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Abstract: Seven new unusual polysulfated steroids—topsentiasterol sulfate G (1), topsentiasterol
sulfate I (2), topsentiasterol sulfate H (3), bromotopsentiasterol sulfate D (4), dichlorotopsentiasterol
sulfate D (8), bromochlorotopsentiasterol sulfate D (9), and 4β-hydroxyhalistanol sulfate C (10), as
well as three previously described—topsentiasterol sulfate D (7), chlorotopsentiasterol sulfate D
(5) and iodotopsentiasterol sulfate D (6) have been isolated from the marine sponge Halichondria
vansoesti. Structures of these compounds were determined by detailed analysis of 1D- and 2D-NMR
and HRESIMS data, as well as chemical transformations. The effects of the compounds on human
prostate cancer cells PC-3 and 22Rv1 were investigated.

Keywords: marine sponge; Halichondria vansoesti; trisulfated steroids; topsentiasterol sulfates;
halistanol sulfates; anticancer activity; PSA expression; glucose uptake

1. Introduction

Biologically active trisulfated steroids are characteristic secondary metabolites found in some
marine sponges. These polar steroids comprise several structural subgroups in the sponges. The
first compound, bearing a common 2β,3α,6α-trisulfoxy steroid nucleus, halistanol sulfate, was
isolated in 1981 from the Okinawan sponge Halichondria cf. moorei [1] (Figure S1). The subgroup
also includes sokotrasterol sulfate from the sponge Halichondria sp. [2], halistanol sulfates A-J and
polasterol B, found in the sponges Epipolasis sp. [3,4], Pseudoaxinissa digitata [5], and Halichondria sp. [6],
ophirapsranol trisulfate from Topsentia ophiraphidites [7], four sterols isolated from the sponges Trachyopsis
halichondroides and Cymbastela coralliophila [8], amaranzoles A-F from Phorbas amaranthus [9,10], and
topsentinol K trisulfate from the sponge Topsentia sp. [11]. Another subgroup of these metabolites
consists of ibisterol sulfates and lembesterol A from the sponges Topsentia sp. [12], Xestospongia sp. [13],
and Petrosia strongilata [14]. In their steroid nuclei, 2β,3α,6α-trisulfoxy functionality is combined with
a C-9(11)-double bond and a methyl group at C-14. One more subgroup includes topsentiasterol
sulfates A–E from the sponge Topsentia sp. [15], Sch 575867 from the deep-water sponge belonging to
the family Astroscleridae [16], spheciosterol sulfates from the sponge Spheciospongia sp. [17], as well as
chloro- and iodotopsentiasterol sulfates D, isolated from the sponge Topsentia sp. in our laboratory [18].
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These compounds contain a common ∆9(11)-unsaturated, 4β-hydroxy-14α-methyl, 2β,3α,6α-trisulfated
steroid nucleus.

Inadditiontounusual structural features, trisulfatedsteroidspossesspromisingbiologicalproperties [19].
In fact, a broad range of activities has been described to trisulfate steroids such as antibacterial [1,15,20],
antifungal [15,16,21], antiviral (including anti-HIV and anti-HSV effects) [5,12,13,22,23], antiparasitic [21],
and antiplatelet activities [24]. In addition, the inhibition of different enzymes [6,11,18], promotion of
angiogenesis [25], and antitumor activity against various tumor cell lines [7,15,17,26] have been described.
Thus, the search for new trisulfated steroids from sponges, including the analyses of their chemical structures
and physiological properties, continues to be a promising area of research. Hopefully, this may lead to the
development of a new generation of drugs for a broad spectrum of diseases.

In the course of our ongoing interest in new biologically active secondary metabolites of marine
invertebrates, Halichondria vansoesti sponge, collected in Vietnamese waters during the 49th scientific
cruise aboard the R/V ‘Academic Oparin’, was investigated. As a result, ten trisulfated steroids 1–10
were isolated (Figure 1). Using NMR spectroscopy, including 1H, 13C, HSQC, COSY, HMBC, and
NOESY, as well as high-resolution mass spectrometry and chemical transformations, 1–4 and 8–10 were
identified as new, unusual analogues of topsentiasterol sulfates and halistanol sulfates. Compounds
5–7 were previously known as chlorotopsentiasterol sulfate D, iodotopsentiasterol sulfates D [18], and
topsentiasterol sulfate D, respectively [15]. Herein, we report the isolation, structural elucidation,
proposed biosynthetic pathways, and the study of the biological activities of the isolated compounds.
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Figure 1. The structures of 1−10. 
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Figure 1. The structures of 1−10.

2. Results and Discussion

Concentrated EtOH extract of the sponge Halichondria vansoesti was partitioned between aqueous
EtOH and n-hexane. The aqueous EtOH-soluble materials were further applied on a reversed-phase
column chromatography (YMC-gel) and eluted successively with H2O→EtOH:H2O (3:7)→EtOH:H2O
(2:3)→EtOH:H2O (1:1)→EtOH:H2O (3:2) resulting in several subfractions. Subfractions obtained by
elution with EtOH:H2O (3:7) to EtOH:H2O (6:4) were further purified by a reversed-phase HPLC
(YMC-ODS-A) to give 1, 2 and 4–10. The subfraction, eluted with H2O, was further extracted with
BuOH, after which the butanol solution was concentrated and subjected to a reversed-phase HPLC
(YMC-ODS-A) to obtain 3.
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The molecular formula of 1, C30H44NNa3O14S3, was established from the [M3Na − Na]− ion peak
at m/z 784.1724 in the (−)-HRESIMS. In addition, the peaks at m/z 380.5927 and 246.0657, corresponding
to doubly-, and triply-charged ions ([M3Na − 2Na]2− and [M3Na − 3Na]3−), respectively, were indicated
in the (−)-HRESIMS of 1 (Figure S2).

The data of 1D- and 2D-NMR spectra of 1 (Tables 1 and 2, Figures S3–S7) indicated that this
compound contained five methyl groups, including three angular methyl groups in the steroid nucleus
(δH 0.70/δC 15.6, δH 0.82/δC 19.4, δH 1.44/δC 26.0) and two methyl groups of the side chain (δH 0.92/δC

19.5, δH 1.13/δC 20.1), eight methylene groups (including a N-substituted methylene), eleven methine
groups, including four oxygenated methines (δH 4.98/δC 76.4, δH 4.83/δC 76.6, δH 4.78/δC 77.1, δH

4.49/δC 69.2), three quaternarysp3 carbons (δC 15.6, δC 26.0, δC 19.4), two trisubstituted double bonds
(δH 5.35/δC 118.2, 147.1, δH 6.85/δC 139.4, 144.3), and an amide carbon (δC 177.6).

Table 1. 1H NMR data for 1–4, 8 and 10.

Position 1 a (δH, Mult, J
in Hz)

2 a (δH, Mult, J
in Hz)

3 b (δH, Mult, J
in Hz)

4 c (δH, Mult, J in Hz) 8 c (δH, Mult, J
in Hz)

10 c (δH, Mult, J
in Hz)

1a 1.84 dd (3.6, 14.5) 1.84 brd (14.5) 1.87 dd (3.6, 14.6) 1.83 dd (3.7, 14.5) 1.84 brd (14.8) 1.46 dd (3.6,
14.5)

1b 2.39 brd (14.5) 2.41 brd (14.5) 2.37 brd (14.6) 2.40 brd (14.5) 2.38 brd (14.8) 2.29 brd (14.5)
2 4.98 m 4.98 m 4.96 m 4.97 m 4.98 m 4.87 m
3 4.78 m 4.77 m 4.77 m 4.76 m 4.80 m 4.74 m
4 4.49 m 4.49 m 4.48 m 4.49 m 4.48 m 4.45 m
5 1.51 dd (2.5, 11.4) 1.51 dd (2.7, 11.4) 1.52 dd (2.6, 11.4) 1.51 dd (2.9, 11.3) 1.50 dd (2.5, 11.5) 1.48 m
6 4.83 dt (4.5, 11.4) 4.83 dt (4.5, 11.4) 4.83 dt (4.4, 11.4) 4.83 dt (4.4, 11.3) 4.83 dt (4.5, 11.5) 4.60 dt (4.5, 11.3)

7a 1.58 q (11.9) 1.58 q (11.9) 1.57 dt (11.4, 12.9) 1.57 m 1.57 m 1.11 m
7b 2.23 dt (4.6, 11.9) 2.23 dt (4.6, 11.9) 2.22 dt (4.4, 11.8) 2.21 dt (5.0, 12.0) 2.23 dt (4.5, 11.5) 2.32 dt (4.2, 12.1)
8 2.51 m 2.51 m 2.48 m 2.49 m 2.50 m 1.58 m
9 0.71 m

11a 5.35 brd (5.6) 5.35 5.33 brd (5.8) 5.35 dt (2.0, 6.2) 5.35 dt (2.0, 6.2) 1.50 m
11b 1.34 m
12a 2.13 brd (17.6) 2.13 brd (17.3) 2.10 brd (17.1) 2.11 brd (17.5) 2.12 brd (17.5) 1.14 m
12b 1,97 dd (5.5, 17.6) 1.97 dd (5.9, 17.3) 1.95 dd (5.9, 17.1) 1.95 ddd (1.5, 6.1, 17.5) 1.95 dd (6.0, 17.5) 2.01 dt (12.5, 3.4)
14 1.11 m
15a 1.39 m 1.39 m 1.30 m 1.37 m 1.38 m 1.62 m
15b 1.47 m 1.46 m 1.41 m 1.45 m 1.46 m 1.12 m
16a 1.33 m 1.33 m 1.30 m 1.25 m 1.27 m 1.28 m
16b 1.91 m 1.91 m 1.92 m 1.86 m 1.87 m 1.85 m
17 1.66 q (9.4) 1.66 q (9.4) 1.64 q (9.3) 1.63 m 1.63 m 1.13 m
18 0.70 s 0.71 s 0.68 s 0.68 s 0.69 s 0.69 s
19 1.44 s 1.45 s 1.42 s 1.44 s 1.45 s 1.29 s
20 1.42 m 1.43 m 1.38 1.37 m 1.45 s 1.38 m
21 0.92 d (6.5) 0.92 d (6.5) 0.90 d (6.5) 0.90 d (6.5) 0.90 d (6.5) 0.93 d (6.6)
22a 1.09 m 1.09 m 1.08 m 1.04 m 1.05 m 1.01 m
22b 1.49 m 1.43 m 1.40 m 1.45 m 1.46 m
23a 1.51 m 1.52 m 1.42 m 1.38 m 1.36 m 1.18 m
23b 1.55 m 1.55 m 1.46 m 1.62 m 1.61 m
24a 2.48 m 2.48 m 2.69 m 2.45 m 2.55 m 1.11 m
24b 1.12 m
25 1.53 m
26 0.87 d (6.6)
27 6.85 br s 6.93 br s 5.92 br s 6.39 d (2.0) 6.31 s 0.87 d (6.6)
28 3.92 br s 5.91 br s 7.48 d (2.0)
29 1.13 d (6.9) 1.15 d (6.9) 1.10 d (7.0) 1.14 d (7.0) 1.15 d (6.9)
30 0.82 s 0.82 s 0.82 s 0.81 s 0.81 s
31a 3.74 m
31b 3.85 m
32 1.24 t (7.1)
a Measured in CD3OD at 500 MHz. b Measured in a mixture of CD3OD + CDCl3 (~10:1) at 700 MHz. c Measured in
CD3OD at 700 MHz.
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Table 2. 13C NMR Data of 1–4, 8, and 10.

Position 1 a (δC, Type) 2 a (δC, Type) 3 b (δC, Type) 4 a (δC, Type) 8 a (δC, Type) 10 a (δC, Type)

1 37.9, CH2 37.8, CH2 37.7, CH2 37.8, CH2 38.0, CH2 39.3, CH2
2 76.4, CH 76.4, CH 76.3, CH 76.4, CH 76.4, CH 76.3, CH
3 77.1, CH 77.2, CH 76.8, CH 77.1, CH 77.2, CH 77.3, CH
4 69.2, CH 69.2, CH 69.0, CH 69.2, CH 69.2, CH 69.0, CH
5 48.7, CH 48.6, CH 48.3, CH 48.6, CH 48.7, CH 50.8, CH
6 76.6, CH 76.4, CH 76.5, CH 76.6, CH 76.6, CH 76.4, CH
7 36.1, CH2 36.1, CH2 35.8, CH2 36.1, CH2 36.1, CH2 40.8, CH2
8 42.0, CH 42.0, CH 41.7, CH 42.0, CH 42.0, CH 35.9, CH
9 147.1, C 147.2, C 147.1, C 147.1, C 147.2, C 57.1, CH

10 40.1, C 40.2, C 40.1, C 40.2, C 40.1, C 37.6, C
11 118.2, CH 118.2, CH 118.2, CH 118.2, CH 118.2, CH 22.0, CH2
12 38.9, CH2 38.9, CH2 38.7, CH2 38.9, CH2 38.9, CH2 41.7, CH2
13 46.2, C 46.2, C 46.2, C 46.2, C 46.2, C 44.4, C
14 48.7, C 48.7, C 48.7, C 48.7, C 48.7, C 58.2, CH
15 35.5, CH2 35.5, CH2 35.3, CH2 35.5, CH2 35.4, CH2 25.8, CH2
16 29.5, CH2 29.5, CH2 29.3, CH2 29.4, CH2 29.5, CH2 29.8, CH2
17 52.8, CH 52.8, CH 52.7, CH 52.8, CH 52.8, CH 58.2, CH
18 15.6, CH3 15.7, CH3 15.6, CH3 15.6, CH3 15.6, CH3 13.1, CH3
19 26.0, CH3 26.0, CH3 25.8, CH3 26.0, CH3 26.0, CH3 18.0, CH3
20 37.9, CH 37.8, CH 37.7, CH 38.0, CH 38.0, CH 37.7, CH
21 19.5, CH3 19.4, CH3 19.4, CH3 19.6, CH3 19.5, CH3 19.8, CH3
22 35.3, CH2 35.2, CH2 35.4, CH2 35.8, CH2 35.7, CH2 37.9, CH2
23 33.8, CH2 33.4, CH2 34.2, CH2 35.4, CH2 35.4, CH2 25.5, CH2
24 32.4, CH 32.5, CH 39.7, CH 32.2, CH 32.5, CH 41.3, CH2
25 144.3, C 144.6, C 157.9, C 133.6, C 129.9, C 29.7, CH
26 177.6, C 173.7, C 171.9, C 126.4, C 132.1, C 23.5, CH3
27 139.4, CH 144.4, CH 125.9, CH 112.4, CH 109.6, CH 23.8, CH3
28 48.3, CH2 104.0, CH 166.8, C 146.0, CH 136.1, C
29 20.1, CH3 19.5, CH3 20.5, CH3 21.7, CH3 21.4, CH3
30 19.4, CH3 19.4, CH3 19.4, CH3 19.4, CH3 19.4, CH3
31 67.1, CH2
32 16.1, CH3

a Measured in CD3OD at 175 MHz. b Measured in a mixture of CD3OD + CDCl3 (~10:1) at 175 MHz.

Further analysis of the 1D- and 2D-NMR data of 1, and the comparison of its NMR data with those
in the literature revealed that 1 contains a ∆9(11)-4β-hydroxy-14α-methyl-2β,3α,6α-trisulfated steroid
core (Figure 2, substructure I) and the same side chain, containing C-20 (21) to C-24 (29) (Figure 2,
substructure III), as that found in the previously described topsentiasterol sulfates A–E [14], Sch
575867 [16], spheciosterol sulfates A–C [17], and chloro- and iodotopsentiasterol sulfates D (5,6) [18].
The 1H and 13C NMR spectra of 1 (Tables 1 and 2, Figures S3 and S4) were almost identical to those
of topsentiasterol sulfate C [15]. The only exceptions were the signals of the protons linked to C-27
and C-28, which were shifted to lower frequencies (δH 6.85/δC 139.4, δH 3.92/δC 48.3) in the spectrum
of 1. Moreover, the HRESIMS (Figure S2) data showed that the molecular mass of 1 was 1 amu less
than that of topsentiasterol sulfate C. Based on the above data, and in combination with 2D NMR data
(Figures S5–S7), the presence of the 1,5-dihydro-2H-pyrrol-2-one portion in the terminal part of the
side chain of 1 (Figure 2, substructure III) was proposed. To the best of our knowledge, this is the
first report on the 1,5-dihydro-2H-pyrrol-2-one moiety found in polysulfated steroids from sponges.
Comparison of the NOESY (Figure S8) data of the steroid nucleus of 1 with those of topsentiasterol
sulfate C and the related analogs [15–18] suggests that all the stereogenic centers of these compounds
have the same relative configurations. Key NOESY correlations of the steroid core of 1 are shown in
Figure 3. Thus, 1 is a new analogue of the topsentiasterol sulfate C [15], containing a unique structural
element with a nitrogen atom in the side chain. Therefore, it was named topsentiasterol sulfate G.
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Detailed studies of the 1D- and 2D-NMR spectra of 1–4, 8 and 9 (including the determination
of the relative configuration of stereogenic centers using NOESY data, Tables 1 and 2, Figure 3) were
performed. The generated data were compared to those of the known analogs, such as topsentiasterol
sulfates A–E [15], Sch 575867 [16], spheciosterol sulfates A–C [17], chlorotopsentiasterol sulfate D (5),
and iodotopsentiasterol sulfate D (6) [18]. Indeed, signals of the steroid nuclei in these compounds and
in the isolated polysulfated steroids were almost identical. Therefore, it was proposed that 1–4, 8 and 9
have the same ∆9(11)-4β-hydroxy-14α-methyl-2β,3α,6α-trisulfated steroid nucleus, with a variation of
the side chain.

The molecular formula of 2, C32H47Na3O16S3, was established from the [M3Na −Na]− ion peak
at m/z 829.1834 in the (−)-HRESIMS. In addition, the peaks at m/z 403.0980 and 261.0694 in the
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(−)-HRESIMS of 2 were observed, corresponding to the doubly- and triply-charged ions ([M3Na −

2Na]2− and [M3Na − 3Na]3−, respectively) (Figure S9).
The 1H and 13C NMR data (CD3OD, Tables 1 and 2, Figures S10 and S11) of the side chain of

2 resemble those of topsentiasterol sulfate A [15], except for the presence of the methyl group at δH

1.24 t, J = 7.1/δC 16.1 (C-32) and a methylene group at δH 3.74, 3.85/δC 67.1 (C-31). Further analyses
of the 2D-NMR spectral data, including COSY and HMBC spectra (Figures S12 and S14), revealed
the following correlations: H-32/H-31, H-31/C-32, H-31/C-28, H-28/C-31 (Figure 2, substructure IV).
In addition, HRESIMS spectrum showed that the molecular weight of 2 is 28 amu more than that of
topsentiasterol sulfate A [15]. Based on these data, 2 was elucidated as the ethyl ester of topsentiasterol
sulfate A [15]. Since 2 has not been previously reported, it was named topsentiasterol sulfate I.

The molecular formula of 3, C30H43Na3O17S3, was established from the [M3Na − H]− ion peak
at m/z 839.1253 in the (−)-HRESIMS spectrum. In addition, the peaks at m/z 408.0685 and 264.3826
in the HRESIMS of 3 corresponding to the doubly- and triply-charged ions ([M3Na-Na-H]2− and
[M3Na-2Na-H]3−, respectively) were observed (Figure S16).

The 13C and 1H NMR of 3 (CD3OD+CDCl3, ~10:1, Tables 1 and 2, Figures S17 and S18) exhibited the
signals of two carboxyl carbon (δC 166.8 and 171.9) and a trisubstituted double bond (δH 5.92/δC 125.9,
157.9). The HMBC spectrum of 3, recorded in DMSO-d6 (Figure S21), displayed correlations from H-29
to C-26 and H-27 to C-28. Based on these data and mass spectrometry data, the presence of 2-substituted
maleic acid in the side chain of 3 was suggested (Figure 2, substructure V). The Z-configuration of the
double bond in this fragment was established using NOESY experiment, in which a correlation from
H-29 to H-27 was observed (Figure S22).

To confirm the structure of 3, a methylation with diazomethane was carried out. The structure of
the resulting product 3a was clarified using 2D-NMR and HRESIMS. Cross peaks from OMe-26 to C-26
and OMe-28 to C-28 were observed in the HMBC spectrum (Figure 2, substructure Va). In addition,
the peaks of the [M3Na − Na]−and [M3Na − 2Na]2− ions were observed in the (−)-HRESIMS at m/z
845.1764 and 411.0943, respectively (Figure S23). These data revealed that a dimethyl maleate was at
the terminal of the side chain of the methylated derivative, as in the previously described topsensterol
A, a polyhydroxylated steroid from the sponge Topsentia sp. [27]. Additionally, the desulfation reaction
of 3 with trifluoroacetic acid was carried out. The structure of the obtained product (11) was established
from the analysis of the HRESIMS data (Figure 4, Figure S24).
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Thus, 3 is a new analogue of polysulfated steroids from sponges, with a 2-substituted maleic acid
in the terminal part of the side chain.

Compound 4 was isolated as an inseparable mixture with the previously reported
chlorotopsentiasterol sulfate D (5) and iodotopsentiasterol sulfate D (6) [18] (2:7:1). Detailed analysis of
the HRESIMS (Figure S25), 1D- and 2D-NMR spectra (Tables 1 and 2, Figures S26–S31) of the mixture, as
well as the comparison of these data with those for the previously described compounds [15–18], led to
the identification of the structure 4. The molecular formula of 4 was determined as C30H42BrNa3O14S3

from the (−)-HRESIMS whose peaks of singly-, doubly-, and triply-charged ions were observed (m/z
847.0736, [M3Na − Na]−, m/z 412.0424, [M3Na − 2Na]2−, m/z 267.0321, [M3Na − 3Na]3−, respectively)



Mar. Drugs 2019, 17, 445 7 of 14

(Figure S25). Measured intensities of the isotope peaks of 4 (412.0424 (100.0%), 412.5440 (36.3%),
413.0415 (122.0%), 413.5429 (41.6%), 414.0391 (61.7%) is in a good agreement with the calculation
intensities of the isotope peaks for [M3Na − 2Na]2− (412.0414 (100%), 412.5430 (35.8%), 413.0406
(119.8%), 413.5420 (41.3%), 414.0404 (24.0%)). The 1H NMR spectrum (CD3OD, Table 1, Figure S26)
displayed the higher frequency-shifted three pairs of doublets corresponding to H-27 and H-28 of
bromo-, chloro-, and iodo- of 3-substituted furans. Comparison of the chemical shift values of these
signals to those of chloro-and iodotopsentiasterol sulfates D from the literature [18] allowed us to
assign the proton signals at δH 6.39 (H-27) and 7.48 (H-28) to 4 (Table 1). Using the integration of the
signals corresponding to H-27 and H-28 in the 1H spectra of the mixture containing 4, 5, and 6 showed
that the mixture contains about 20% bromotopsentiasterol sulfate D (4) and 70% and 10% of chloro-
and iodo-derivatives (5,6) [18], respectively. Additional interpretation of the COSY, HSQC, and HMBC
data confirmed that 4 is composed of the substructures I and VI (Figure 2, Figures S28–S30).

New trisulfated steroids, dichlorotopsentiasterol sulfate D (8) and bromochlorotopsentiasterol
sulfate D (9), were isolated as an inseparable mixture. Attempts to separate 8 and 9 using repetitive
HPLC failed, however, based on HRESIMS and 1D- and 2D-NMR data, it was estimated as a 9:1 mixture
of 8 and 9. The molecular formulae of the 8 and 9, C30H41Cl2Na3O14S3 and C30H41ClBrNa3O14S3,
were established from the [M3Na −Na]− ion peaks at m/z 837.0837 and 881.0340 of the (−)-HRESIMS
spectrum. The predominant peaks at m/z 407.0480 and 429.0227 corresponded to a doubly-charged
ions [M3Na − 2Na]2−, similar to that in the MS of some pentacyclic guanidine alkaloids [28–31], and
two-headed sphingolipids [32]. Moreover, triply-charged ions [M3Na − 3Na]3− in the spectra of both
compounds were also observed (m/z 263.7026 and 278.3516, respectively) (Figure S32). Intensities of the
isotope peaks calculated for 8 confirm the proposed molecular formula C30H41Cl2Na3O14S3 (measured:
407.0480 (100%), 407.5496 (37.2%), 408.0485 (87.6%), 408.5499 (30.8%), 409.0471 (26.6%); calculated
for [M3Na − 2Na]2−: 407.0472 (100%), 407.5488 (35.8%), 408.0461 (86.5%), 408.5474 (29.36%), 409.0452
(26.7%)). Intensities of the isotope peaks calculated for 9 confirm the proposed molecular formula
C30H41ClBrNa3O14S3 (measured: 429.0227 (100.0%), 429.5244 (35.3%), 430.0219 (149.4%), 430.5233
(52.0%), 431.0213 (61.9%), 431.5225 (19.7%); calculated for [M3Na − 2Na]2−: 429.0220 (100.0%), 429.5235
(35.8%), 430.0210 (151.8%), 430.5224 (52.7%), 431.0201 (62.3%), 431.5213 (19.9%)).

The 1H and 13C NMR spectra of the mixture of 8 and 9 (CD3OD, Tables 1 and 2, Figures S33 and
S34) closely resembled those of chlorotopsentiasterol sulfate D (5) [18]. The main differences between
the NMR spectra of these compounds were the singlet of H-27 at δH 6.31 for 8 and δH 6.44 for 9
(integrating these signals, a ratio of 8 to 9 was established as 9:1), instead of two characteristic doublets
at δH 6.39 and 7.36, corresponding to H-27 and H-28 in the 1H NMR spectrum of monochlorinated
compound 5 [18]. Analysis of the COSY, HSQC, and HMBC spectrum confirmed the substructures I
and VII (Figure 2, Figures S35–S37) in 8.

To determine the positions of the halogen atoms in 9, we have carried out careful analysis of the
1H NMR and COSY spectra of the mixture of 4 and 5 (Table 1, Figures S28 and S37a) and detected
two cross-peaks δH 2.45 (H-24)/δH 1.14 (H-29) corresponding of 4 (26-bromo) and 5 δH 2.56 (H-24)/δH

1.15 (H-29) (26-chloro) in the COSY spectrum. Therefore, in the case of a bulkier bromine substituent
at C-26 the chemical shifts of H-24 and H-29 were observed in a higher field. Taking into attention,
that the COSY spectra of 8 + 9 (Table 1, Figures S35 and S37a) showed only one cross-peak δH 2.55
(H-24)/δH 1.15 (H-29) similar to the cross-peak in the spectrum of 4, the position of the chlorine atom
at C-26 in 9 was established. Based on this data and the HRESIMS data (see above), structure 9 was
assigned to the bromochlorotopsentiasterol sulfate D. Nevertheless, the localization of Cl- at C-26 and
Br at C-28 in 9 need to be further confirmed.

Compounds 8 and 9 represent the first dihalogenated trisulfated steroids found in sponges.
The molecular formula of 10, C27H45Na3O13S3, was established from the [M3Na −Na]− ion peak at

m/z 719.1819 in the (−)-HRESIMS. The base peaks at m/z 348.0969 corresponded to the doubly-charged
ion [M3Na − 2Na]2− (Figure S38).
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Detailed analysis of the 1H and 13C NMR, COSY, HSQC, HMBC, and NOESY spectra of 10
(CD3OD, Tables 1 and 2, Figure 2, substructures II and VIII, Figures S39–S44) and a comparison of its
1H and 13C chemical shift values with those reported in the literature for the previously described
trisulfated steroids [1–18], indicated that 10 is a previously unreported 4β-hydroxy derivative of
halistanol sulfate C [3], which was named 4β-hydroxyhalistanol sulfate C.

Interestingly, unlike all the previously described trisulfated steroids containing 4β-hydroxy
group [15–18], 10 does not contain a C-9/C-11-double bond and the α-methyl group at C-14. Thus, 10
is the first member of a new structural subgroup of trisulfated steroids from sponges.

The biosynthesis of unusual side chains of trisulfated steroids, such as 1–9, could be hypothesized
to originate from codisterol (12) (Figure S45) [33]. This process could proceed via the C-27 alkylation
of 12, followed by the proton loss and several reactions such as amination or hydratation of double
bonds accompanied with cyclization, oxidation, hydrolysis, and halogenation, which would result in
the formation of 1–6, 8, and 9 (Scheme 1).
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Scheme 1. Proposed biogenesis of the side chains in 1–9.

The biological activities of 3, 7, and 10, as well as of the mixtures of 4 + 5 + 6 and 8 + 9
were investigated using human prostate cancer cells PC-3 and 22Rv1. PC-3 cells are known to be
androgen-independent as they do not express the androgen receptor (AR(-)). 22Rv1 expresses both
the androgen receptor (AR(+)), and the androgen receptor splice variant 7 (AR-V7(+)), the expression
of AR-V7 mediates the resistant of this cell line to androgen-deprivation therapy [34,35]. PSA is a
downstream target gene of the androgen receptor (AR) pathway. Thus, suppression of PSA expression
may indicate the inhibition of AR-signaling. AR-signaling is essential for the growth and survival of a
significant number of prostate cancer cell types. In fact, downregulation of AR signaling mediated by
androgen withdrawal is the standard first-line therapy for advanced human prostate cancer [36]. The
isolated compounds and the mixtures were found to inhibit the expression of PSA (prostate-specific
antigen) in human drug-resistant 22Rv1 cells (Figure 5A). Compound 3 and the mixture of 4 + 5 + 6,
suppressed PSA expression at a concentration as low as 10 µM (Figure 5A). Note, the IC50s for all the
isolated compounds determined with the MTT assay in PC-3 and 22Rv1 cells were >100 µM, which
could be due to the androgen-independent nature of these particular prostate cancer cell lines.
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Figure 5. Effects of the compounds on prostate cancer cells. (A): Effect on the PSA expression. 22Rv1
cells were treated with the compounds for 24 h, then the proteins were extracted and examined with
Western blotting. β-Actin was used as a loading control. (B): Effect on glucose uptake. PC-3 cells were
seeded in the 96-well plate, treated with the test compounds for 24 h in FBS- and glucose-free media,
incubated with 2-NBDG, and then the fluorescence was measured. Apigenin (50 µM) was used as a
positive control (Apig). Cells treated with vehicle (DMSO) were used as a control (Con). The glucose
uptake was normalized to the cell viability, measured by the MTS test. Significant difference from the
control is shown as follows: * p < 0.05 (Student’s t-test).

Additionally, 3 and 7, as well as the mixtures of 4 + 5 + 6 and 8 + 9 suppressed glucose uptake
in 22Rv1 cells (Figure 5B), whereas 10 did not exhibit this effect (data not shown). Cancer cells
are characterized by increased glucose consumption, which is related to their rapid growth and
metabolism [37]. Inhibition of glucose uptake either by nutrient deprivation or inhibitors, may
suppress cancer cells proliferation and/or sensitize cancer cells to standard therapies. Moreover, recent
studies suggested a possible crosstalk between glycolysis and AR-signaling [38]. However, cytotoxic
effects and proliferation inhibition were observed only at high concentrations of the isolated compounds
(data not shown). Nevertheless, due to the promising activity on AR-receptor signaling and glucose
uptake, 3 and 7, as well as the mixtures of 4 + 5 + 6 and 8 + 9 may serve as starting compounds for a
development of novel prostate cancer drugs. To the best of our knowledge, this is the very first report
on the ability of marine-derived steroid compounds to suppress the PSA expression/androgen receptor
signaling, as well as glucose uptake in cancer cells.

3. Materials and Methods

3.1. General Procedures

Optical rotations were measured using a Perkin-Elmer 343 polarimeter. The 1H- and 13C
NMR spectra were recorded on an Avance III-700 spectrometer at 700 and 175 MHz, respectively.
Chemical shifts were referenced to the corresponding residual solvent signal (δH 3.30/δC 49.60 in
CD3OD). The HRESIMS spectra were recorded on a Bruker maXis Impact II mass spectrometer
(Bruker, Germany). Low-pressure column liquid chromatography was performed using YMC-GEL
ODS-A. HPLC was performed using an Agilent Series 1100 Instrument equipped with a differential
refractometer RIDDE14901810 and an YMC-ODS-A (250 × 10 mm) column. Sorbfil Si gel plates
(4.5 × 6.0 cm, 5–17 µm, Sorbpolimer, Krasnodar, Russia) were used for thin-layer chromatography.
MTT reduction was measured using the F200PRO reader (TECAN, Männedorf, Switzerland).
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3.2. Animal Material

The sponge Halichondria vansoesti (order Suberitida, family Halichondriidae; Figure S46) was
collected at a depth of 5–12 m by hand via scuba diving during the 49th scientific cruise on board
R/V “Academik Oparin”, in the period from 10 November, 2016 to 3 January, 2017, in the South
China Sea (the territorial waters of Vietnam, 12◦34′02 N; 109◦24′26 E). The sponge material was
identified by Grebnev B.B. A voucher specimen is kept under the registration number N 049-232
in the marine invertebrate collection of the G. B. Elyakov Pacific Institute of Bioorganic Chemistry
(Vladivostok, Russia).

3.3. Extraction and Isolation

The sample of the sponge Halichondria vansoesti was immediately frozen after collection and kept at
−20 ◦C. The biological materials (dry weight 13.7 g) were chopped into small pieces and extracted with
EtOH (200 mL × 3). The combined EtOH solution was concentrated to obtain the crude ethanol extract
(7.9 g), which was partitioned between n-hexane and aqueous EtOH (9:4). The aqueous ethanol-soluble
materials (6.4 g) was concentrated and further fractionated by CC on YMC-GEL (2.5 × 15 cm) and
eluted successively with H2O→EtOH:H2O (3:7)→EtOH:H2O (2:3)→EtOH:H2O (1:1)→EtOH:H2O
(3:2). Each of the subfractions obtained by elution with EtOH:H2O (3:7) to EtOH:H2O (3:2) were then
concentrated (243 mg, 213 mg, 120 mg, 153 mg, respectively) and subjected to repeated preparative
HPLC (YMC-ODS-A, 65:35:1 EtOH/H2O/1M CH3COONH4 to give 1 (3.3 mg), 2 (2.3 mg), 7 (15.0 mg),
10 (13.5 mg) and mixtures of 4 + 5 + 6 (12.8 mg) and of 8 + 9 (11.0 mg). The subfraction eluted with
H2O was further extracted with BuOH, after which the butanol extract was concentrated (691 mg) and
subjected to preparative HPLC (YMC-ODS-A, 30:70:1 EtOH/H2O/1M CH3COONH4 to give 3 (4.7 mg).

3.4. Compound Characterization Data

Topsentiasterol sulfate G (1). Yield 0.024% of the dry weight of the sponge; amorphous powder; [α]20
D :

+ 48 (c 0.23, MeOH); 1H- and 13C NMR data, see Tables 1 and 2; HRESIMS m/z 784.1724 [M3Na − Na]−,
380.5927 [M3Na − 2Na]2−, 246.0657 [M3Na − 3Na]3− (calc. for C30H44NNa3O14S3 784.1725, 380.5916,
246.0647, respectively).

Topsentiasterol sulfate I (2). Yield 0.017% of the dry weight of the sponge; amorphous powder; [α]20
D : +

69 (c 0.15, MeOH); 1H- and 13C NMR data, see Tables 1 and 2; HRESIMS m/z 829.1834 [M3Na −Na]−,
403.0980 [M3Na − 2Na]2−, 261.0694 [M3Na − 3Na]3− (calc. for C32H47Na3O16S3, 829.1827, 403.0967,
261.0681, respectively).

Topsentiasterol sulfate H (3). Yield 0.034% of the dry weight of the sponge; amorphous powder;
[α]20

D : + 39 (c 0.19, EtOH); 1H- and 13C NMR data, see Tables 1 and 2; HRESIMS m/z 839.1253 [M3Na −

H]−, 408.0685 [M3Na −Na −H]2−, 264.3826 [M3Na − 2Na −H]3− (calc. for C30H43Na3O17S3 839.1283,
408.0695, 264.3833, respectively).

Bromotopsentiasterol sulfate D, (4, in mixture with 5 and 6). Amorphous powder; 1H- and 13C-NMR
data (of 4), see Tables 1 and 2; HRESIMS m/z 847.0736 [M3Na −Na]−, 412.0424 [M3Na − 2Na]2−, 267.0321
[M3Na − 3Na]3− (calc. for C30H42BrNa3O14S3, 847.0721, 412.0414, 267.0312, respectively).

Mixture of the dichlorotopsentiasterol sulfate D and bromochlorotophentiasterol sulfate D (8 + 9, 9:1).
Amorphous powder; 1H- and 13C-NMR data (for 8), see Tables 1 and 2; HRESIMS (for 8 and 9) m/z
837.0837 and 881.0340 [M3Na −Na]−, 407.0480 and 429.0227 [M3Na − 2Na]2−, 263.7026 and 278.3516
[M3Na − 3Na]3− (calc. for C30H41Cl2Na3O14S3 and C30H41ClBrNa3O14S3, 837.0836 and 881.0331,
407.0472, and 429.0220, 263.7017 and 278.3513, respectively).

4β-hydroxyhalistanol sulfate C (10). Yield 0.099% of the dry weight of the sponge; amorphous powder;
[α]20

D : + 40 (c 0.28, MeOH); 1H- and 13C-NMR data, see Tables 1 and 2; HRESIMS m/z 719.1819 [M3Na −

Na]−, 348.0969 [M3Na − 2Na]2−, (calc. for C27H45Na3O13S3 719.1823, 348.0965, respectively).
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3.5. Methylation of 3

Compound 3 (0.5 mg) was converted to methyl ester 3a by treatment with an excess (1.5 mL) of a
saturated solution of diazomethane in diethyl ether. The obtained derivative 3a was analyzed using
2D-NMR and HRESIMS (Figure 2, substructure Va, Figure S23).

3.6. Desulfation of 3

Compound 3 (<0.1 mg) was dissolved in 500 µL H2O and 16 µL of concentrated TFA was added
and kept at 100 ◦C for 4 h. The reaction mixture was concentrated and purified by CC on YMC-GEL (1.5
× 2 cm) and eluted successively with H2O→EtOH. The subfraction eluted with EtOH was concentrated
to give 11. The obtained derivative was analyzed using HRESIMS (Figure 4, Figure S24).

3.7. Bioactivity Assay

3.7.1. Reagents

The MTT reagent (Thiazolyl blue tetrazolium bromide) was purchased from Sigma (Taufkirchen,
Germany). The MTS reagent (Cell Titer 96 Aqueous One Solution Reagent) was purchased from
Promega (Madison, WI, USA).

3.7.2. Cell Lines and Culture Conditions

22Rv1 and PC-3 cell lines (human prostate cancer cell lines) were purchased from ATCC. Cells
were cultured in monolayer in 10% FBS/RPMI media according to the manufacture’s protocols and
were regularly checked for mycoplasma contamination.

3.7.3. In Vitro MTT- and MTS-Based Drug Sensitivity Assay

The in vitro cytotoxic activity of the isolated compounds was evaluated by the MTT assay
(performed as described previously [39]). For glucose uptake assay (3.7.5. Glucose uptake assay, see
below) the viability was determined using the MTS assay (performed as described previously [40]).
Treatment time was 48 h.

3.7.4. Western Blotting

Preparation of the samples and Western blotting were performed as described previously [41].
For the detection of PSA and β-actin expression, the anti-PSA/KLK3 (Cell Signaling, #5365, 1:1000) and
anti-β-actin-HRP (Santa Cruz, sc-1616, 1:10,000) antibodies were used. Treatment time was 24 h.

3.7.5. Glucose Uptake Assay

The examination of the effect of the compounds on glucose uptake was carried out using PC-3
cells and the Glucose Uptake Cell-Based Assay Kit (Cayman Chemicals, Ann Arbor, MI, USA) and
normalized to the cell viability measured using the MTS test [40]. 12,000 cells per well were seeded in
two 96-well plates in 100 µL of media per well, incubated overnight, and treated with the drugs in
100 µL of FBS-free and glucose-free RPMI media per well for 24 h. For glucose uptake measurements,
10 µL of the 2-NBDG solution in FBS-free and glucose-free RPMI media (glucose uptake measurements,
final 2-NBDG concentration in the wells was 50 µg/mL) of the vehicle (for cell viability measurements)
was added to each well. After 6 h of incubation, the cells were washed twice with PBS (200 µL/well).
Next, for the evaluation of glucose uptake, 100 µL of PBS was added to each well. The fluorescence
was measured using Infinite F200PRO reader (TECAN, Männedorf, Switzerland). For cell viability
measurements, the 100 µL of culture media containing MTS reagent was added to each well, and cell
viability was measured using an Infinite F200PRO reader according to the manufacture’s protocol.
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3.7.6. Statistical Analysis

All assays were repeated at least three times. Results are expressed as the mean ± standard
deviation (SD). Student’s t-test was used to estimate the significance: * p < 0.05.

4. Conclusions

Ten polysulfated steroids 1–10 were isolated from the Vietnamese marine sponge Halichondria
vansoesti. The structures of seven previously unreported compounds (1–4 and 8–10) were established
by 1D- and 2D-NMR spectroscopy, HRESIMS, and chemical transformations. Compounds 1–4, 8, and
9 are new analogues of topsentiasterol sulfates. The characteristic ∆9(11)-4β-hydroxy-14α-methyl-2β,
3α, 6α-trisulfated steroid nucleus and unusual side chains, not previously described in trisulfated
steroids from sponges, were found in the structures of these compounds. Compound 10 is a new
analogue of halistanol sulfate, containing a 4β-hydroxy-2β, 3α, 6α-trisulfated steroid nucleus and this
is the first report of this structure in sponge polar steroids. We proposed hypothetical pathways for the
biosynthesis of the side chains in new topsentiasterol sulfates. Some of the isolated trisulfated steroids
were able to suppress PSA expression and glucose uptake in human prostate cancer cells and thus may
serve as starting compounds for the development of novel prostate cancer drugs.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-3397/17/8/445/s1,
Figure S1: List of the previously described polysulfated steroids, combined into subgroups in accordance with the
structural features of the steroid nucleus, Figures S2–S44: Copies of HRESIMS, 1D- and 2D-NMR spectra of 1–10,
Figure S45: Structure of codisterol (12), Figure S46: Photo of the studied sample of sponge Halichondria vansoesti
(registration number N 049-232).
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