the results can be found in Figure A1.

From the plots we can see that the two lines representing the two methods overlap with each other and are visually
indistinguishable. This indicates that in moderately large Ne the use of a beta distribution is a good approximation to the integral.
Furthermore, the approximation holds for a wide range of allele frequencies, including the cases where rare alleles are used.

Figure A1 The plots of the conditional density pt jx0;
where Ne was set to be 1000 (top row) and 5000 (bottom
row). Sample size was 10% of the true Ne per generation.
Two samples were drawn with a sampling interval of
eight generations. The left column represents the cases
when frequent alleles were used (allele frequency �0.5),
and the right column represents the cases when rare
alleles were used (allele frequency �0.05). The condi-
tional densities were calculated from two methods: nu-
merical integration (black solid line) and by approximation
(red dashed line).
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