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Abstract: Flavonoids are attracting increasing attention due to their antioxidant, cardioprotective, and
immunomodulatory properties. Nevertheless, little is known about their role in exercise performance
in association with immune function. This systematic review firstly aimed to shed light on the
ergogenic potential of flavonoids. A search strategy was run using SCOPUS database. The returned
studies were screened by prespecified eligibility criteria, including intervention lasting at least one
week and performance objectively quantified, among others. Fifty-one studies (54 articles) met the
inclusion criteria, involving 1288 human subjects, either physically untrained or trained. Secondly,
we aimed to associate these studies with the immune system status. Seventeen of the selected studies
(18 articles) assessed changes in the immune system. The overall percentage of studies reporting
an improved exercise performance following flavonoid supplementation was 37%, the proportion
being 25% when considering quercetin, 28% for flavanol-enriched extracts, and 54% for anthocyanins-
enriched extracts. From the studies reporting an enhanced performance, only two, using anthocyanin
supplements, focused on the immune system and found certain anti-inflammatory effects of these
flavonoids. These results suggest that flavonoids, especially anthocyanins, may exert beneficial
effects for athletes’ performances, although further studies are encouraged to establish the optimal
dosage and to clarify their impact on immune status.

Keywords: anthocyanins; cytokines; exhaustion; flavanols; inflammation; quercetin; upper respira-
tory tract infections

1. Introduction

Among the bioactive compounds provided by diet, flavonoids are one of the most
important, given that they are the most abundant polyphenols, regularly ingested in
small quantities in many edible plants. Flavonoids are a broad class of secondary plant
metabolites with low molecular weight and a flavan nucleus. Chemically, they are benzo-
γ-pyrone derivatives consisting of a 15-carbon skeleton arranged in three rings (A, B, and
C) (Figure 1). Depending on the chemical structure (hydroxylation pattern, conjugation
between the aromatic rings, glycosidic moieties, and methoxy groups); degree of oxidation;
and unsaturation of the linking chain, flavonoids are classified into flavanols, flavones,
flavonols, flavanones, isoflavones, and anthocyanins (Figure 1) [1].

Nutrients 2021, 13, 1132. https://doi.org/10.3390/nu13041132 https://www.mdpi.com/journal/nutrients

https://www.mdpi.com/journal/nutrients
https://www.mdpi.com
https://orcid.org/0000-0001-8467-670X
https://orcid.org/0000-0002-8638-6842
https://orcid.org/0000-0002-5220-2793
https://orcid.org/0000-0001-5408-0593
https://orcid.org/0000-0001-6243-9164
https://doi.org/10.3390/nu13041132
https://doi.org/10.3390/nu13041132
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/nu13041132
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com/article/10.3390/nu13041132?type=check_update&version=2


Nutrients 2021, 13, 1132 2 of 41

Nutrients 2021, 13, x FOR PEER REVIEW 2 of 40 
 

 

and unsaturation of the linking chain, flavonoids are classified into flavanols, flavones, 
flavonols, flavanones, isoflavones, and anthocyanins (Figure 1) [1]. 

 
Figure 1. Chemical structures of flavonoids and their classes. Based on reference [1]. 

Flavonoids comprise more than 4000 compounds that are widely distributed in 
seeds, leaves, bark, and flowers of plants. Flavanols, as those found in green tea and cocoa, 
include monomers such as epicatechin, catechin, gallocatechin, epigallocatechin (EGC), 
and epigallocatechin gallate (EGCG) and, also, polymers called proanthocyanidins or con-
densed tannins. Flavones are commonly found in fruit skins, parsley, and celery and in-
clude glycosides of luteolin, chrysin, and apigenin. Flavonols can be found in onions, ap-
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vanones are exclusive to citrus fruits and can be hesperidin, naringenin, and eriodictyol. 
Leguminous plants such as soy and soy products contain isoflavones such as genistein 
and daidzein. Finally, anthocyanins are provided by red wine and berry fruits, such as 
cherries, strawberries, raspberries, barberries, blueberries, and raisins, and include pelar-
gonidin, cyanidin, and malvidin [1,2]. 
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other properties, flavonoid intakes have been associated with numerous health-promot-
ing physiological benefits for cardiovascular disease, cancer, neurological disorders, ag-
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Flavonoids comprise more than 4000 compounds that are widely distributed in seeds,
leaves, bark, and flowers of plants. Flavanols, as those found in green tea and cocoa,
include monomers such as epicatechin, catechin, gallocatechin, epigallocatechin (EGC),
and epigallocatechin gallate (EGCG) and, also, polymers called proanthocyanidins or
condensed tannins. Flavones are commonly found in fruit skins, parsley, and celery
and include glycosides of luteolin, chrysin, and apigenin. Flavonols can be found in
onions, apples, berries, leeks, broccoli, blueberries, red wine, and tea and include, among
others, quercetin, kaempferol, morin, rutin, myricetin, isorhamnetin, and isoquercetin.
Flavanones are exclusive to citrus fruits and can be hesperidin, naringenin, and eriodictyol.
Leguminous plants such as soy and soy products contain isoflavones such as genistein and
daidzein. Finally, anthocyanins are provided by red wine and berry fruits, such as cherries,
strawberries, raspberries, barberries, blueberries, and raisins, and include pelargonidin,
cyanidin, and malvidin [1,2].

Flavonoid dietary intakes vary considerably among countries and cultures. It seems
to be the major polyphenol class consumed by European adolescents (representing 75-76%
of the total polyphenols intake), especially the flavanol and flavanone subclasses [3]. The
daily consumption of flavonoids is estimated to be 313.26 mg in Spain [4], 506 mg in
France [5], 403.5–525 mg in Poland [6], and 103 mg and 80 mg in Finnish women and
men, respectively [7]. Flavonoids possess antioxidant and chelating abilities. Related to
these or other properties, flavonoid intakes have been associated with numerous health-
promoting physiological benefits for cardiovascular disease, cancer, neurological disorders,
aging, obesity, etc. [8–15]. For this reason, a wide range of human intervention studies has
been developed, and the results offer promising applications in the prevention of several
disorders.

With regard to sports performances, many human [16–19] and animal studies [20,21]
have focused on the effect of flavonoids on several outcomes of exercise. Much of this
research has studied their protective effects against the oxidative stress associated with
physical activity and sports [19,22–24]. It is known that intense physical activity induces
changes in the oxidative system of the body, leading to an overproduction of reactive
oxygen species (ROS) that may disrupt the physiological balance between ROS generation
and the antioxidant defense systems, producing oxidative stress [25]. Flavonoids like cocoa
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flavanols [19,26], green tea flavanols [27,28], and blueberry’s anthocyanins [29], among
others, have demonstrated some promising success in counteracting exercise-induced
oxidative stress due to their antioxidant properties.

The immune system is very sensitive to oxidative stress [30], and its function can be
modulated by exercise [31]. There is a general consensus that regular bouts of moderate
physical activity provide several health benefits, such as enhancing immune functional-
ity [32–34]. Nevertheless, intense exercise can have detrimental effects on the immune
system [32,35,36]. In general, exercise alters the phagocytic and inflammatory functions of
macrophages, as well as natural killer (NK) cell functions. A moderate exercise enhances
the innate immunity by increasing phagocytic and cytotoxic activities [37–39]. Neverthe-
less, intensive physical exercise has been associated with an inflammatory response [40]
and a mobilization of leukocytes [41]. Eventually, there is a decrease in host defenses
that leads to an increased susceptibility to infections, especially upper-respiratory tract
infections (URTIs) and gastrointestinal infections, in the days following a bout of intense
exercise [42].

Many studies have reported the influence of flavonoid consumption in physical
activities, but when looking for the effects on performance, the number of studies decreases.
Likewise, few reviews have considered physical performance as a criterion or considered
only specific sports or the effects of specific supplements [17,19,43,44]. In the current article,
we aimed to perform a systematic and broad (2005–2020) review based on the clinical
trials (randomized controlled trials) regarding the intake of flavonoids in physical activity,
looking at their influence on physical performances. We considered studies focused on
healthy people aged between 18 and 50 years with flavonoid consumption, both in the
pure form and as an extract, lasting for at least seven days and that objectively measured
physical performances with randomized, controlled, simple, or double-blind designs.
Likewise, from the studies selected, we focused on those associating changes induced by
the flavonoid intake in physical performances with the immune system status.

2. Materials and Methods
2.1. Data Sources and Search Strategy

The search strategy was predetermined following the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guidelines [45]. The search of articles
was run using the SCOPUS (Elsevier) database. The searched terms were related with
flavonoids and exercise. The first searched terms were “flavonoids” AND “exercise”.
Moreover, to obtain articles that may have been omitted in a general search, the concepts
“athlete” OR “marathon” OR “training” OR “endurance” OR “sport” OR “players” OR
“fitness” OR “cycling” were used with regards to exercise, AND “polyphenol” OR “fla-
vanone” OR “flavone” OR “flavonol” OR “anthocyanin” OR “isoflavone” OR “catechin”
OR “hesperidin” OR “glabridin” OR “quercetin” OR “blackcurrant” OR “cherry” OR
“green tea extract” were searched regarding flavonoids. The strategy was first applied in
July 2020 and updated on December 17, 2020 and included articles since 2005.

2.2. Data Selection

After running the search strategy, the inclusion and exclusion criteria were applied
(Figure 2). The exclusion criteria were: (i) preclinical studies; (ii) not written in the En-
glish language; (iii) participants with morbidities (diabetes, hypertension, etc.) or over-
weight; (iv) conference abstracts or reviews; (v) intervention with polyphenols other than
flavonoids; (vi) evaluations of only exercise recovery; and (vii) the study not approved by
an Ethical committee.

The studies included in the review met the criteria: (i) healthy people aged between 18
and 50 years (mean age in the study ranging between 18 and 50 years); (ii) the study designs
as randomized, controlled trial, or either single or double-blind; (iii) an intervention lasting
for at least seven days; and (iv) physical exercise performances objectively quantified by
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means of either distance, time, work performed, anaerobic potency, anaerobic threshold, or
strength.
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Figure 2. Flow diagram of the article selection process.

2.3. Data Collection

From the selected articles after applying the exclusion and inclusion criteria, the data
were collected from the entire paper. Data from (i) the study design, (ii) characteristics
of the participants, (iii) flavonoid applied or its composition if there was an extract and
dosage used (amount of flavonoid and length of the intervention), (iv) type of exercise, (v)
performance outcomes, and (vi) the results and conclusions of the study were collected.

2.4. Assessment of Risk of Bias in Included Studies

The method used for assessing the risk of bias in individual studies was the Cochrane
Handbook Guidelines [46]. The domains assessed were selection bias (random sequence
generation and allocation concealment), performance bias (blinding of participants and
personnel), detection bias (blinding of outcome assessment), attrition bias (incomplete
outcome data), reporting bias (selective reporting), and other sources of bias. Each domain
was categorized into “low-risk”, “high-risk”, or “unclear risk” if there was insufficient
information to permit the judgment of low or high. Low-risk is interpreted as plausible
bias unlikely to seriously alter the results, high-risk is interpreted as plausible bias that
seriously weakens the confidence in the results, and unclear risk is interpreted as plausible
bias that raises some doubts about the results.

3. Results
3.1. Study Selection

A total of 3442 articles was the result of running the search strategy reported (Figure 2).
These articles were screened according to the title and the abstract to apply the exclusion
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criteria. As a result, 335 articles could be included. However, after applying the inclusion
criteria, 54 articles remained. Figure 3 summarizes the included studies classified according
to the flavonoid subclass and the effect on exercise performance.
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3.2. Study Characteristics

The studies considered were classified into two categories: those that considered a
pure flavonoid (Table 1) and those that included studies carried out with extracts containing
flavonoids (Table 2).

3.2.1. Studies with a Single Flavonoid Supplement

From 2005 to 2020, 16 articles, referring to 14 clinical studies, were considered in-
terventions with a single flavonoid administered in the pure form or as a combination
with other compounds (Table 1). From these 16 articles [47–62], quercetin was used in
14 papers [47–52,55–62], with two articles by Nieman et al. [52,59] referring to the same
clinical trial and two articles by Askari et al. [49,51] also focused on the same participants.
Moreover, epicatechin [53] and hesperetin-7-O-rutinoside [54] were used in the other two
studies.

• Studies with a Quercetin Supplement

Focusing on the 14 selected articles (12 clinical trials) using quercetin [47–52,55–62],
all of them were randomized controlled trials and double-blinded, except for one that
was single-blinded [58]. Six studies [47,48,55–58] had a crossover study design, while
the six remaining [49,50,59–62] had a parallel design. The included studies involved 382
participants, of whom 335 were males. In eight of these studies [47–50,55–57,62], the
participants’ mean age was between 19 and 23 years old, in three [58,59,61], it was between
26 and 30 years old, and, in one [60], the mean age was around 45 years old.

Quercetin was mainly administrated in its monomeric form, and only one trial used
a glycoside [56]. In 10 studies [47,48,50,55–57,59–62], quercetin was administrated with
other compounds, such as vitamin C, tocopherols, green tea, and isoquercetin, among
others. The dosage was 1000 mg per day, except in one study that used 500 mg/day [49].
The lengths of the interventions ranged between one and eight weeks. The exercise pro-
grams differed among studies: running was chosen in four studies [49,55,56,60]; cycling
in four [47,48,59,63]; eccentric contractions in two [50,58]; and, in two trials, running, cy-
cling, and strength exercises were combined [57,62]. The outcomes included distance [55],
time [48,56,57,60,63], work performed [47], mean power [59], strength [50,58], or a mix-
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ture [49,62]. Some studies verified the absorption of quercetin by measuring its levels in the
blood [47,52,55–57,59,60,62], whereas no paper reported harmful effects of this supplement.

From the 14 articles (12 clinical trials) focused on the effects of quercetin on exercise
performance, three (25%) reported beneficial effects due to the flavonoid intake, and the
training used to establish this effect was cycling [48], running [55], and eccentric contrac-
tions [58]. In particular, 12 volunteers (five female and seven male) taking 1000 mg/day
of quercetin dissolved in vitamin-enriched Tang for seven days underwent a substantial
increase in ride time to fatigue, which was associated with a modest but significant increase
in VO2max [48]. Similarly, 26 physically sedentary untrained male adults were supple-
mented with 1000 mg/day of quercetin for two weeks and were submitted to a 60-min
exercise preload and a 12-min running trial on a 15% treadmill grade with self-selected
speed [55]. While no significant difference was observed in the first exercise, in the 12-min
trial, the distance achieved was significantly greater during the quercetin than the placebo
condition. Nevertheless, this improvement was accompanied by a trend to increase the
expression of genes related to skeletal muscle mitochondrial biogenesis, which provides a
partial explanation for the performance enhancement [55]. Recently, Bazzuchi et al. [58]
reported that 12 young men who completed a comprehensive neuromuscular evaluation
before, during, and after an eccentric protocol able to induce severe muscle damage showed
a higher isometric strength in a maximal voluntary isometric contraction, as well as a lower
force and muscle fiber conduction velocity decay during the eccentric exercise, after in-
gesting 1000 mg/day of quercetin for 14 days compared to the placebo condition. From
these results, the authors suggest that quercetin, by an unknown mechanism, can attenuate
the severity of muscle weakness caused by eccentric-induced myofibrillar disruption and
sarcolemmal action potential propagation impairment [58].

Nevertheless, other studies involving exercise with eccentric contractions were not
successful in evaluating the effect of quercetin supplements on exercise performances.
O’Fallon et al. [50] analyzed the effects of quercetin supplements in an eccentric exercise
and found no differences in the muscle strength and the arm angle after seven day of daily
supplementation. Likewise, the evaluation of other markers altered by muscle damage,
such as muscle soreness, arm swelling, and the plasma creatine kinase (CK) levels, were
not modified by this flavonol.

Other studies focused on the effect of quercetin in running reported nonsignificant ef-
fects when a supplement was given for a week [56] or even for a longer period [49,51,60,62].
Abbey et al. [56] reported that the intake of quercetin-3-glucoside for seven days induced a
greater percentage of fatigue decrease than the placebo in the repeated-sprint performances
of team sports-trained athletes, whereas the blood interleukin (IL) 6, xanthine oxidase
activity, and uric acid (related to oxidative stress) was not improved by the flavonoid
supplement. The study by Sharp et al. [57] also found no difference induced by quercetin
intake in eight-and-a-half days for the oxygen consumption (VO2 peak and respiratory
exchange ratio) of physically active soldiers. Similarly, and for an even longer period,
Nieman et al. [60] administered 1000 mg/day of quercetin for three weeks to 18 ultrama-
rathoners (21 for placebo) before competing in the 160-km Western States Endurance Run
and observed no significant effects due to the flavonoid supplement in the race time. More-
over, quercetin was not able to attenuate muscle soreness, inflammation, or the increase in
cortisol levels, among the other biomarkers experienced by the ultramarathoners [60]. Us-
ing a longer time (eight weeks), Askari et al. [49,51] also reported no significant difference
in the performances of runners or in the oxygen consumption (VO2max), CK, and aspartate
transaminase (markers of muscle damage). Finally, in another study [62], quercetin in the
form of four chews (two with breakfast and two with dinner), each one containing 250 mg
of quercetin, 100 mg of isoquercetin, 100 mg of omega-3 fatty acids (eicosapentaenoic
acid and docosahexaenoic acid (EPA and DHA, respectively)), 30 mg of EGCG, a vitamin
mixture, sucrose, and other ingredients in a carnauba wax and soy lecithin base was admin-
istered for six weeks to 58 moderately trained men and women. Such a quercetin dosage
had no significant effects in four physical performance measures (army physical fitness
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test, Baumgartner modified pull-up test, Wingate anaerobic test, and the 36.6-m sprint) or
in the VO2peak.

With regard to cycling performances, although Davis et al. found significant im-
provements with 1000 mg/day of quercetin for seven days [48], Cureton et al., using a
double-blind, pretest–post-test control group design with 30 recreationally active, but not
endurance-trained, men after 1000 mg/day of quercetin supplement for 7–16 day, showed
no improvements in the total work done during the 10-min maximal-effort cycling trial, the
phosphocreatine recovery time constant, VO2peak, substrate utilization, or perception of
effort during the submaximal exercise [47]. Using a longer supplementation period (three
weeks), Nieman et al. [52,59], found no effects for quercetin applied to 40 cyclists after a
three-day intensified exercise period (nine h of exercise) in either the changes in plasma
cortisol, epinephrine, and norepinephrine levels or in immune function biomarkers, as
stated in Section 3.4. On the other hand, Nieman et al. [61] also studied the effect of a two-
week 1000 mg/day of quercetin, 1000 mg/day of vitamin C, 40 mg/day of niacinamide,
and 800 µg/day of folic acid supplementation (1000 mg/day) and its combination with 120
mg of EGCG, 400 mg of isoquercetin, and 400 mg of polyunsaturated fatty acids (PUFAs,
EPA, and DHA) on three cycling time trial performances (5-, 10-, and 20-km time trials
carried out on consecutive days); mitochondrial biogenesis; immunity; or inflammation.
No changes were found for the time trial finish time and cycling power output or in the
mRNA expression for the gene’s peroxisome proliferator-activated receptor γ coactivator α,
citrate synthase, and cytochrome c, which are related to muscle mitochondrial biogenesis.
However, a two-week supplementation of quercetin and EGCG, among other nutrients,
resulted in a greater granulocyte oxidative burst at the baseline and a decrease in the
inflammatory and immune biomarkers, as commented on below (Section 3.4), immediately
after the third exercise bout [61].

• Studies with other Pure Flavonoids

In recent years, two interesting papers that examined the effects of other pure flavonoids
on the cycling performance appeared (Table 1). Schwarz el al. [53], in a double-blind, ran-
domized, placebo-controlled parallel study, applied 200 mg/day of (–)-epicatechin to
20 recreationally active men and women in anaerobic and aerobic cycling conditions. The
flavanol administration inhibited the development of a peak relative aerobic power and
conferred no additional benefit for the peak anaerobic power or anaerobic capacity when
compared to the placebo.

On the other hand, Overdevest et al. [54], in a randomized, parallel-group, double-
blind design, administered 500 mg of citrus flavonoid extract with hesperetin-7-O-rutinoside
2S enantiomer (with a total rutinoside content of at least 90%) to 39 cyclists. They found
that this flavanone increased both the absolute and relative power output in a 10-min time
trial on a cycle and decreased the oxygen consumption/power ratio.
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Table 1. Summary of the included studies assessing the effects of a single flavonoid intervention on exercise performances.

Reference Flavonoid Control Group Study Design
Number of
Participants

(Female + Male)

Mean Age of
the Participants

(Years)
Dosage Exercise Performance

Variable Effect

Quercetin Supplements

[52,59] Quercetin +
Tang powder Tang powder Db

RPCT 0 + 40 26.1 ± 1.8 (SUP)
29.1 ± 2.4 (PL)

1000 mg/d
for 3 wks

Three 3 h
cycling bouts Mean power NS

[61] Quercetin +
isoquercetin + EGCG

Placebo +/−
Quercetin

Db
RPCT 7 + 32

26.3 ± 1.7 (PL)
26.8 ± 2.6 (Q)
28.1 ± 2.8 (Q +

EGCG)

1000 mg
quercetin +

120 mg EGCG +
400 mg/d

isoquercetin
for 14 d

Cycling 5, 10 and 20 km
time trials NS

[47]
Quercetin +

sport hydration
beverage

Sports
hydration
beverage

Db
RPCCT 0 + 30 23.1 ± 2.4 (SUP)

22.1 ± 1.8 (PL)
1000 mg/d
for 7–16 d Cycling

Work performed
in a 10 min

maximal effort
cycling

NS

[48] Quercetin +
Tang Tang Db

RPCCT 5 + 7 22.9 ± 2.4 1000 mg/d
for 1 wk Cycling Time to

fatigue Improvement

[60]
Quercetin +

vit C +
niacin

Placebo chews Db
RPCT 7 + 32 44.2 ± 2.0 (SUP)

46.0 ± 2.3 (PL)

1000 mg/d
quercetin +
1000 mg/d

vit C +
80 mg/d niacin

for 3 wk

160-km Western
States

Endurance Run
Race time NS

[55]
Quercetin +
PowerAde
Coca Cola

PowerAde
Coca Cola

Db
RPCCT 0 + 26 20.2 ± 0.4 1000 mg/d

for 14 d
12 min

running trial Distance Improvement

[62]

Quercetin +
Isoquercetin + EGCG
+ Vit mix + EPA and

DHA

Placebo chews Db
RPCT 14 + 44 22.0 ± 5.1 (SUP)

20.3 ± 1.6 (PL)
1000 mg/d
for 6 wks

APFT, BMPU,
WAnT, and 36.6 m

running sprint

Time trial,
repetitions, mean
power and time

trial

NS



Nutrients 2021, 13, 1132 9 of 41

Table 1. Cont.

Reference Flavonoid Control Group Study Design
Number of
Participants

(Female + Male)

Mean Age of
the Participants

(Years)
Dosage Exercise Performance

Variable Effect

[56]

Quercetin-3-
glucoside +

6% carbohydrate
sports drink

6% carbohydrate
sports drink

Db
RPCCT 0 + 15 23.3 ± 2.6 1000 mg/d

for 1 wk
Running repeated

sprints Mean sprint time NS

[57] Quercetin + food bars Energy bars Db, RPCCT 0 + 16 22.0 ± 3.0 1000 mg/d
for 8.5 d

Marching in a
treadmill and
cycling trial

Time trial NS

[49,51] Quercetin Placebo +/-
vit C Db, RPCT 0 + 65 21.0 ± 1.6 500 mg/d

for 8 wks
Running in a

treadmill

Time to
exhaustion
or distance

covered

NS

[50]
Quercetin +

vit C +
tocopherols

Energy bars
containing vit C
and tocopherols

Db, RPCT 14 + 16

19.6 ± 1.3 (female PL)
20.6 ± 1.1

(female SUP)
19.5 ± 1.1 (male PL)

20.9 ± 1.8 (male SUP)

1000 mg/d
quercetin +

20 mg/d vit C +
14 mg/d

tocopherols
for 1 wk

Eccentric
contractions of the

elbow flexors

Muscle strength,
arm angle NS

[58] Quercetin Placebo capsules RPCCT 0 + 12 26.1 ± 3.1 1000 mg/d
for 14 d

Eccentric
contractions

Arm angle, arm
circumference Improvement

Other Flavonoid Supplements

[53] (-)-epicatechin Cellulose
capsules Db, RPCT 20 20.5 ± 1.5 (SUP)

21.0 ± 1.9 (PL)
200 mg/d
for 4 wks Cycling Peak anaerobic

power Worsening

[54] Hesperetin-7-O-
rutinoside

Microcrystalline
cellulose capsules Db, RPCT 0 + 39 23.0 ± 0.3 500 mg/d

for 4 wks Cycling Absolute power
output Improvement

Db = double-blind, RPCT = randomized placebo-controlled trial, RPCCT = randomized placebo-controlled crossover trial, PL= placebo, SUP = flavonoid-supplemented, d = day, wk = week, NS = nonsignificant
effect, EGCG = epigallocatechin gallate, EPA = eicosapentaenoic acid, DHA = docosahexaenoic acid, APFT = Army Physical Fitness Test, BMPU = Baumgartner Modified Pull-Up Test, Vit = vitamin, and WAnT =
Wingate Anaerobic Test.
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3.2.2. Studies with Flavonoid-Enriched Extracts

As shown in Table 2, since 2005, 38 articles have reported the effects of flavonoid-
enriched extracts on sports performances [26,28,64–99], mainly using cycling and running
performances but, also, strength testing, vertical jump, taekwondo, and the climbing test.
These 38 articles referred to 37 clinical trials, because the articles by Nieman et al. [97]
and Ahmed et al. [98] used the same clinical trial. Eighteen clinical trials applied extracts
containing flavanols, 13 applied anthocyanins, 4 used ellagitannins, and flavones and
isoflavones were each used in one. The length of the intervention ranged between seven
days and eight weeks. From these studies, 41% (15/37) reported an improved performance
after the flavonoid intake. This positive effect was obtained for 28% (5/18) studies using
flavanols and about 54% (7/13) testing anthocyanins (Figure 2). The remaining improve-
ments were observed with extracts containing ellagitannins (one out of four), isoflavones
(one out of one), and flavones (one out of one).

• Studies with Flavanols

A total of 19 articles [26,28,64–72,74,85,94–99] referred to 18 clinical trials that applied
extracts rich in flavanols as the intervention (Table 2, flavanols section). Two of these 19
articles focused on the same clinical trial [97,98]. Twelve clinical trials had a parallel de-
sign [64–67,70–72,94,96–99], and the six remaining had a crossover design [26,28,69,74,85,95].
Although most of the studies were double-blind, one trial was single-blind [26] and two
were triple-blind [64,68]. There was a total of 495 participants involved in these studies, of
whom 35 were women. Most of the studies were performed on a young population, with a
mean age of between 19 and 25 years; in six studies, the participants were between 25 and
35 years [68,69,71,85,95,97,98], and in two, they were over 36 years [67,74].

The flavanol sources differed among the studies. Green tea extract was the most
common [28,64,85,94–96,99], followed by chocolate [26,68–71], lychee [65,66], apple [74],
carob [72], and three combined green tea extracts with anthocyanins [67,97,98]. The
dosage and the length of the intervention also varied between studies. In nine studies, the
dosage was less than 250 mg [26,65–69,72,85,96], three between 251 and 500 mg [64,70,71],
two between 501 and 750 mg [94,95], one 751 and 999 mg [28], and four more than
1000 mg [74,97–99]. The lengths of the interventions ranged between one and ten weeks.
The exercise protocols included running [65–67,71,96–98], cycling [26,28,68,69,74,85,94,95],
strength [99], the calf-raising exercise [64], vertical jump [70], and taekwondo [72].

Flavanols were successful in enhancing performances after cycling (three out of eight
reviewed studies reported ergogenic effects in cycling) [74,94,95], running (one out of
six) [66], or taekwondo training (one out of one) [72]. The length of the successful inter-
ventions varied between seven days and six weeks. Ataka et al. [74] demonstrated the
positive effect of the seven-day intake of Applephenon®, which contained procyanidins as
the active components. In particular, 18 volunteers were asked to perform non-workload
trials with a maximum velocity for 10 s at 30 min (30-min trial) after the start and 30 min
before the end (210-min trial). The change in maximum velocities between the 30- and
210-min trials was higher in the Applephenon® group than in the placebo group [74].
Similarly, Roberts et al. [94] showed the beneficial effects of a four-week administration of
a decaffeinated green tea extract containing 70% EGCG (i.e., 400 mg/day) in 14 volunteers
performing one hour at 50% VO2peak cycling. The use of the decaffeinated green tea extract
resulted in an increase in distances covered at two and four weeks of the intervention. This
effect was accompanied by a higher total fat oxidation rate and a decrease in the body
fat index, although the total fatty acids concentration was unaffected [94]. Similarly, Ota
et al. [95] applied a green tea extract that provided 570 mg of catechins in a longer (eight
weeks) study. Fourteen untrained volunteers underwent cycle exercise training twice a
week during the eight-week period, and at the end, their isokinetic muscle strength, among
other variables, were measured. The supplement increased their leg extension strengths
without changing their muscle mass, and, in addition, there was an increase in their aerobic
endurance capacities (ventilation threshold) [95].
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Likewise, Kang et al. [66] demonstrated the influence of an oligomerized lychee
extract (Oligonol®), 200 mg/day for 30 days, in a running capacity. The extract contained
15.7% flavanol monomers ((+)-catechin, and (−)-epicatechin), along with 13.3% flavanol
dimers (procyanidin B2, etc.), and was able to elevate the submaximal running time and
increase the anaerobic threshold when compared to the baseline values. On the other hand,
Gaamouri et al. [72] applied a carob extract, which is rich in carbohydrate, dietary fiber,
and polyphenols, in taekwondo athletes. In particular, carob extract is rich in flavanols
such as (+)-catechin, (−)-epicatechin, (−)-epicatechingallate, EGC, EGCG, and condensed
tannins and also contains considerable amounts of other polyphenols (i.e., gallic acid) [100].
After eight weeks of supplementation and training, the athletes that took the carob extract
improved their distance and the maximal aerobic velocity compared to those taking the
placebo after performing a final Yo-Yo intermittent recovery test level-1. The study also
demonstrated that the supplement increased the weight loss of athletes [72].

Nevertheless, not all interventions with extracts containing flavanols revealed a higher
performance, either applied in cycling [26,28,68,69,85,101], running [65,67,71,96–98] or
other protocols [64,70,99]. Eichenberger et al. [85] analyzed the effects of a green tea extract
(159 mg/day catechins) for three weeks in nine endurance-trained men who cycled for
two h and then performed a 30-min time trial. Although no improvements in their perfor-
mances, or in fat oxidation and energy expenditure, were obtained, the supplementation
reduced some inflammation biomarkers, as stated below (Section 3.4.). A green tea extract
in cycling performances was also applied in the study by Jówko et al. [28]. In a study
including four weeks of administration of green tea extract providing 900 mg/day of cate-
chins, the authors demonstrated that 16 sprinters who performed two repeated-cycle sprint
tests did not improve their sprint performances through taking green tea extract. However,
the supplement prevented the increase in blood biomarkers of oxidative stress [28].

Supplements of flavanol-enriched foods were also applied by means of dark chocolate.
Allgrove et al. [26] assessed the effects of two weeks of consumption of dark chocolate in 20
active men cycling at 60% VO2max for 1.5 h, with the intensity increased to 90% VO2max for
a 30-s period every 10 min, followed by a ride to exhaustion at 90% VO2max. Although dark
chocolate provided 197.7 mg/day of flavanols (108.6 mg of monomeric forms and 88.8 mg
of procyanidins), the time to exhaustion in the final cycling test did not differ between the
supplement conditions. Nevertheless, dark chocolate consumption decreased the plasma
levels of the oxidative stress biomarkers [26]. Similarly, Decroix et al. [68] studied the
effects of cocoa flavanols on 14 trained cyclists in a randomized, double-blind, crossover
study. The daily intake of cocoa flavanols (1765 mg/day of cocoa extract with 121 mg/day
of monomeric forms) for seven days reduced the oxidative stress but did not improve the
exercise performance during exhaustive exercise in hypoxia. More recently, Shaw et al. [69]
also studied the effects of chocolate flavanol intake for two weeks in trained cyclists at
altitude. In agreement with Decroix et al. [68], dark chocolate had no effect on the cycling
performances.

With regards to flavanols in running, various studies showed no improvements in
running performances. Nishizawa et al. [65] applied a lychee fruit extract (100 mg/day)
containing monomers (16.3%), dimers (13.8%), trimmers (3.8%), and larger proanthocyani-
dins (58.6%) throughout the two-month training period of long-distance runners. The
lychee fruit extract did not improve the time for a five-km track race [65]. Additionally,
using long-distance runners, Scherr et al. [67] studied the effects of drinking nonalcoholic
beer for three weeks, consisting predominantly of catechin, epicatechin, procyanidin B-3,
and flavonols, in athletes who participated in the Munich Marathon 2009. No difference
was observed in the time trial between those supplemented with flavonoids and those
receiving the placebo. Nevertheless, the supplement decreased some immune outputs,
as stated below (Section 3.4). The Nieman et al. group [97,98] could not demonstrate
the efficacy of a mix of water-soluble polyphenols from blueberry and green tea extracts
captured in a polyphenol soy protein complex (40 g/day with about 1 g/day of flavanols
for two weeks) in improving the performances of long-distance runners. In addition, this
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supplement did not counteract the increase in inflammation (see Section 3.4) and oxidative
stress biomarkers, although a distinct gut-derived phenolic signature was found [97]. On
the other hand, a green tea extract combined with endurance training was tested in un-
trained men [96]. The supplement provided 207 mg/day of catechins and was given for
four weeks, in which endurance training was performed. The flavanol-enriched extract did
not improve the endurance training capacity but protected against acute exercise-induced
muscle damage and oxidative stress in sedentary men [96]. More recently, García-Merino
et al. [71] reported the effect of 5 g/day of cocoa (425 mg of flavanols, mainly procyanidin
B2, with small amounts of flavonols, flavanones, and flavones) for 10 weeks in endurance
cross-country athletes. The long intervention decreased the body and visceral fat levels of
the athletes, but it did not improve their exercise performances.

Beyer et al. [99] applied a proprietary blend of aqueous tea extracts (2 g/day for four
and six weeks) from Camellia sinensis (green tea) containing a minimum of 40% polyphenols
in untrained men and assessed their lower-body strength. Camellia sinensis contains EGCG,
ECG, and other monomer flavanols, together with caffeine and, also, minerals such as
potassium [102]. Although the four-week green tea extract supplementation increased the
antioxidant capacity, six weeks of progressive resistance training showed no difference in
the strengths of the supplemented, placebo, and control groups [99]. Similarly, da Silva
et al. [64] evaluated the potential of green tea extract (500 mg for 15 days) on the calf-raising
exercise and did not find beneficial effects from the supplement either in the number of
repetitions, muscle soreness, oxidative damage, or antioxidant status. On the other hand,
de Carvalho et al. [70] assessed the effect of chocolate milk with additional cocoa flavanols
(308 mg) in rugby players performing vertical jumps and a Yo-Yo test to establish athlete
performance. After seven days of supplementation, there were no benefits in athletic
performance or in oxidative stress.

• Studies with Anthocyanins

Thirteen studies with anthocyanins were selected for the final discussion (Table 2,
anthocyanins section). All of them were randomized controlled trials and double-blinded.
Seven studies [73,75,76,78–80,83] had a crossover design, and the other six [77,82–84,86,87]
had a parallel design.

Around 80% of the participants were male; specifically, there were 217 males out of 263
participants. In six studies [76,78,79,81,83,84], the mean age was between 19 and 25 years
old. There were three studies [77,80,82] with people aged between 26 and 30 years, one [75]
between 31 and 35, and three [73,86,87] with subjects aged between 36 and 40.

In eight trials [73,75–81], blackcurrants was the food source of anthocyanins, and,
except for one [75], it was specifically New Zealand blackcurrants (CurraNZ™). Three
studies [82–84] were performed with Montmorency tart cherries, one [86] with purple
grapes, and one [87] with blueberries. The dosage varied among studies between 105
mg/day [73,76] and 10 mL/kg/day, containing 52.6 mg/L of anthocyanins [86]. The
most common dosage was between 200 and 300 mg/day [75,77–81,83], with only two
studies using a dosage higher than 300 mg/day [87,103]. The length of the intervention
in nine studies [73,76–83] was one week, with the four remaining studies being 10 days
and two, three, and four weeks, respectively [75,84,86,87]. Running was the most common
exercise program among the studies [75–77,84,86], followed by cycling [64,73,82,87] and
strength through isometric exercise [78,79], intermittent forearm exercise protocol [79],
and climbing [81]. Performance was measured through a time trial [73,75,77,83,84,87],
maximal contractions [78,79], distance covered [76], work performed [82], and time to
exhaustion [80,81,86].

Anthocyanins were able to improve the running [76,84,86], cycling [73,83], and climb-
ing [81] performances after 7–28 days supplementation. Three studies using New Zealand
blackcurrant extract (CurraNZ®) found a better performance after a seven days of supple-
mentation [73,76,81]. One 300-mg capsule of CurraNZ® contains 105 mg of anthocyanins—
specifically, 35–50% delphinidin-3-rutinoside, 5–20% delphinidin-3-glucoside, 30–45%
cyanidin-3-rutinoside, and 3–10% cyanidin-3-glucoside. Cook et al. [73] reported a 2.4%
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improvement in a 16.1-km cycling time trial following 30 min of steady-state cycling
(3 × 10 min at 45%, 55%, and 65% VO2max) after seven days of intake of CurraNZ® (one
capsule/day). The New Zealand blackcurrant supplementation also increased the fat oxi-
dation during cycling at 65% VO2max and plasma lactate immediately after completing the
time trial [73]. Perkins et al. [76] also demonstrated the beneficial effects on performance
of the seven days of intake of CurraNZ® (one capsule/day). Specifically, 13 active men
performed a high-intensity intermittent running protocol on a treadmill, which consisted
of combining 6 × 19 s of sprints and 15 s of low-intensity running. The total distance
running and the distance covered during the sprints increased by 10.6% and 10.8%, re-
spectively, after the seven-day New Zealand blackcurrant supplementation. Moreover,
the post-exhaustion blood lactate levels tended to be higher after the blackcurrant in-
take [76]. Likewise, Potter et al. [81] showed the positive effects of seven days of CurraNZ®

supplementation using a higher dose (2 × 300 mg CurraNZ® capsules/day, providing a
total of 210 mg/day of anthocyanins) on sports climbing ability. Participants performed
three climbing bouts separated by a 20-min recovery period; in each of which, they had
to climb without stopping until volitional exhaustion. After supplementation, the total
climbing time was increased by 23%, and the decline in climbing performance observed in
the placebo condition across the repeated climbing bouts was avoided, whereas no effect
was found regarding the hang time and pull-ups. No changes were observed in heart
rate, blood lactate, forearm girth, or handgrip strength due to seven days of blackcurrant
intake [81].

On the other hand, Braakhuis et al. [75] studied the effects of an antioxidant drink
that combined blackcurrant extract and a fruit drink concentrate, providing 300 mg of
anthocyanins and 15 mg of vitamin C, on training and performance in trained female
runners. Participants drank 0.5 L of the antioxidant juice daily for three weeks; during
which, they trained two to three times a week according to their fitness level under the
supervision of one of the researchers. At the end of the supplementation period, the
participants performed a 5-km time trial on a treadmill followed by an incremental running
test, in which the speed and inclination were progressively increased until exhaustion. The
results are quite controversial, since, whereas the fastest runners (+2 standard deviation of
the mean speed on the incremental running test) showed an improved running performance
in both the 5-km time trial and the incremental running test after supplementation, the
average runners tended to be slower after the three weeks of intervention [75].

Despite these successful results regarding blackcurrant extract, other authors did not
find changes in sports performance with a similar flavonoid source. This was the case in
studies that focused on the half-marathon finish time [77], isometric maximal voluntary
contractions of the quadriceps [78], and time to exhaustion during repeated intermittent
forearm muscle contractions [79,80], which did not improve due to seven days of intake of
600 mg/day of New Zealand blackcurrant extract (two capsules/day of CurraNZ®).

On the other hand, three articles studied the effects of anthocyanins from Mont-
morency tart cherries on running [84] and cycling [64,82] performances. Levers et al. [84]
observed a 13% reduction in the half-marathon finish time due to a seven-day supplemen-
tation with 480 mg/day of Montmorency tart cherry powder (CherryPURE®, Traverse
City, MI, USA), providing 991 mg of phenolic compounds and 66 mg of anthocyanins.
Moreover, the tart cherry supplementation also avoided the cortisol production increase
observed in the placebo condition 60 min after exercise and attenuated some of the changes
induced by exercise on the muscle catabolic markers and inflammatory markers, as stated
in Section 3.4 [84]. Similarly, Morgan et al. [83] observed a 4.6% decrease in the time needed
to complete a 15-km cycling time trial after a 10-min steady-state cycling at 65% VO2max
due to a seven-day Montmorency tart cherry supplementation (CherryActive® capsules,
Hanworth, UK), providing 462.8 mg/day of polyphenols and 256.8 mg/day of antho-
cyanins. This improvement in cycling performance was accompanied by an increase in the
baseline tissue oxygenation index and a higher blood lactate concentration at the end of the
steady-state exercise [83]. Bell et al. [82] also studied the effect of a seven-day Montmorency
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tart cherry supplementation (60 mL/day of CherryActive® concentrate juice, containing
9.117 mg/mL of anthocyanins) on the cycling time trial performance; however, they found
no difference in the total work performed during the time trial due to the intervention.
Although the supplementation did not alter the performances, Montmorency tart cherry
supplementation attenuated the exercise-induced increase in lipid hydroperoxides and the
inflammatory response [82].

Additionally, other anthocyanin-rich extracts have been studied in recent years. In this
regard, Toscano et al. [86] showed the ergogenic effect of a 28-day integral purple grape juice
intake (10 mL/kg/day containing 1.82 g/L of total phenolic compounds and 52.58 mg/L
of anthocyanins) in recreational men and women runners. A 15.3% increase in the time to
exhaustion was accompanied by an increased total antioxidant capacity and a higher serum
content of vitamin A and uric acid, as well as a decrease in the inflammatory biomarker α-1-
acid glycoprotein serum concentration [86]. On the other hand, Nieman et al. [87] analyzed
the effects of a two-week freeze-dried blueberry supplementation (one cup/day blueberries
equivalent, providing 345 mg of anthocyanins) and its acute combination with banana as a
carbohydrate source (banana) during exercise on a 75-km cycling time trial performance
and stressful exercise-induced oxylipins production. Although no significant differences
in the cycling power or finish time during the time trial were found, the two weeks of
blueberry intake increased the blood levels of some gut-derived phenolic metabolites [87].

• Studies with Ellagitannins

Four studies included in this systematic review used extracts enriched in ellagitannins
(Table 2, ellagitannins section). All studies were double-blind, and three [88–90] had a
crossover design, whereas one [91] was parallel. There was a total of 63 participants, and
only two were women. The average ages of the participants ranged between 20 [91] and
37 [89] years old.

All studies on ellagitannins used pomegranate as the food source. The dosage was
171.9 mg/day [88], 220 and 225 mg/day [90,91], or 11.46 mg/kg/day [89]. In two of the
studies, the length of the intervention was one week [88,89], whereas another lasted two
weeks [90], and the fourth lasted two months [91]. Performances were measured in cycling
trials through a time trial [88], average power output [89], time to exhaustion [90], or time
to complete 2000 m on a rowing ergonometer [91].

Improvements in cycling performances were reported by Torregrosa-García et al. [90]
in 26 amateur trained cyclists after 15 days of supplementation with POMANOX® P30, pro-
viding 225 mg/day of punicalagins α and β. During the intervention period, participants
had a training routine of two–four sessions per week, each session lasting at least one hour.
At the end of the supplementation period, participants were submitted to an incremental
exercise test to exhaustion on a cycle ergometer, in which the total time to exhaustion and
time to reach ventilatory threshold 2 (previously established before starting supplemen-
tation) were greater after the 15 days of pomegranate intake. Moreover, the authors also
evaluated the effects of these ellagitannins on force recovery through a repeated isokinetic
unilateral leg test performed 2, 24, 48, and 72 h after inducing muscle damage through an
eccentric drill protocol; however, no significant changes were found [90]. On the other hand,
Trinity et al. [88] and Crum et al. [89] found no impacts of the seven-day and eight-day
pomegranate ellagitannin intakes, respectively, on the cycling time trials. Finally, the Polish
rowing team was used to establish the effect of a two-month pomegranate juice intake
(220 mg/100 g of polyphenols) on the rowing performance, antioxidant potential, and
markers of iron metabolism [91]. No differences were found in the power output and total
row time over a 2000-m distance due to supplementation or on iron metabolism markers.
However, they found a higher total antioxidant capacity in pomegranate-supplemented
rowers one day after the 2000-m rowing test [91].

• Studies with Other Flavonoids

Two clinical trials applied other flavonoids (Table 2). One of them studied the impact
of isoflavone supplementation [92]. For that purpose, 14 men daily consumed four 500-mg
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capsules of a proprietary blend, each one containing 150 mg of soybean peptides, 50 mg of
taurine, 45 mg of Purearia Radix isoflavone, and 30 mg of ginseng saponin complex (STPG
capsule), for 15 days. At the end of the supplementation period, the participants carried
out an exhaustive cycling test at an intensity of 75% VO2max, where the time to exhaustion
was greater in the supplemented group. This improvement in the performance after the
15-day isoflavone intervention was accompanied with higher serum concentrations of
nonesterified fatty acids from 15 min of exercise onward, attenuating the decrease observed
in the placebo group over the exhaustive test. Moreover, although the plasma lactate
increased with exercise in both groups, lower plasma lactate levels were found after 20 and
25 min of exercise in the supplemented one. The ammonia and glycerol plasma levels also
increased throughout the exhaustive test in both conditions [92].

Finally, Gelabert-Rebato et al. [93] studied the ergogenic effects of peanut husk extract
(PHE) containing 95% of the flavone luteolin in combination with mango leaf extract (MLE)
containing 71% of the xanthone mangiferin at low (50 mg/day of PHE and 140 mg/day
of MLE) and high (100 mg/day of PHE and 420 mg/day of MLE) doses. The participants
performed two exercise protocols after 48 h and 15 days of supplementation in order
to assess both the acute and prolonged changes. The exercise protocols involved both
low- and high-intensity stages and repeated sprinting bouts in combination with ischemia–
reperfusion episodes. The 15-day intake of both tested doses of the luteolin- and mangiferin-
rich extracts combination enhanced the sprint performance after ischemia–reperfusion by
22% in terms of the peak power output compared with the first exercise trial performed
48 h after starting the nutritional intervention. No changes in performances were found
in the placebo group in either exercise protocols. Moreover, the supplementation with
luteolin combined with mangiferin also improved the muscle O2 extraction and brain
oxygenation [93].
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Table 2. Summary of the included studies assessing the effects of flavonoid-enriched extracts on exercise performances.

Family
Reference

Flavonoid
source Control Groups Study Design

Number of
Participants

(Female +
Male)

Mean Age of
Participants

(Years)
Dosage Exercise Performance

Variable Effect

Flavanols

[74] Apple extract
(Applephenon®)

Crystalline
cellulose
capsules

Db
RPCCT 9 + 9 39.1 ± 9.1

720 mg/d
procyanidins

for 7 d
Cycling

Change of
maximum

velocity
Improvement

[85] Green tea
extract

Carbohydrate-
containing

drink

Db
RPCCT 0 + 9 32.2 ± 2.1

159 mg/d
catechins
for 3 wks

Cycling Time for 30 km
trial NS

[28] Green tea
extract

Microcrystal-
line cellulose

capsules

Db
RPCCT 0 + 16 21.6 ± 1.5

800 mg/d
catechins
for 4 wks

Cycling

Peak power,
mean power,

total work
output

NS

[94] Decaffeinated
green tea extract

Corn flour
capsules

Db
RPCT 0 + 14 21.4 ± 0.3

400 mg/d
EGCG

for 4 wks
Cycling Distance Improvement

[95] Green tea
extract Sports drink Db

RPCCT 0 + 14 33.9 ± 7.4
570 mg/d
catechins
for 8 wks

Cycling Leg extension
strength Improvement

[96] Green tea
extract

Starch
capsules

Db
RPCT 0 + 40 21.0 ± 1.0

207 mg/d
catechins
for 4 wk

Running Time to
exhaustion NS

[97,98]

Blueberry-green
tea-polyphenol

soy protein
complex

Soy protein
complex with

non-
polyphenolic
food coloring

Db
RPCT 13 + 18 33.7 ± 6.8 (SUP)

35.2 ± 8.7 (PL)

1001 mg/d
flavanols
for 17 d

Running in a
treadmill for 2.5

h

Distance
covered NS
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Table 2. Cont.

Family
Reference

Flavonoid
source Control Groups Study Design

Number of
Participants

(Female +
Male)

Mean Age of
Participants

(Years)
Dosage Exercise Performance

Variable Effect

[99] Green tea
extract

Microcrystalline
cellulose
capsules

Db
RPCT 0 + 40

23.3 ± 4.1 (CT)
21.9 ± 2.5 (SUP)
21.5 ± 2.3 (PL)

800 mg/d
polyphenols

for 4 wks

Maximal
strength

testing, lower
body resistance

training

Strength NS

[64] Green tea
extract

Celulomax®

capsules
Tb RPCT 0 + 20 25 ± 5

18.5 mg/d
catechins
for 15 d

Calf-rising
exercise

Number of
repetitions NS

[65]

Flavanol-rich
lychee fruit

extract
(Oligonol ®)

Malt extract Db RPCT 0 + 20 20.6 ± 1.3 (SUP)
20.6 ± 1.2 (PL)

100 mg/d
flavanols

for 2 months

Running
training,

combining low,
medium, and

high
intensities

Time for
5-km race NS

[66]

Oligomerized
lychee fruit

extract
(Oligonol®)

Dextrin capsules Db RPCT 0 + 38 24.6 ± 6.6 (SUP)
22.9 ± 3.6 (PL)

200 mg/d
flavanols
for 30 d

Running Submaximal
running time Improvement

[67] Nonalcoholic
beer

Control
beverage

containing the
same

ingredients
except for

polyphenols

Db RPCT 0 + 121 44 (SUP)
42 (PL)

1.0–1.5 L/d with
47 mg/L

catechin and 33
mg/L

procyanidins
for 3 wks

Munich
marathon race

Time for
the race NS
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Table 2. Cont.

Family
Reference

Flavonoid
source Control Groups Study Design

Number of
Participants

(Female +
Male)

Mean Age of
Participants

(Years)
Dosage Exercise Performance

Variable Effect

[26] Dark
chocolate

Isocaloric
control

chocolate
without

polyphenols

Sb RPCCT 0 + 20 22.0 ± 4.0
197.4 mg of

flavanols
for 2 wks

Incremental
cycling

Time to
exhaustion NS

[68] Cocoa
flavanols

Maltodextrin
capsules

containing the
same amount of

theobromine
and caffeine
than cocoa
flavanols
capsules

Db RPCT 0 + 14 30.7 ± 3.1

100 mg
epicatechin and
23 mg catechin

for 7 d

Cycling trial in
normobaric

hypoxia

Completed
work in 20 min

cycling trial
NS

[69] Dark
chocolate

Isocaloric
nonchocolate

placebo
Db RPCCT 2 + 10 35.0 ± 12.0

60 g/d dark
chocolate for 14
d and 120 g just

before trial

10 km
cycling trial at

altitude
Time trial NS

[70] Cocoa
flavanols Chocolate milk Db RPCT 0 + 13 20.69 ± 1.49

308 mg/d
flavanols

for 7 d

Vertical-jump
and yo-yo tests

Vertical jump
performance,
accumulated

distance
covered

NS

[71] Cocoa
flavanols Maltodextrin Db RPCT 0 + 32 33 ± 7 (SUP)

36 ± 8 (PL)

425 mg/d
flavanols

for 10 wks

Treadmill
running

Time to run
1 km NS
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Table 2. Cont.

Family
Reference

Flavonoid
source Control Groups Study Design

Number of
Participants

(Female +
Male)

Mean Age of
Participants

(Years)
Dosage Exercise Performance

Variable Effect

[72] Carob
extract

Carob-
flavored

commercial
drink containing

citric acid,
sweeteners, and

stabilizers

Db RPCT 11 + 12 21.91 ± 1.22
14.4 mg/d
flavonoids
for 6 wks

Taekwondo
training +

yo-yo tests

Distance
covered,

maximal aerobic
velocity

Improvement

Anthocyanins

[73]
New Zealand
blackcurrant
(CurraNZ™)

Microcrystal-
line cellulose

capsules

Db
RPCCT 0 + 14 38.0 ± 13.0

105 mg/d
anthocyanins

for 7 d
Cycling trial Time trial Improvement

[75] Blackcurrant
juice

Orange
flavored sports

drink

Db
RPCCT 23 + 0 31.0 ± 8.0

300 mg/d
anthocyanins

for 3 wks
Running test Time trial

Worse for
average
runners,

improvement
for fast runners

[76]
New Zealand
blackcurrant
(CurraNZ™)

Microcrystal-
line cellulose

capsules

Db
RPCCT 0 + 13 25.0 ± 4.0

105 mg/d
anthocyanins

for 7 d

Treadmill
running

Running
distance Improvement

[77]
New Zealand
blackcurrant
(CurraNZ™)

Microcrystalline
cellulose
capsules

Db
RPCT 8 + 12 30.0 ± 6.0

210 mg/d
anthocyanins

for 7 d

Chichester half-
marathon Finish time NS

[78]
New Zealand
blackcurrant
(CurraNZ™)

Microcrystal-
line cellulose

capsules

Db
RPCCT 0 + 13 25 ± 4

210 mg/d
anthocyanins

for 7 d

Submaximal
isometric
exercise

Isometric
maximal
voluntary

contractions

NS
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Table 2. Cont.

Family
Reference

Flavonoid
source Control Groups Study Design

Number of
Participants

(Female +
Male)

Mean Age of
Participants

(Years)
Dosage Exercise Performance

Variable Effect

[79]
New Zealand
blackcurrant
(CurraNZ™)

Microcrystal-
line cellulose

capsules

Db
RPCCT 0 + 12 25.0 ± 4.0

210 mg/d
anthocyanins

for 7 d

Submaximal
forearm muscle

contractions

Maximal
volitional

contraction
NS

[80]
New Zealand
blackcurrant
(CurraNZ™)

Microcrystal-
line cellulose

capsules

Db
RPCCT 0 + 12 26.0 ± 5.0

210 mg/d
anthocyanins

for 7 d

Submaximal
forearm muscle

contractions

Time to
exhaustion NS

[81]
New Zealand
blackcurrant
(CurraNZ™)

Microcrystal-
line cellulose

capsules

Db
RPCCT 0 + 18 24.0 ± 6.0

210 mg/d
anthocyanins

for 7 d

Climbing ability
test

Time to
exhaustion Improvement

[82]

Montmorency
tart cherry
concentrate

(Cherry
Active®

concentrate
juice)

Commercially
cordial with less

than 5% fruit,
mixed with
water and

maltodextrin

Db
RPCT 0 + 16 30.0 ± 8.0

547.02 mg/d
anthocyanins

for 7 d
Cycling trial

Work
performed
by cycling

NS

[83]

Montmorency
tart cherry

supplement
(Cherry
Active®)

Dextrose
capsules

Db
RPCCT 0 + 8 19.7 ± 1.6

256.8 mg/d
anthocyanins

for 7 d

Cycling time
trial

Time trial
completion time Improvement

[84]

Montmorency
tart cherry

(Cherry
PURE®)

Rice flour
capsules

Db
RPCT 9 + 18 21.8 ± 3.9

66 mg/d
anthocyanins

for 10 d

Running (half-
marathon) Finish time Improvement
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Table 2. Cont.

Family
Reference

Flavonoid
source Control Groups Study Design

Number of
Participants

(Female +
Male)

Mean Age of
Participants

(Years)
Dosage Exercise Performance

Variable Effect

[86] Integral purple
grape juice

Isoenergetic
carbohydrate-

based
beverage

Db
RPCT 6 + 22 39.8 ± 8.5

10 mL/kg/d
containing 52.6

mg/L
anthocyanins

for 28 d

Treadmill
running

Time to
exhaustion Improvement

[87] Blueberry
powder

Carbohydrate
and

fiber-matched
placebo
powder

Db
RPCT 0 + 59 39.0 ± 2.0

345 mg/d
anthocyanins

for 2 wks
Cycling Time trial NS

Ellagitannins

[88] Pomegranates
Carbohydrate-

matched
placebo drink

Db
RPCCT 0 + 12 26.8 ± 5.0

171.9 mg/d
ellagitannins

for 7 d

Cycling in the
heat Time trial NS

[89] Pomegranate
extract

Pure stevia
extract

powder

Db
RPCCT 2 + 6 37 ± 11

15 mg/kg/d
containing

11.46 mg/kg/d
ellagitannins

for 8 d

Cycling time
trial

Average power
outputs and

energy
expenditure

NS

[90]

Pomegranate
extract

(POMANOX®

P30)

Maltodextrin
capsules

Db
RPCCT 0 + 24 34.9 ± 10

225 mg/d
punicalagins

for 15 d
Cycling trial Time to

exhaustion Improvement

[91]
Pomegranate

juice
(Oleofarm®)

Water, sugar,
and

grenadine

Db
RPCT 0 + 19 20.8 ± 0.86(SUP)

20.9 ± 0.95(PL)

50 mL/d juice
containing 220

mg/100 g
polyphenols
for 2 months

Rowing
ergonometer

Time to
complete
2000 m

NS
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Table 2. Cont.

Family
Reference

Flavonoid
source Control Groups Study Design

Number of
Participants

(Female +
Male)

Mean Age of
Participants

(Years)
Dosage Exercise Performance

Variable Effect

Isoflavones

[92]

Peptides,
taurine, Pueraria
isoflavone, and

ginseng saponin
complex

Starch and
lactose

Db
RPCCT 0 + 14 21.6 ± 0.7

180 mg of
isoflavone

for 15 d
Cycling Time to

exhaustion Improvement

Flavones

[93] Peanut husk
extract

Microcrystal-
line cellulose

capsules
containing

maltodextrin

Db
RPCCT 0 + 12 21.3 ± 2.1

50 or 100 mg/d
luteolin
for 15 d

Cycling trial Peak power Improvement

Tb = triple-blind, Db = double-blind, Sb = single-blind, RCT = randomized controlled trial, RPCT = randomized placebo-controlled trial, RPCCT = randomized placebo-controlled crossover trial. LD = low-dose,
HD = high-dose, PL= placebo, SUP = flavonoid-supplemented, d = day, wk = week, and NS = nonsignificant effect.
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3.3. Risk of Bias within Studies

The risk of bias (selection bias, performance bias, detection bias, attrition bias, re-
porting bias, and other sources of bias) was established within the 54 articles considered
(Figure 4).
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In performance bias, detection bias, attrition bias, and other bias, over 50% of articles
were assessed as “low-risk”. Performance bias and detection bias were assessed as “low-
risk” in almost all the articles, because they assure the blinding of participants, investigators,
and outcome assessment during the intervention. In the included articles, incomplete
outcome data was not considered as a potential risk of bias.

The selection bias and the reporting bias scarcely went over 25%. The selection bias
domain was assessed as an “unclear risk” in most of the articles, because the authors
did not specify how a random sequence was generated, and, consequently, it provided
an inappropriate way to evaluate the allocation concealment. In most of the studies, the
reporting bias domain was assessed as an “unclear risk” due to a lack of an available
protocols or not having information enough to assess this domain.

Another bias considered was if studies did not include a detailed explanation about
the participation of sponsors in the intervention and the subsequent results.

3.4. Association between Flavonoid Intake, Performance, Immune System, and
Inflammatory Biomarkers

Besides the influence of the flavonoid consumption in exercise performances, we
aimed to establish the relationship of these effects with the immune system functionality
of the participants. From the 54 articles selected in the systematic review, only 18 articles
included measures of the immune system (Table 3). From these articles, six articles referred
to the quercetin administration [50,52,56,59–61], with two of them focused on the same
population [52,59]; six other articles applied extracts with flavanols [26,65,67,85,97,98],
with two of them focused on the same clinical trial [97,98]; five articles used extracts
enriched in anthocyanins [77,82,84,86,87], and one referred to a pomegranate juice with
ellagitannins [91]. Most of these studies focused on the inflammatory response associated
with the exercise, which was quantified by means of plasma C-reactive protein (CRP)
and inflammatory and anti-inflammatory cytokines, mainly the myokine IL-6. From
the 18 selected articles, only two quantified a biomarker of acquired immunity, such as
salivary immunoglobulin A (IgA) [52,61]; moreover, two articles focused on the incidence
of URTI [52,67], and one determined the ex vivo antibacterial and antiviral activities [98].

Firstly, with regards to those studies focused in quercetin supplementation, Nieman
et al. [59] determined the levels of plasma inflammatory cytokines and chemokines such as
IL-6, IL-1ra, IL-8, monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor (TNF)
α, and the anti-inflammatory IL-10, as well as the leukocyte and muscle gene expression of
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IL-1ra, IL-8, and IL-10 in subjects submitted to three three-hour cycling bouts. The cytokine
levels increased after exercise. Quercetin supplementation (1000 mg/day for three weeks)
did not improve the physical performance and was only able to reduce the leukocyte
gene expression of the inflammatory IL-8 chemokine and the anti-inflammatory IL-10
cytokine [59]. Nevertheless, the immune function was also studied in the same subjects by
means of the NK cell activity, proliferative activity, polymorphonuclear oxidative-burst
activity, and the levels of salivary IgA. None of these immune function markers were
affected by the quercetin administration, but there was a lower incidence of URTI in the
two-week postexercise period in supplemented cyclists compared to the placebo group [52].
In another study, Nieman et al. [60] measured inflammation by means of CRP, IL-1ra, IL-6,
IL-8, IL-10, MCP-1, TNF-α, granulocyte colony-stimulating factor (G-CSF), and macrophage
inflammatory protein (MIP-1β) and the leukocyte gene expression of some cytokines in
ultramarathoners competing in the 160-km Western States Endurance Run who received
1000 mg/day of quercetin for three weeks before the race. In this case, quercetin was also
unable to modify the physical performance or attenuate the CRP-increased levels or the
increases in the plasma cytokines, and it also failed to attenuate the muscle damage. This
was suggested to be due to the extreme exertion induced by running a 160-km trail race.

Nieman et al. [61] also studied the effect of two weeks of 1000 mg/day of quercetin
administered with vitamin C (1000 mg/day) together or not with EGCG (120 mg), iso-
quercetin (400 mg), and PUFA (400 mg). As commented on above, no effects on the cycling
performance by any supplement were found, but there was a greater granulocyte oxidative
burst at the baseline and a decrease in plasma CRP, IL-6, and IL-10 immediately after
the exercise bout [61]. The blood leukocyte count and salivary IgA were also established
in these athletes. The blood leukocyte number tended to be lower after exercise in the
quercetin and quercetin plus ECGC groups compared to the placebo, with significant
lower levels 14 h after exercise, but no significant differences were found due to exercise or
supplementation in the ratio of salivary IgA to protein [61].

On the other hand, it was reported that one week of quercetin-3-glucoside supplement
was not able to prevent the increase in plasma IL-6 levels associated with repeated sprints of
team sports-trained athletes or increase in their performances [56]. Similarly, quercetin did
not modify the plasma IL-6 and CRP levels and did not prevent the strength loss, muscle
soreness, reduced arm angle, CK elevation, and arm swelling in individuals performing
two separate sessions of 24 eccentric contractions of elbow flexors [50].

Some studies focused on the extracts containing flavanols, anthocyanins, or ellag-
itannins, and physical performances have also shown the effect of supplements on the
immune system (Table 3). A supplement of green tea extract containing 159 mg/day of
catechins (flavanols) was unable to modify the cycling performance, and in comparison
with the placebo group, there was also no difference in the inflammatory IL-6 cytokine, but
there was a decrease in the plasma CRP levels [85]. Moreover, flavanols from a complex of
blueberry–green tea–polyphenol soy protein (1001 mg/day containing 2136 mg of gallic
acid equivalents for 17 days) did not improve the running distance of trained long-distance
runners or prevent the biomarkers of inflammation such as the white blood cell count,
plasma CRP, IL-6, and MCP-1 levels [97]. Interestingly, the immune system function of
these athletes was established by means of ex vivo studies about antibacterial and antiviral
activities [98]. No effect on the growth of Gram-negative and Gram-positive bacteria was
found; however, the blueberry–green tea–polyphenol soy protein complex showed, by
unknown mechanisms, a protective effect on virus infectivity [98]. These results suggest
the potential of this flavanol mixture in the protection against viruses that often occur
following intensive exercise.
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Table 3. Summary of the included studies assessing the association between flavonoid intake, exercise performance, and immune status biomarkers in humans.

Reference Flavonoid Dosage Exercise Effect on
Performance Measurement Outcome

Quercetin

[59] quercetin +
Tang powder

1000 mg/d
for 3 wks

Three 3-h
cycling bouts NS

• plasma inflammatory
cytokines (IL-6, IL-10, IL-1ra,
IL-8, MCP-1, TNF-α)

• leukocyte mRNA
• muscle mRNA

• = plasma inflammatory cytokines
• ↓ leukocyte gene expression of

IL-8 and IL-10

[52] quercetin +
Tang powder

1000 mg/d
for 3 wks

Three 3-h
cycling bouts NS

• NK cell activity
• proliferative activity
• PMN oxidative-burst activity
• salivary IgA
• incidence of URTI

• = NK cell activity
• = proliferative activity
• = PMN oxidative-burst activity
• = IgA
• ↓ incidence of URTI

[60] quercetin +
vit C + niacin

1000 mg/d quercetin +
1000 mg/d vit C +

80 mg/d niacin
for 3 wks

160-km
Western States Endurance

Run
NS

• CRP
• Plasma inflammatory

cytokines (IL-1Ra, IL-6, IL-8,
IL-10, G-CSF, MCP-1, MIP-1β,
TNF-α, MIF-1)

• leukocyte gene expression of
some cytokines

• = CRP
• = plasma inflammatory cytokines
• = leukocyte gene expression

[56]

quercetin-3-
glucoside +

6% carbohydrate sports
drink

1000 mg/d
for 1 wk

Running
repeated sprints NS • plasma IL-6 • = plasma IL-6

[61] Quercetin + isoquercetin +
EGCG

1000 mg quercetin +
120 mg EGCG + 400 mg/d

isoquercetin
for 14 d

Cycling NS

• plasma CRP
• plasma IL-6 and IL-10
• blood leukocyte counts
• salivary IgA

• = plasma CRP
• = plasma IL-6 and IL-10
• ↓ blood leukocyte counts
• = salivary IgA

[50]
Quercetin +

vit C +
tocopherols

1000 mg/d quercetin + 20
mg/d vit C + 14 mg/d

tocopherols
for 1 wk

Eccentric
contractions

of the
elbow flexors

NS • plasma IL-6
• plasma CRP

• = IL-6
• = CRP
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Table 3. Cont.

Reference Flavonoid Dosage Exercise Effect on
Performance Measurement Outcome

Extracts with flavanols

[85] Green tea extract
159 mg/d
catechins
for 3 wks

Cycling NS • plasma IL-6
• plasma CRP

• = IL-6
• ↓ CRP

[97]
Blueberry–green

tea–polyphenol soy protein
complex

1001 mg/d
flavanols
for 17 d

Running in a treadmill
for 2.5 h NS

• WBC count
• serum CRP
• plasma IL-6, MCP-1

• = WBC
• = CRP
• = plasma IL-6, MCP-1

[98]
Blueberry–green

tea–polyphenol soy protein
complex

1001 mg/d
flavanols
for 17 d

Running in a treadmill
for 2.5 h NS • ex vivo antibacterial activity

• ex vivo antiviral activity
• = ex vivo antibacterial activity
• ↑ ex vivo antiviral activity

[65]
Flavanol-rich
lychee fruit

extract

100 mg/d
flavanols

for 2 months

Running training, combining
low, medium, and high

intensities
NS

• Total and differential WBC
counts

• CRP
• serum inflammatory (IL-6)

and
• anti-inflammatory cytokines

(IL-10, TFG-β1, TFG-β2)

• ↓WBC counts, = neutrophil and
lymphocyte counts

• = CRP
• = absolute IL-6, IL-10, TFG-β1,

TFG-β2
• ↓ % IL-6 and TFG-β1 from

pre-training to mid-training period

[67] Nonalcoholic beer

1.0–1.5 L/d with
47 mg/L catechin and 33

mg/L
procyanidins

for 3 wks

Munich
marathon race NS

• IL-6
• CRP
• total blood leukocyte counts
• incidence of URTI

• ↓ IL-6
• ↓ CRP
• ↓WBC
• ↓ URTI incidence

[26] Dark chocolate
197.4 mg
flavanols
for 2 wks

Incremental
cycling NS

• inflammatory and anti-
• inflammatory cytokines
• WBC, neutrophil counts

• = IL-6, IL-1ra, IL-10
• = WBC, neutrophil counts
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Table 3. Cont.

Reference Flavonoid Dosage Exercise Effect on
Performance Measurement Outcome

Extracts with anthocyanins

[77] New Zealand blackcurrant
210 mg/d

anthocyanins
for 7 d

Chichester
half-marathon NS • urine IL-6 • = urine IL-6

[82] Montmorency
tart cherry concentrate

547.02 mg/d
anthocyanins

for 7 d
Cycling trial NS • hs-CRP blood

• inflammatory cytokines

• ↓ hs-CRP
• ↓ IL-6
• = IL-1β, IL-8, TNFα

[84] Montmorency
tart cherry

66 mg/d
anthocyanins

for 10 d
Running (half-marathon) Improvement

• serum inflammatory cytokines
(TNF α, IFN-γ, IL-1β, IL-2,
IL-6, IL-8, IL-12p70)

• serum anti-inflammatory
cytokines (IL-4, IL-5, IL-7,
IL-10, IL-13)

• total and differential WBC
• GM-CSF

• ↓ IL-6, ↓ IL-2, = remaining
cytokines

• ↓ IL-13, = remaining cytokines
• = WBC
• = GM-CSF.

[86] Integral purple grape juice

10 mL/kg/d containing
52.6 mg/L

anthocyanins
for 28 d

Treadmill running Improvement
• serum AGP
• hs-CRP
• WBC

• ↓ AGP
• = hs-CRP
• = WBC

[87] Blueberry
powder

345 mg/d
anthocyanins

for 2 wks
Cycling NS • Inflammatory cytokines

• Oxylipins
• = IL-6, IL-1ra
• ↓ some oxylipins

Extracts with ellagitannins

[91] Pomegranate juice
50 mL/d juice containing

220 mg/100 g polyphenols
for 2 months

Rowing
ergonometer NS • Serum inflammatory cytokines • = IL-6, IL-1ra

↓ = decrease, ↑ = increase, AGP = α-1-acid glycoprotein, CRP = plasma C-reactive protein, GM-CSF = granulocyte colony-stimulating factor, hs= high-sensitivity, IFN = interferon, IgA = immunoglobulin A, IL =
interleukin, MCP-1 = monocyte chemoattractant protein-1, NK = natural killer, PMN = polymorphonuclear leukocytes, TGF = transforming growth factor, TNF = tumor necrosis factor, URTI = upper-respiratory
tract infections, vit = vitamin, WBC = white blood cells.
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Another extract enriched in flavanols, such as a lychee fruit extract with no effect
on running performance in comparison with placebo group, showed interesting findings
in immune-related biomarkers. Participants with supplement exhibited a lower white
blood cell count increase after the training period, although no changes in neutrophil or
lymphocyte counts were observed throughout the training period [65]. CRP levels and
absolute serum IL-6 concentrations were not modified by the supplementation. However,
the percent decrease in IL-6 from the pre-training to mid-training period was significantly
smaller in the participants taking lychee extract. Similarly, the levels of anti-inflammatory
cytokines such as IL-10 and transforming growth factor (TFG) β1 and β2 showed that,
although the absolute concentrations were not significantly modified, the percentage
increase from pre-training to post-training was significantly greater or tended to be higher
for TFG-β1 and TFG-β2 concentrations, respectively, between the flavanol-supplemented
and placebo groups [65]. The preventive effect of flavanols in some changes in the immune
system is reinforced by the study by Scherr et al. [67]. In this case, a nonalcoholic beer
providing about 47 mg/day of catechin and 33 mg/day of procyanidins for three weeks
in runners of the Munich marathon prevented the increase in IL-6, CRP, and total blood
leukocyte counts. Interestingly, this study demonstrated that the incidence of URTI was
lower in the nonalcoholic-runner group in the two weeks after marathon competition,
a period in which the supplement was also given [67]. On the other hand, Allgrove
et al. [26] also assessed the effect of a two-week flavanol intake (197.7 mg/day) by means
of dark chocolate in cycling. Dark chocolate did not improve the cycling performance but
decreased the plasma levels of the oxidative stress biomarkers without affecting the plasma
concentration of cytokines, such as IL-6, IL-10, and IL-1ra, or the blood counts of leukocytes
and neutrophils after prolonged exercise [26].

As reported above, the effect of supplements containing anthocyanins has been stud-
ied in exercise performances and, in some cases, in biomarkers of the immune system. In
a recent study performed in Chichester, half-marathon runners received 210 mg/day of
anthocyanins from New Zealand blackcurrants; however, the flavonoids did not modify
the finish time, and there was also no change in the urine IL-6 concentration [77]. Another
study with anthocyanins, but from Montmorency tart cherries (547.02 mg/day antho-
cyanins for seven d) in well-trained cyclists, analyzed the levels of blood inflammatory
cytokines and high-sensitivity CRP (hsCRP) after a stochastic road cycling trial for three
consecutive days [82]. Whereas nonsignificant improvement was found for the cycling
work performed, the increase in plasma IL-6 and hsCRP was attenuated by the Mont-
morency tart cherry concentrate, which also showed a significant effect on the oxidative
stress markers. However, no influence of anthocyanins was reported for the increased
levels of IL-1β, IL-8, and TNF-α [82].

Levers et al. [84] also analyzed the effect of Montmorency tart cherries but de-
rived from tart cherry skins obtained after juicing, with a lower content of anthocyanins
(66 mg/day) and for a longer period (10 days). Endurance-trained runners or triathletes
racing in a half-marathon taking such a supplement produced a faster race and also ex-
perienced attenuated markers of muscle damage, oxidative stress, inflammation, and
perceptions of muscle soreness than the placebo group. With regards to the inflammatory
response, the serum levels of inflammatory cytokines (TNF-α, interferonγ, IL-1β, IL-2, IL-6,
IL-8, and IL-12p70) and anti-inflammatory cytokines (IL-4, IL-5, IL-7, IL-10, and IL-13) were
measured. The serum IL-6 concentration was attenuated by the extract in the measures
60 min post-run, whereas IL-2 and IL-13 were significantly decreased by anthocyanins
at 60 min, 24 h, and 48 h of running. On the other hand, the analysis of the total and
differential white blood cell counts and the granulocyte-macrophage colony-stimulating
factor (GM-CSF) showed no significant changes between the placebo and supplemented
groups.

Similarly to the study by Levers et al. [84], Toscano et al. [86] applied anthocyanins
in recreational runners and observed an improvement in the time-to-exhaustion. In this
case, the supplement derived from purple grape juice from Brazil contained 52.6 mg/L
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of anthocyanins and was administered at 10 mL/kg/day for 28 days. The analysis of
serum α-1-acid glycoprotein (AGP) and hs-CRP concentrations and the blood total and
differential white cell counts showed that the AGP levels decreased by grape juice at 14
and 28 days, with nonsignificant effects on the hs-CRP or on white cell counts. In parallel,
there was an increase in the antioxidant activity by the extract [86].

More recently, as reported by Nieman et al. [87], anthocyanins from blueberries
(345 mg/day for two weeks), together or not, with acute banana intake before a 75-km
cycling trial did not improve the performance or plasma IL-6 and IL-1ra concentrations,
although the banana consumption decreased the IL-1ra levels. This study also focused
on other plasma inflammatory biomarkers such as oxylipins generated during stressful
exercise from the n-6 and n-3 PUFA metabolism by the cyclooxygenase, lipoxygenase,
and cytochrome P450 pathways [104]. Some of these biomarkers (those derived from the
cytochrome P450 pathway) decreased due to both blueberry and/or banana ingestion.

Finally, another family of flavonoids, ellagitannins, has been studied both in exercise
performance and the immune system. As reported before, Urbaniak et al. [91] used a
supplement of pomegranate juice (two months) rich in ellagitannins in rowing on an
ergonometer. The authors observed a higher antioxidant capacity after pomegranate
fruit juice ingestion, although there was no improvement on the time to complete two
km of rowing. The serum IL-6 concentration analysis also showed no changes in this
inflammatory cytokine between the placebo and supplemented groups.

In summary, considering the clinical trials that applied flavonoids and quantified
physical performance and immune system status, only two administering extracts with
anthocyanins [84,86] showed an improvement in the exercise performance and measured
some immune markers. Both these studies showed that anthocyanins lowered the in-
flammatory response after the quantification of IL-6 [84] or α-1-acid glycoprotein [86] but
did not modify other inflammatory cytokines, CRP, or the white blood cell counts. In
comparison with the other three studies using anthocyanins and determining the immune
functions, the successful studies used lower the flavonoid intake (52.6–66 mg/day), but
it was administered for a longer period (10–28 day) in runners, whereas the other three
studies focused on cyclists or runners taking more than 200 mg/day of anthocyanins for 7–
14 days (Table 3). On the other hand, extracts with flavanols [67,98] or quercetin alone [52]
that did not improve the physical performance were able to decrease the incidence of URTI
in athletes after intense exercise (in one case, a marathon race) or increase the ex vivo
antiviral activity.

4. Discussion

The aim of the current review was to systematically assess the available evidence
published in the last 15 years about the potential benefit of flavonoids on human sport
performance when consuming them for at least seven days. To our knowledge, this is the
first systematic review of the effect of flavonoids, the most consumed polyphenol class [3],
on human exercise performances. From 2005 to 2020, 54 articles were selected according to
the established criteria (healthy adult people, randomized, controlled trial, either single-
or double-blind study designs, interventions lasting for at least seven days, and physical
exercise performance objectively quantified).

The overall proportion of the reviewed articles that clearly showed an improvement
in athletic performance due to flavonoid supplementation was 37% (representing the 27.5%
of the participants included in this review, 30.8% women and 27.1% men), which does
not allow the conclusion to be made with certainty that flavonoid consumption provides
ergogenic effects. Nevertheless, when considering the different flavonoid subclasses sep-
arately, anthocyanins seem to exert a greater ergogenic effect, because the proportion of
successful results after their consumption increases to 54%.

Considering a pure flavonoid intake, nearly all the studies focused on
quercetin. Of these, only 25% (3/12) demonstrated that quercetin improved exercise
performances [48,55,58]. Nieman et al. [55] and Davis et al. [48] hypothesized that the
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outcome could depend on the fitness level of the participants and suggested that the
performance is more likely to be improved due to quercetin in untrained subjects, since
trained participants have already reached a higher threshold regarding the antioxidant
and mitochondrial capacities [105]. In fact, the three studies that confirmed quercetin’s
ergogenic properties were carried out in untrained moderately active people [48,55,58],
whereas the studies using trained male cyclists [52,59,63], endurance runners [60], student
athletes [49,51], team sports-trained athletes [56], and military trained participants [57,62]
found no beneficial effects on sports performances. However, Cureton et al. [47] and
O’Fallon et al. [50] also studied the potential effects of quercetin on untrained subjects and
found no changes, although the first of these authors reported a nonstatistically signifi-
cant 2.7% increase in VO2max following the supplementation that was not observed in the
placebo condition. The observation of nonergogenic effects by these authors seems not to
be related to an inadequate dose/duration of the supplementation, since Davis et al. [48] re-
ported an improvement after just one week of 1000-mg/day quercetin intake. On the other
hand, the short half-life of quercetin (3.5 h) is known [106], and in two studies reporting an
improvement in performance, quercetin was consumed one h [48] and two h [59] before
the exercise test, which could be important for enhancing the sports ability. Additionally, it
could be hypothesized that the improvement could be due to the interaction of quercetin
with other ingredients that could influence its bioavailability. Nevertheless, in the studies
reporting an improvement in performance, quercetin was administered both alone [58]
or in sugar-free sports beverages provided by Tang (Kraft Foods) [48] or Coca-Cola [55].
Moreover, in the unsuccessful study by Cureton et al. [47], quercetin was also consumed
in a sports hydration beverage prepared by the Coca-Cola Company, and in the study by
O’Fallon et al. [50], participants received quercetin through First Strike nutrition bars (Nat-
ick Soldier Center), which also contained vitamin C and tocopherols. In fact, most of the
studies provided quercetin in combination with other food components, such as vitamin
C, folate, PUFA such as EPA and DHA, and even other flavonoids that could influence
the quercetin absorption. Although there is increasing evidence that these combinations
may enhance quercetin’s bioavailability and bioactive properties, as observed in both the
preclinical [107,108] and clinical studies [61,109], both successful and unsuccessful studies
reported the quercetin levels in the blood [47,52,55–57,59,60,62]. Nevertheless, it is known
that quercetin bioavailability exhibits a high interindividual variation, which can be due,
among other factors, to genetic polymorphisms, dietary adaptation, the composition of gut
microbiota, and other subject characteristics such as the body mass index [110]; therefore,
the controversial outcomes reported could be due to intrinsic individual factors beyond its
dosage.

Several mechanisms could explain the potential ergogenic effects of quercetin. In
preclinical studies performed in sedentary mice, quercetin has been shown to stimulate
mitochondrial biogenesis throughout enhancing the muscle and brain mRNA expression
of sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor gamma coactivator
1α (PGC-1α), as well as increasing the mitochondrial DNA (mtDNA) and cytochrome C
concentrations in the muscles and brain, leading to an increase in the skeletal muscle ox-
idative capacity and running performances [111]. In addition, an increase in mitochondrial
biogenesis and muscle oxidative capacity may alter the substrate utilization during long
bouts of endurance exercise by increasing the oxidation of fat and sparing muscle glucose
and glycogen reserves [48]. Nevertheless, previous studies have assessed the effects of
quercetin supplementation on fuel utilization in both untrained [47] and well-trained [112]
cyclists, and no clear effects were found. The antioxidant properties of quercetin could also
explain the potential ergogenic effect by reducing the muscle damage and soreness, as well
as attenuating the decline observed in the neuromuscular performance due to the increased
ROS production during exercise [58]. Moreover, in vitro studies suggest that quercetin may
be an adenosine A1-receptor antagonist [113] and, hence, may exert analgesic effects that
could decrease the effort perception or muscle aches and pain during exercise.
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Regarding other pure flavonoid supplementation strategies, Overdevest et al. [54]
found a 5% increase in the cycling power output after four weeks of 500 mg/day of
hesperidin supplementation, a comparable improvement with that observed after creatine
supplementation [114]. These positive results are even more relevant when considering that
the participants were well-trained athletes with an average exercise time per week of 9.6 h.
The authors suggested that this performance improvement could be due to hesperidin’s
antioxidant properties, as well as other intracellular effects at the mitochondrial level, in a
similar manner as previously explained for quercetin [54]. In agreement with these findings,
Martínez-Noguera et al. [115] reported an increase in average power, maximum speed,
and total energy during a repeated cycling sprint test only five h after the acute intake of
500 mg of 2S-Hesperidin (Cardiose®). Moreover, the preclinical research also supported
the ergogenic effect of hesperidin [21] and its positive effects against exercise-induced
oxidative stress [116,117]. Further studies should be carried out to confirm these promising
results and establish the optimal intake duration for achieving these effects.

Flavanols from cocoa, administered as cocoa flavanol capsules [68], cocoa powder [71],
chocolate [26,69,70], or as a capsule containing only (-)-epicatechin [53], were also assessed
for improving performances. None of (-)-epicatechin [53], dark chocolate [26,69], or cocoa
flavanol [70,71] consumption resulted in a better performance in recreationally active peo-
ple [26,53], trained cyclists [68,69], cross-country athletes [71], and elite rugby players [70].
However, the cocoa flavanol intake may be a good strategy to counteract exercise-induced
oxidative stress [26,68] and to confer some metabolic benefits [69,71]. Decroix et al. [19] re-
viewed the benefits of cocoa flavanol supplementation in sports and concluded that it may
attenuate exercise-induced oxidative stress, improve muscular mitochondrial efficiency
and VO2max in untrained subjects, and positively alter fat and carbohydrate utilization
during exercise without inducing changes in the exercise performance.

Regarding other flavanol-enriched extracts, eight articles assessed the impact of green
tea extract supplementation on exercise performances [28,64,85,94–99], and 25% (two out
of eight) found successful results in recreationally active males [94,95]. Previous stud-
ies in mice have reported an improved endurance performance following tea catechin
intake [118,119], as well as an enhanced fatty acid oxidation in the liver and skeletal mus-
cles [119]. Moreover, a synergic effect between tea catechins and other tea components
such as caffeine and theanine have been reported with regards to lipid metabolism alter-
ations [120] and could also be found in exercise-induced changes. On the other hand, the po-
tential ergogenic effect of lychee fruit extract was studied by Kang et al. [66] and Nishizawa
et al. [65]. Where a 200-mg/day intake of oligomerized lychee fruit extract for one month
resulted in successfully enhancing the submaximal running time and increasing the anaer-
obic threshold in regularly exercising male participants [66], the intake of 100 mg/day of
flavanol-rich lychee fruit extract for two months did not alter the five-km running time
performances [65]. However, Nishizawa et al. [65] observed anti-inflammatory effects in
young athletes after two months of 100 mg/day of lychee supplementation, as has been
previously suggested in animal models [121,122]. Kang et al. [66] also studied the effects of
30 days of oligomerized lychee fruit extract supplementation with a mixture of vitamin C
(800 mg) and vitamin E (320 IU) and reported an attenuation in VO2max. Further research
may confirm these interesting findings and establish the optimal dosage of lychee fruit
extract for obtaining an improvement in performances.

Another three studies assessed the impact of other flavanol-enriched extracts on exer-
cise performances [67,72,74], and two of them reported improvements [72,74]. In particular,
apple [74] and carob [72] extracts containing proanthocyanidins, among other flavonoids,
successfully improved the two-hour cycling trial performance and distance covered in
response to a Yo-Yo intermittent recovery test, respectively. Ataka et al. [74] also reported
no impact on the two-hour cycling trial performance following a supplementation with the
antioxidant ascorbic acid (1000 mg/day for eight days), suggesting that the mechanisms
through which apple procyanidins intake could improve exercise performances may not
be exclusively related to their antioxidant properties. These results, together with those
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reported by Kang et al. [66], are in line with preclinical [123–125] and human studies [125]
suggesting that the intake of great amounts of antioxidant vitamins could attenuate or
even inhibit the improvements of the endurance capacity through the blockage of exercise-
induced ROS production. With regards to other tannins, four studies [88–91] assessed the
potential ergogenic effects of ellagitannins from pomegranates, especially punicalagins.
Positive results were only found in trained cyclists [90]. This improvement in their perfor-
mances may be due to ellagitannins’ ability to enhance the blood flow and vessel diameter.
Another study [126], which was excluded from the current review for not matching the
intake duration inclusion criteria, reported an improvement in time to exhaustion at 90%
in highly active participants following acute pomegranate extract supplementation only 30
min before exercising. However, these acute effects of pomegranates on exercise perfor-
mances could be related with their high nitrate contents [127]. Overall, 28% (5/18) of the
studies reviewed reported flavanols’ ergogenic effects [66,72,74,94,95], the most promising
sources being apple, green tea, lychee fruit, and carob extracts. In particular, 37.5% (3/8) of
the studies assessing cycling performances observed an improvement following flavanol
intervention, whereas the proportion of studies finding flavanol-induced enhancement
in running performances was 25% (two out of eight). These findings, together with the
several health benefits that have been attributed to dietary flavanols [128,129], deserve
further investigation.

Anthocyanin supplementation seems to be the most promising strategy for improv-
ing exercise performances. Thirteen of the studies reviewed assessed the effects of this
flavonoid family, and 54% (7/13) found promising results for athletes. The sources of
anthocyanins include blackcurrants, Montmorency tart cherries, integral purple grape
juice, and blueberries.

Eight studies focused on New Zealand blackcurrant (NZBC) supplementation, con-
taining mainly the anthocyanin delphinidin-3-rutinoside, and one-half of them reported an
improvement in the performances of trained participants. It is important to highlight that
these ergogenic effects were observed in either men performing the cycling exercise for 8–
10 h/week [73], recreationally active men with experience in sports involving high-intensity
intermittent exercise who were familiarized with treadmill running [76], and male climbers
with more than three years of regular climbing experience [81]. In addition, Braakhuis
et al. [75] found controversial results in trained female runners; where the average and
faster (+one standard deviation of the mean speed) runners’ performances worsened fol-
lowing blackcurrant intakes, very fast runners (+two standard deviation of the mean speed)
improved their running performances following the supplementation. They hypothesized
that these results come from a synergic effect between the blackcurrant supplementation
and a greater training load. In addition, Fryer et al. [79,80] found better muscle oxygena-
tion during repeated forearm muscle contractions in intermediate, advanced, and elite
climbers following NZBC supplementation that was not accompanied by an improvement
in climbing performances. Nevertheless, assessing the performance changes was not the
primary goal of their studies, and, as the authors stated, there were some limitations in the
manner they evaluated them. Where, in advanced and elite climbers [79], the workload at
60% applied in the maximal volitional contraction (MVC) could not be intensive enough,
in intermediate-level climbers [80], the coefficient of variation for the MVC was quite high
(4.37%), and this could denote a lack of ability to objectively evaluate their forearm per-
formance. Similarly, Cook et al. [78] assessed performances during submaximal isometric
contractions (30% MVC), and Costello et al. [77] mainly aimed to assess changes in the
recovery from half-marathon-induced muscle damage, finding no changes in the recovery
of muscle function, muscle soreness, and fatigue and no differences in the half-marathon
finish time.

The potential mechanisms through which blackcurrant anthocyanins could improve
performances are quite unclear but seem to be related to the positive effects on endothelial
function [73]. Blackcurrant anthocyanins have the potential to increase nitric oxide by
endothelial cells and decrease the breakdown by nitric oxide free radicals, probably leading
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to enhanced skeletal muscle blood flow and contractile efficiency [73,130,131]. Overall,
in agreement with Braakhuis et al., who recently reviewed the effect of NZBC on sport
performances [17], we can conclude that a seven-day NZBC intake providing a daily dose of
105–210 mg/day of anthocyanins and including a final dose one to two h before exercising
may result in a significant improvement in athletic performance. However, since the peak
levels of anthocyanin in the bloodstream seem to appear two h post-consumption [132],
further studies are recommended to elucidate whether the ergogenic effects observed
reflected the seven-d intake or the acute intake.

In recent years, Montmorency tart cherries have gained increasing attention, especially
with regards to their potential clinical applications in exercise-induced muscle damage
recovery, inflammation, and oxidative stress [133]. From the three reviewed articles as-
sessing their potential ergogenic effects [82–84], 66.6% (2/3) found successful results in
endurance-trained runners or triathletes [84] and trained-male cyclists [83]. Bell’s study [82]
focused on assessing the effects of Montmorency tart cherry concentrate on oxidative stress,
inflammation, and muscle damage biomarkers, as well as on the expected decrease in
performance across three consecutive days of cycle racing; they reported the effects on the
cycle work performed as a secondary outcome, which could influence the non-observation
of significant changes. As the authors suggested [82], further research should focus on
functional performance assessments. The mechanisms through which tart cherries may
improve exercise performances seem to be related with their high contents in cyanidin-3-
glucoside. This anthocyanin has been demonstrated to enhance mitochondrial biogenesis
in both mice [134] and a human hepatocyte cell line [135] through upregulating skeletal
muscle PGC-1α, leading to an activation of lactate metabolism [134] and, finally, enhancing
the skeletal muscle oxidative capacity and improving the endurance performance in a
similar manner as previously suggested for quercetin [111]. Moreover, the upregulation of
PGC-1α induced by the cyanidin-3-glucoside intake increases the expression of vascular
endothelial growth factor α (VEGFα), improving the muscle blood supply and oxygen
availability and, hence, explaining a potential improvement in exercise performances [134].
Overall, both blackcurrant and tart cherry extract intakes seem to be promising strategies
to enhance exercise performances. However, the predominant anthocyanins in these two
extracts are different, so the mechanisms underlying the potential ergogenic effects may
differ and deserve further investigation.

Grape juice supplementation was also demonstrated to be effective in increasing per-
formances in recreational runners who carried out four to five training sessions per week
(78-min average training time/session) [86]. In addition, a recent study from the same au-
thors concluded that just a single dose of grape juice two h before exercise is able to enhance
runner performances [136]. Although the mechanisms underlying these effects remain
unknown, the authors hypothesized that the anti-inflammatory, antioxidant [86,136,137],
and vasodilator properties [138] of grape juice could lead to a better recovery between
daily training sessions and, hence, an overall better exercise performance.

Apart from the most common studies on flavanols and anthocyanins, two studies
reported the positive effects of a 15-day supplementation with isoflavones and flavones
on cycling performances [92,93]. In particular, an encapsulated blend containing soybean
peptides, taurine, Purearia isoflavone, and ginseng saponin increased the time to exhaustion
in a cycling test, probably through enhancing the lipid utilization as an energy substrate
while sparing the glycogen reserves, since increased nonesterified fatty acids blood levels
during exercise were found [92]. On the other hand, a 15-day supplementation with a
combination of peanut husk extract containing the flavone luteolin and mango leaf extract
resulted in better sprint performances, probably through the facilitation of muscle oxygen
extraction, the reduction of oxygen consumption during sprints, and an increase in the
lactate blood levels [93]. It is worth noting that this study included two different doses,
both showing similar effects, indicating that no dose response was achieved and suggesting
that the effect of flavonoids may be limited, and no higher doses would for certain provide
more successful effects.
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Besides the influence of flavonoid consumption in exercise performances, we aimed
to find the relationship between these effects with the immune system status of the par-
ticipants. It is well-established that moderate physical activity enhances immune func-
tions [32–34], but intense exercise induces inflammation, alters phagocytic and cytotoxic
functions, decreases mucosal IgA, and increases the susceptibility to infections, especially
URTI [40,42]. In recent years, flavonoids have shown immunomodulatory properties in
both animal and human studies [139–142]. In fact, a recent review [142] demonstrated
that flavonoid consumption decreases the URTI incidence by 33% compared to the control,
and two studies [143,144] found significant reductions in URTI symptoms with cranberry
beverages or garlic extract. Therefore, beyond the protective effects of flavonoids in the
overproduction of ROS associated with intense exercise [25], flavonoids could counteract
the immune changes and, eventually, protect against the increase in URTI incidences that
often accompany intense physical exercise.

From the 54 selected articles considering the effect of flavonoid intake on exer-
cise performance, only 18 articles referred to physical performances and the immune
status [26,50,52,56,59–61,65,67,77,82,84–87,91,97,98], and only two [84,86] of these articles
coincided with better performances induced by flavonoid consumption. Unfortunately,
most of the 20 articles demonstrating the beneficial influence of flavonoid in exercise per-
formances did not focus on the immune status. Both successful studies [84,86] showed
that anthocyanins were able to increase the performances and, at the same time, lowered
the inflammatory response by decreasing IL-6 [84] or α-1-acid glycoprotein [86], although
they did not modify other inflammatory cytokines, CRP, or the white blood cell counts.
Therefore, it is difficult to associate the improvement in performances by flavonoids with a
biomarker of the immune system.

Regardless of their effect on exercise performances, most of the articles that considered
the immune system focused on the inflammatory response, and actually, only three evalu-
ated the immune functionality by means of the incidence of URTIs and ex vivo antiviral and
antibacterial activities [52,67,98]. Interestingly, two studies demonstrated that the intake
of quercetin (1 g/day for three weeks) [52] or a nonalcoholic beer enriched in catechins
(for three weeks) [67] was able to decrease the incidence of URTIs in cyclists and marathon
runners, respectively. Nevertheless, these studies did not find a better performance with
flavonoid supplements. Therefore, it is also difficult to associate the protective effects on
the immune system function from flavonoids with better performances.

Apart from these three studies that clearly demonstrate the improvement of immune
functions with flavonoid intakes during exercise [52,67,98], other studies have demon-
strated a certain anti-inflammatory activity from flavonoid consumption [59,65,82,85],
and others failed to demonstrate the protective effects of flavonoids on inflammatory
biomarkers [26,50,56,60,61,77,91,97]. It remains to be found what happened in the in vivo
function of athletes or recreational subjects recruited in these studies, because the incidence
of URTIs was not determined in such articles. Only Nieman et al. performed a wide
study of biomarkers of the immune system, demonstrating that, with the administration of
quercetin, the plasma inflammatory cytokines did not vary [59] or the NK cell activity, lym-
phocyte proliferative capacity, or salivary IgA [52], but there was a clear decrease in URTI
incidence in these athletes [52]. Similarly, the same group demonstrated, in another clinical
trial, there was no effect of the flavonol intake on the plasma inflammatory cytokines [97]
but an increase in the antiviral activity, with no effect on the antibacterial potential [98].
Therefore, these studies allow the suggestion that plasma inflammatory biomarkers and
even salivary IgA are not good predictors of what can eventually occur during the risk of
infections after exercise bouts.

Comment must be made on the risk of bias in the studies included here. Although the
overall assessment of bias of the included studies was low, it should not be forgotten that,
in two domains, the number of articles with a low bias was around 25%. A more detailed
description of the randomization process of some of the studies, as well as a more specific
explanation of the allocation concealment, would allow a higher number of articles with a
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selection bias rated as low. Moreover, we would like to highlight that, in the case of some
sponsored studies, no detailed description of the potential influence of the sponsors over
the results were included.

Finally, although this review summarizes the current knowledge about the effects
of flavonoids on the exercise performance and exercise-induced changes in immune and
inflammatory biomarkers, some limitations need to be considered. Whereas some of
the reviewed studies focused exclusively on exercise performance assessment, others
reported it as a secondary outcome. For this reason, the performance assessment was
established by different variables. It would be interesting if articles provided the same
performance measures for a better evaluation of the flavonoid ergogenic effect—for instance,
in running and cycling, the time to cover a certain distance would be very objective and
easy to compare between different studies. Moreover, the included interventions were very
heterogeneous; depending on the study, the flavonoid supplementations were provided in
everyday foods or in dietary supplements that could influence the flavonoid absorption.
In addition, the intrinsic individual factors, such as human subjects’ genetics and gut
microbiota composition and functionality [145], are recognized to affect the flavonoid
absorption and, eventually, influence its body effects. The doses also varied between the
studies and flavonoid subclass, the average being about 430 mg/day, which could be
achieved in a natural way by fruit intake. In addition, it should be noted that most of the
studies were performed with recreationally active participants, trained people or even elite
athletes, and the outcome may depend on the fitness level of the participants and the kind
of exercise performed.

5. Conclusions

Although promising results have been found regarding flavonoid supplementation
in sports performances, no clear conclusions can be drawn. The intake of anthocyanin-
enriched extracts seems to be the most promising strategy for both enhancing physical
performances and counteracting the increase in inflammation induced by intensive exercise,
although further studies are encouraged to confirm these effects, establish the optimal
dosage, elucidate the dose-response effect, and ascertain their impact on the immune status.
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27. Jówko, E.; Sacharuk, J.; Balasińska, B.; Ostaszewski, P.; Charmas, M.; Charmas, R. Green tea extract supplementation gives
protection against exercise-induced oxidative damage in healthy men. Nutr. Res. 2011, 31, 813–821. [CrossRef] [PubMed]
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