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We discuss some aspects of the fluid dynamics of vitreous substitutes in the vitreous chamber, focussing on the flow induced by
rotations of the eye bulb. We use simple, yet not trivial, theoretical models to highlight mechanical concepts that are relevant to
understand the dynamics of vitreous substitutes and also to identify ideal properties for vitreous replacement fluids. We first recall
results by previous authors, showing that the maximum shear stress on the retina grows with increasing viscosity of the fluid up
to a saturation value. We then investigate how the wall shear stress changes if a thin layer of aqueous humour is present in the
vitreous chamber, separating the retina from the vitreous replacement fluid. The theoretical predictions show that the existence of
a thin layer of aqueous is sufficient to substantially decrease the shear stress on the retina. We finally discuss a theoretical model
that predicts the stability conditions of the interface between the aqueous and a vitreous substitute. We discuss the implications of
this model to understand the mechanisms leading to the formation of emulsion in the vitreous chamber, showing that instability
of the interface is possible in a range of parameters relevant for the human eye.

1. Introduction

Retinal detachment is a serious, sight threatening condition
that occurs when fluid enters the potential space between
the neurosensory retina and the retinal pigment epithelium.
Posterior vitreous detachment is primarily responsible for the
generation of tractions on the retina that might produce reti-
nal tears. These can possibly evolve into retinal detachment,
since the detached vitreous often displays tight attachment
points with the retina, where concentrated mechanical stim-
uli occur [1]. In the general population, nontraumatic phakic
rhegmatogenous retinal detachment occurs in about 5.4 out
of 100,000 persons and is among the most frequent causes of
blindness in Western countries [2].

Surgery is the only viable way to treat retinal detachment
[3]. One of the most common surgical treatments consists
in removing the vitreous gel from the eye, peeling epiretinal
traction, flattening the retinal detachment and closing retinal
tears, and inducing chorioretinal adhesion. Materials that
form an interface with the aqueous environment of the eye

can be effective in closing retinal breaks and holding the
retina in place against the retinal pigment epithelium. They
are called vitreous substitutes or tamponade fluids.

Various vitreous substitutes are employed in the surgical
practice, with largely differentmechanical properties [4, 5]. In
particular, artificial vitreous substitutes can be classified into
three categories: gases, liquids, and gels. Polymetric hydrogels
are only used as a support for sustained drug delivery in the
vitreous. Currently, themost commonly used fluids employed
as vitreous substitutes are gases, silicone oils, perfluorocarbon
liquids, and semifluorinated liquids. Gases and perfluoro-
carbon liquids are used as short-term substitutes, especially
during intraoperative procedures. Semifluorinated liquids,
owing to their toxicity, are also only used as short-term
vitreous substitutes.

At present, the only long-term vitreous substitutes widely
employed in the clinical practice are silicone oils. They have
suitable properties of chemical stability and transparency
and have a high surface tension with the aqueous humour,
which is a desirable property. The rational of using silicone
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oil as intraocular tamponade is to interrupt the open com-
munication between the subretinal space/retinal pigment
epithelial cells and the preretinal space with the aim of
securing, in the first few days after surgery, chorioretinal
adhesion induced by cryo- or laser treatment. Depending on
the location of the retinal break oils with different densities
(either higher or lower than the aqueous) can be adopted
[6, 7]. Proper patient posture is required after the injection,
in order to maintain the contact of the tamponade with the
retinal break. Direct contact between the tamponade fluid
and retina is indeed difficult to determine. Due to the oil
hydrophobicity a thin layer of aqueous is likely to form
between the retina and vitreous substitute. This is irrelevant
where the retina is attached to the pigment epithelium but is
crucial in correspondence with the break. It has been shown
theoretically and experimentally that, the supported area of
the retina is strongly affected by the contact angle between
the oil and the retina [8].

The mechanical properties of tamponade fluids (density,
viscosity, and surface tension with the aqueous) influence
the efficiency of the treatment and, therefore, a full under-
standing of the mechanical implications associated with
the surgery is desirable. With the present work we aim
at clarifying, from a purely mechanical point of view, the
implications of adopting tamponade fluids with different
mechanical properties. The problem is extremely complex
even if only mechanics is accounted for, and, therefore,
we proceed in this paper by introducing simple theoretical
models that shed some light on specific, yet crucial, aspects
of the problem.

We start by considering the effect of viscosity of the
tamponade fluid on the mechanical actions exerted on the
retina during eye rotations.

Due to the limited tamponade effect of silicone oils we
then investigate further factors leading to the successful
surgery. In particular, we investigate the changes of the
maximum wall shear stress when silicone oils are used,
accounting for the possible presence of a thin layer of aqueous
separating the retina from the tamponade fluid.

The success rate of surgery when silicone oils are used is
about 70%. One of the common problems after vitrectomy,
especially in the long run, is the formation of an oil emulsion.
The reasons why this happens when silicone oils are used as
tamponades are still unclear. A further aim of this paper is
to present a simple theoretical model that predicts the role of
oil properties (particularly, viscosity and surface tension) in
the process of emulsion formation. To this end we study the
stability of the interface between two superposed immiscible
fluids set in motion by movements of the eye.

2. Materials and Methods

The results presented in this paper are based on solutions
of the mathematical equations that govern the motion of
fluids. Fluid dynamics is a very well developed branch of
physics, the modern foundations of which date back to the
19th century. The so-called Navier-Stokes equations, named

after Claude-Louis Navier and George Gabriel Stokes, are
known to accurately model the motion of a viscous fluid
described as a continuum body. These equations are mathe-
matically very complex and admit closed-form solutions, that
is, solutions that can be expressed analytically in terms of
known functions, only in very special cases. If an analytical
solution of a problem can be found, its dependency on the
controlling parameters (e.g., in the present case the size of
the vitreous chamber, the viscosity of the fluid, and so forth)
can be easily determined, without the need of computational
simulations, and physical insight on the problem is therefore
effectively obtained. In this paper we discuss some analytical
solutions of the Navier-Stokes equations, which are relevant
to understanding the dynamics of vitreous substitutes.

We consider purely viscous fluids, that is, fluids whose
mechanical properties are completely characterized by the
density 𝜌 (mass per unit volume) and the (dynamic) viscosity
𝜇 (which is a measure of resistance to flow) and in which
the stress is linearly proportional to the rate of deformation.
Water, aqueous humour, and oils fall into this category.

Fluid motion in the vitreous chamber can be driven by
different mechanisms, in particular, rotations of the eyeball
or thermal differences between the anterior and posterior
segments of the eye. However, it can be shown by simple
order-of-magnitude arguments that the motion induced by
eye rotations is much stronger than the thermally driven flow
[9] and, therefore, we restrict our attention to the former.
Eye rotations induce motion in the fluid contained in the eye
owing to the so-called no-slip boundary condition, according
to which fluid particles in contact with a rigid wall (e.g., the
vitreous chamber wall) move at the same velocity as the wall
itself. In other words, fluid particles do not flow across the
wall and they do not slip over it.

We consider three different, relatively simple, models that
shed light on important aspects of the dynamics of vitreous
substitutes in the vitreous chamber. Proper interpretation
of results from experimental or more complex theoretical
models requires a full understanding of the results presented
here. The details of the mathematical models are briefly
reported in the appendices.

Model 1.We first review results obtained by previous authors
concerning the case of a rigid hollow sphere of radius 𝑅,
modelling the vitreous chamber, filled with a fluid and
study fluid motion generated by small-amplitude, periodic,
torsional oscillations of the sphere (see Figure 1(a)). This
problem has been studied in [10, 11] for the case of viscoelastic
fluids. In reality, the vitreous chamber is not perfectly spher-
ical, particularly owing to the indentation produced in its
anterior part by the lens. The effect of departure from the
spherical shape onfluidmotion has been studied theoretically
and experimentally by several authors [12–16]; however, for
the present purposes and for the sake of the simplicity,
it is sufficient here to consider a spherical shape. Fluid
motion generates stresses on the wall, which we determine
analytically. We discuss the qualitative characteristics of the
flow and show the dependency of the stress at thewall on fluid
viscosity.
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Figure 1: Sketch of the three models adopted in the paper.

Model 2. We then investigate how the stress on the wall is
modified when a second fluid is present within the domain
(see Figure 1(b)). This typically happens when a hydrophobic
vitreous substitute, such as silicon oil, is injected into the
vitreous chamber: a thin layer of aqueous close to the wall
separates the vitreous substitute from the retina. In order
to model this condition we adopt an idealized geometry
consisting of a rigid sphere filled with two immiscible fluids
(aqueous and vitreous substitute) arranged concentrically,
with the aqueous in the external layer. In other words we
assume that the thickness 𝑑 of the aqueous is uniform. This
allows us to solve the problem for themotion of the two fluids
analytically. We then compute the wall shear stress on the
equatorial plane.

Model 3. Finally, we study the stability of the interface
between the aqueous layer and the vitreous substitute, when
the two fluids are set in motion by eye rotations. For the
sake of simplicity we assume that the thickness of the
aqueous layer is much smaller than the eye radius, which is
often a realistic assumption, and, as a first approach to the
problem, we neglect the curvature of the retinal surface and
consider a flat wall (see Figure 1(c)). The configuration of the
interface between the two fluids is assumed to be perturbed
by small (formally infinitesimal) sinusoidal waves (normal
mode analysis) and we study whether the amplitude of these
disturbances grows or decays in time. In the former case
we infer instability of the system, and in the latter we infer
stability. Some details of the mathematical analysis, which
is quite technical, are given in the appendices. Instability
of the interface may be considered as a possible incipient
condition leading to the breakdown of the interface and can,
therefore, represent a route towards emulsification. We note
that the model is based on a so-called linear stability analysis:
this allows us to establish whether perturbations will grow
or decay in time (the model actually predicts exponential
growth or decay), providing a threshold value for the onset of
instability.Themodel allows us to establish how the interface
stability conditions depend on the properties of the vitreous

substitute, particularly, its surface tension with the aqueous
and its viscosity.

3. Results and Discussion

3.1. Wall Shear Stress in a Periodically Rotating Sphere. We
first consider the motion of a fluid contained in a sphere
of radius 𝑅, performing periodic rotations of amplitude 𝐴

and frequency 𝜔. If the rotation amplitude 𝐴 is small, it can
be shown that, at leading order, the fluid velocity vectors
are everywhere orthogonal to the axis of rotation [10, 11]. In
other words, the velocity has only the azimuthal component.
Moreover, the velocity oscillates with the same frequency as
the sphere rotations. In Figures 2(a) and 2(b) we plot velocity
profiles attained in a viscous fluid on the equatorial plane
orthogonal to the axis of rotation. We note that this is the
plane where the stress on the wall attains its maximum value.
In the figurewe show the variation of the azimuthal velocity in
the radial direction and each curve corresponds to a different
time within the period. The velocity is zero at the centre of
the domain (𝑟 = 0) and has the same velocity of the wall
at 𝑟 = 𝑅. In the two cases the frequency is kept constant
and is equal to 20 rad/s, which is a realistic value for real
eye rotations. In Figure 2(a) we use a viscosity typical of a
silicon oil (𝜇 = 0.96Pa⋅s [17]), whereas Figure 2(b) is obtained
assuming the viscosity of water (𝜇 = 0.001Pa⋅s). In the two
cases the velocity profiles are significantly different. In the
high viscosity case they are almost straight lines; in other
words the fluid moves almost as if it was a rigid body. On
the other hand, when the viscosity is small, a thin layer forms
at the wall in which the fluid moves and the velocity in the
core of the domain is vanishingly small. This layer is referred
to as an oscillatory boundary layer. The thickness of the
oscillatory boundary layer at the wall is of order 𝛿∼√(𝜇/𝜌𝜔).
This means that similar results could have been obtained
by keeping fixed the viscosity of the fluid and changing the
frequency of oscillations. In fact, the problem is governed by
a single dimensionless parameter 𝛼, the Womersley number,
defined as 𝛼 = √((𝜌𝑅

2
𝜔)/𝜇), which can be physically

interpreted as the ratio 𝑅/𝛿, between the radius of the sphere
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Figure 2: Velocity profiles in radial direction. 𝑟 = 0 corresponds to the centre of the sphere and 𝑟 = 1 corresponds to the location of the wall.
The velocity is normalized with the maximum velocity at the wall. In both figures we assumed that the sphere contains purely viscous fluids
and that the frequency of rotations is equal to 20 rad/s. (a) Silicon oil, 𝜇 = 0.96Pa⋅s; (b) water, 𝜇 = 0.001Pa⋅s.

and the thickness of the oscillatory boundary layer. Flows
characterized by the same value of the Womersley number
have identical velocity profiles.

In purely viscous fluids, whatever the value of the vis-
cosity, the maximum of the velocity is invariably attained at
the wall (𝑟 = 𝑅). We note that the real healthy vitreous is a
viscoelastic fluid [18, 19], that is, a fluid in which the state of
stress depends on the history of deformation. In other words
viscoelastic fluids have a “fading” memory. Figure 6 in the
paper by Meskauskas et al. [11] is the equivalent of Figure 2
of the present paper but is obtained taking into account the
viscoelasticity of the fluid and adopting values of the vitreous
properties obtained in [19] from ex vivo experiments on
porcine eyes. The velocity profiles show striking qualitative
differences with respect to those obtained for purely viscous
fluids (Figure 2 of this paper). In particular, in the case of a
viscoelastic fluid, the maximum velocity can be attained in
the core of the domain and not at the wall. This phenomenon
is due to a resonant excitation of vitreous motion. When
resonance occurs, large values of the stress are attained on the
boundary of the domain, that is, on the retina.

In Figure 3 we show how, in a viscous fluid, themaximum
shear stress at the wall changes with fluid viscosity.This figure
is equivalent to Figure A.2 in the paper by Abouali et al. [15].
Since the shear stress depends linearly on the viscosity of
the fluid and also on the spatial derivatives of the velocity
profile, predicting if the stress will increase or decrease with
the viscosity is not obvious. In fact, Figures 2(a) and 2(b) show
that as the viscosity decreases the derivative of the velocity at
the wall increases. The results reported in Figure 3 show that
the maximum shear stress at the wall increases nonlinearly
with the viscosity and attains an asymptotic value for very
viscous fluids.Thismaximum asymptotic value can be shown
to be𝐴𝜌𝜔2𝑅2/5 (see also [15]).This implies that the adoption
of high viscosity fluids as vitreous substitutes induces the
generation of larger mechanical stresses on the retina. In the
figure we report with vertical lines the cases corresponding
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Figure 3: Dependency of the maximum shear stress at the wall on
the viscosity in the case of a purely viscous fluid. The two curves
correspond to two different values of the frequency of eye rotations
(dashed line 20 rad/s; solid line 10 rad/s; A = 20 deg = 𝜋/9 rad).
W: water; S.O.: silicon oils (𝜌 = 960 Kg/m3, 𝜇 = 0.96Pa⋅s, and
𝜇 = 4.8Pa⋅s). In the figure we also report with symbols the values of
the maximum wall shear stress obtained in the case of a viscoelastic
fluid and adopt the rheological properties measured in [18, 19]. Solid
square: complex viscosity 𝜇

∗

= 0.39 − iPa⋅s, 𝜔 = 10 rad/s [18];
empty square: 𝜇∗ = 0.07 − 0.28iPa⋅s, 𝜔 = 10 rad/s [18]; solid circle:
𝜇
∗

= 0.07 − 0.28iPa⋅s, 𝜔 = 12.57 rad/s [19]; and empty circle:
𝜇
∗

= 0.03 − 0.064iPa⋅s, 𝜔 = 12.57 rad/s [19].

to water and to two often used silicon oils (0.96 and 4.8 Pa⋅s)
[17]. It appears that in the cases of the two oils the maximum
stress on the retina is an order ofmagnitude higher than in the
case of water. However, the differences between the two oils
are small since, in both cases, the value of themaximum stress
on retina is almost equal to themaximumpossible asymptotic
value.

Finally, we report in Figure 3 also points corresponding to
the viscoelastic case, adopting for the rheological properties
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of the vitreous the values measured in [18, 19]. In these cases
there is also an elastic component of the stress, the effect of
which is to slightly increase the maximum wall shear stress
with respect to the purely viscous case.

3.2. The Effect of the Existence of a Thin Layer of Aque-
ous between the Retina and the Vitreous Substitute. In the
previous section we have discussed how the stress on the
retina depends on the viscosity of a vitreous substitute, under
the assumption that the fluid completely fills the vitreous
chamber. In particular, we have shown that the mechanical
actions on the retina grow with increasing fluid viscosity. In
reality the situation is more complicated than this because,
owing to the hydrophobic nature of vitreous substitutes, a
thin layer of aqueous may form between the retina and the
vitreous substitute.

We therefore now consider how the scenario described
in the previous section is modified when we account for the
presence of a thin layer of aqueous close to the retina.

In Figures 4(a) and 4(b) we show azimuthal velocity
profiles on the equatorial plane at different times. The
position of the interface between the two fluids is shown in
the figure with a vertical solid line. The velocity profiles are
continuous across the interface between the two fluids, but
their slope is not. This is due to differences between the two
fluids viscosities (we assumed in the figure 𝜇

𝑎
= 10
−3 Pa⋅s for

the aqueous and 𝜇V𝑠 = 1Pa⋅s for the vitreous substitute, e.g., a
silicon oil). Figures 4(a) and 4(b) differ because a different
thickness 𝑑 of the aqueous layer has been assumed. In the
first case (Figure 4(a)) we consider a thickness of the aqueous
layer smaller than the thickness 𝛿 of the boundary layer that
would form at the wall if the aqueous was completely filling
the vitreous chamber (𝑑 < 𝛿). In this case the motion of the
wall is also felt in the vitreous substitute, which moves with
a significant velocity. On the other hand, when 𝑑 > 𝛿, most
of the motion keeps confined within the aqueous layer and
the velocity in vitreous substitute is very small (Figure 4(b)).
In other words in the latter case the vitreous substitute barely
feels the motion of the wall.

This has important implications for the wall shear stress
at the wall, as it is shown in Figure 5. In the figure we plot
the maximum stress at the wall versus the thickness of the
aqueous layer. For the sake of clarity, we use dimensionless
variables. The stress is normalized with the stress that would
be obtained at the wall if the vitreous substitute was com-
pletely filling the domain.The thickness of the layer𝑑 is scaled
with 𝛿, computed as √(𝜇/𝜌𝜔) and using the viscosity of the
aqueous. When 𝑑/𝛿 tends to zero, the scaled stress obviously
tends to 1 (vitreous substitute alone) and the stress on the wall
is maximum.However, the figure shows that it is sufficient for
a thin layer of aqueous to be present to make the maximum
shear stress at the wall drop significantly. When 𝑑/𝛿 ≈ 1 or
greater, the presence of the vitreous substitute is not felt by
the wall and the stress drops to the value it would attain in
the presence of aqueous alone. This simple model highlights
the importance of accounting for the possible presence of the
thin layer of aqueous at the wall in the calculation of the stress
on the retina.

3.3. Stability of the Interface between Aqueous and Vitreous
Substitute. The presence of an aqueous layer separating the
vitreous substitute from the retina was shown in the previous
section to have an important effect on the shear stress on the
retina. It is also known that one of the main complications
after injection of long-term vitreous replacement fluids (par-
ticularly silicon oils) is the possible occurrence of emulsifica-
tion. This implies that the oil-aqueous interface might break,
eventually leading to the formation of oil droplets dispersed
in the aqueous.There are several possible causes of generation
of an emulsion, with one of them being introduction of
mechanical energy into the system that breaks down the
oil aqueous interface [20]. Many authors have hypothesized
that shear stresses at the tamponade fluid-aqueous interface
generated during eye rotations play a crucial role in the
generation of an emulsion [21, 22].

In order to investigate the feasibility of this assumption
anddeterminewhich parameters play a role in the breakdown
of the interface, we present in this section results from an
idealized, yet informative, theoretical model. As discussed
in Section 2 we assume that the aqueous layer in contact
with the retina is much smaller than the radius of the eye
and we neglect the curvature of the eye wall, treating the
problem as two-dimensional (see Figure 1(c)). We perturb
the flat configuration of the interface between the two fluids
with a sinusoidal wave and investigate whether the amplitude
of this wave grows or decays in time, with the aim of
identifying threshold conditions for instability as the values
of the controlling parameters are changed.

The problem of the stability of the interface is governed by
the four dimensionless parameters introduced and described
in the appendices. Here we discuss the role of two of them:
𝑚 = 𝜇V𝑠/𝜇𝑎, which is the ratio between the viscosities of the
two fluids, and 𝑆 = 𝜎/(𝜌𝑑𝑈

2
), which represents a dimen-

sionless surface tension at the interface, where 𝜎 denotes
the dimensional surface tension between the two fluids, 𝜌
denotes fluid density, 𝑑 is the thickness of the aqueous layer,
and 𝑈 is the maximum wall velocity. We note that, for the
sake of simplicity, we neglect possible differences between the
densities of the two fluids, thus effectively neglecting the role
of gravity. The other dimensionless parameters that govern
the stability problem are set to values that are reasonable for
real eye rotations.

Our stability analysis shows that very long waves on the
interface are invariably unstable during certain phases of
the oscillation cycle. In other words the amplitude of very
long disturbances always grows in time. We note that in the
absence of an interface this stability problem consists in the
stability of the so-called “Stokes boundary layer,” that is, the
flow of a single fluid over an oscillating wall.This problemhas
been largely studied in the literature [23] and it is known to be
stable in the range of parameters considered here. Therefore,
we can conclude that the instability mechanism is indeed
related to the existence of the interface.Very longwavesmight
not be able to form within the eye globe, owing to the three-
dimensionality of the domain (they will not effectively fit in
the eye). Short waves, on the other hand, are stabilized by the
surface tension acting on the interface. In Figures 6(a) and
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Figure 4: Velocity profiles in radial direction in the case in which the vitreous chamber contains two immiscible fluids. 𝑟 = 0 corresponds to
the centre of the sphere and 𝑟 = 1 corresponds to the location of the wall. The velocity is normalized with the maximum velocity at the wall.
The frequency of rotations is equal to 10 rad/s. Vitreous substitute 𝜇 = 1Pa⋅s; water, 𝜇 = 0.001Pa⋅s. (a) 𝑑 = 0.01𝑅 and (b) 𝑑 = 0.1𝑅.
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Figure 5: Maximum stress at the wall versus the thickness of the
aqueous layer. The stress is normalized to 1, and the thickness of
the layer 𝑑 is scaled with 𝛿, computed using the viscosity of water.
Vitreous substitute 𝜇 = 0.96Pa⋅s; water, 𝜇 = 0.001Pa⋅s.

6(b) we show how the length of the shortest unstable wave
depends on the controlling parameters. In particular we focus
on the role of the two dimensionless parameters 𝑆 and𝑚.

Figure 6(a) shows that, as the value of the (dimensionless)
surface tension decreases, instability progressively affects
shorter perturbations. This can be interpreted as follows.
When the surface tension decreases, the interface effectively
becomes more unstable, since even relatively short waves are
predicted to be unstable and thus their amplitude is expected
to grow in time.The stabilizing role of the surface tension too
is not surprising in the light of results from stability analyses
performed on similar problems [24].

In Figure 6(b) we show the effect of changing the ratio
𝑚 between the viscosities of the two fluids. Note that the
viscosity of silicon oils is much larger than that of water. The

figure shows that as 𝑚 increases the system becomes more
stable, again meaning with this statement that only very long
waves are expected to possibly grow in time. Conversely, for
relatively small values of 𝑚 progressively shorter waves are
found to be unstable.

4. Conclusions

In the present paper we have discussed theoretical results
from three different idealized mathematical models that, in
our view, help in understanding some of the basic features of
the fluidmechanics of vitreous substitutes in the eye.We have
focused our attention on the flow generated in the vitreous
chamber by rotations of the eye globe, which is by far themost
important mechanism generating fluid motion.

We first have considered the case in which the whole vit-
reous chamber is filled with a single fluid and have modelled
the chamber as a rigid sphere, performing sinusoidal small
amplitude torsional oscillations, similar to what was done by
previous authors [10, 11]. We have shown that, when the fluid
is purely viscous, themaximum velocity is invariably attained
at the sphere wall and the velocity at the centre of the domain
is zero. In the limit of very large fluid viscosity the velocity
profiles are approximately straight lines and the fluid moves
almost as a rigid body. In the opposite limit of low viscosity,
an oscillatory boundary layer forms at the wall and the fluid
velocity in the core of the vitreous chamber is almost zero.
We have shown that the maximum wall shear stress on the
retina grows with increasing viscosity of the fluid in a highly
nonlinear way and reaches an asymptotic value in the limit
of high viscosity fluids, which is easily predicted analytically.
This is relevant for the choice of vitreous replacement fluids.
In fact the model shows that if the vitreous is replaced with a
highly viscous fluid, mechanical actions of the retina should
be expected to increase. This is, for instance, the case with
silicon oils. In the clinical practice silicon oils with a viscosity
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Figure 6: Length of the shortest unstable perturbation 𝐿min, scaled with the thickness of the aqueous layer 𝑑 versus 𝑆 (a) and 𝑚 (b). 𝑅 = 12

and 𝜔 = 0.003 (𝑚 = 5 (a) and 𝑆 = 14 (b)).

of 1000 centistokes or 5000 centistokes are typically adopted.
We remark that in both cases the viscosity is so large that the
maximum values of the shear stress at the retina are close to
its maximum possible asymptotic values. This means that, in
terms of mechanical stresses on the retina, the two oils are
equivalent to each other.

We have also briefly recalled how flow characteristics
change when a viscoelastic fluid fills the vitreous chamber.
The real healthy vitreous has viscoelastic properties, and
there is a large body of research devoted to the identification
of vitreous replacement fluids with viscoelastic properties.
We have recalled that the motion of a viscoelastic fluid can
be resonantly excited by eye rotations and, if this happens,
large values of the shear stress are expected to develop on
the retina. This has important implications for the choice
of the ideal properties of vitreous substitutes. Soman and
Banerjee [25] and Swindle and Ravi (2007) [26] review
all materials currently in use, discuss their advantages and
disadvantages, and list the characteristics of an ideal vitreous
substitute. In their papers it is mentioned that the ideal
substitute should have a large enough elastic component,
so as to avoid excessive flow within the vitreous chamber.
However, the possible occurrence of resonance as a risk
factor for generating large mechanical stresses on the retina
is disregarded.

In the second part of the paper we considered the
effect of a thin layer of aqueous separating the vitreous
substitute from the retina. Since vitreous substitutes are
normally hydrophobic fluids and complete filling of the
vitreous chamber can be hardly obtained, a layer of aqueous
in correspondence with the retina is likely to form. We have
shown that, when this is the case, the maximum stress on
the retina can be significantly reduced, even if the viscosity
of the vitreous replacement fluid is very large. Therefore, the
possible existence of an aqueous layer should be accounted
for when estimating the mechanical stresses on the retina
after injection of a vitreous substitute.

The presence of an aqueous layer and, consequently, of
an interface between the aqueous and the vitreous substitute
also has a crucial effect in the possible development of an
emulsion, which is one of themain drawbacks associatedwith
the use of silicon oils. Making use of a simple mathematical
model we have studied the stability of the aqueous-vitreous
substitute interface. The results show that the interface
becomes more unstable if the surface tension decreases
and it becomes more stable if the viscosity of the vitreous
substitute is higher. Both results are in agreementwith clinical
observations. In fact there is evidence that the tendency
to emulsification is significantly enhanced by the presence
of surfactants that decrease the surface tension between
the two fluids [27]. Moreover, clinical experience shows
that highly viscous vitreous substitutes are more resistant
to emulsification than less viscous ones [28–30]. Obviously,
our model only represents in a highly idealized fashion the
real behaviour of the aqueous-vitreous substitute interface
in the vitreous chamber during eye rotations and we are
perfectly aware that reality is much more complex than we
have assumed. However, to our best knowledge this is the first
attempt to study the instability processes that might lead to
the formation of an emulsion in the vitreous chamber and we
believe that stability analyses such as the one proposed here
can significantly contribute to highlighting the basic physical
mechanisms taking place and to guiding the interpretation of
more realistic models, as indeed it has been the case in many
other physical contexts.

Appendices

A. Model 1

We consider a hollow rigid sphere with radius 𝑅 performing
periodic torsional oscillations of amplitude 𝐴 and frequency
𝜔 about an axis passing through its centre (see Figure 1(a)).
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The angular displacement 𝛽 of the sphere in time is described
by the following time law:

𝛽 (𝑡) = −𝐴 cos (𝜔𝑡) , (A.1)

with 𝑡 time. We assume that the amplitude of oscillations is
small (𝐴 ≪ 1).

The motion of a viscous fluid within the sphere is
governed by the Navier-Stokes equations and the continuity
equation, which read

𝜕u
𝜕𝑡

+ (u ⋅ ∇)u +
1

𝜌
∇𝑝 −

𝜇

𝜌
∇
2u = 0, (A.2a)

∇ ⋅ u = 0, (A.2b)

subject to the following boundary conditions:

𝑢 = 0 (𝑟 = 𝑅) (A.3a)

V = 0 (𝑟 = 𝑅) (A.3b)

𝑤 = 𝐴𝜔𝑅 sin (𝜔𝑡) (𝑟 = 𝑅) (A.3c)

regularity conditions (𝑟 = 0) , (A.3d)

where𝑢, V, and𝑤 represent the radial, zenithal, and azimuthal
components of the velocity, 𝑝 is pressure, 𝜌 is density, and 𝜇

is the dynamic viscosity of the fluid.
Taking advantage of the assumption of small amplitude

eye rotations (𝐴 ≪ 1) the above equations can be linearized
and solved in closed form. The velocity is purely azimuthal
and the solution reads

𝑢 = V = 0,

𝑤 = −
𝑖𝐴𝜔

2
(
𝑅

𝑟
)

2
𝑅 sin (𝑘𝑟/𝑅) − 𝑘𝑟 cos (𝑘𝑟/𝑅)

sin 𝑘 − 𝑘 cos 𝑘
𝑒
𝑖𝜔𝑡sin 𝜃 + c.c.,

𝑝 = const.
(A.4)

In the above expression c.c. denotes the complex conjugate,
𝜃 is the zenithal coordinate (𝜃 = 0; 𝜋 identifies the axis of
rotation), and

𝑘 =
√2

2
𝛼 (1 − 𝑖) , (A.5a)

𝛼 = √
𝜌𝜔𝑅
2

𝜇
, (A.5b)

where 𝛼 is a dimensionless number named the Womersley
number. The corresponding solution for the wall shear stress
is

𝜏 = −
𝜌𝐴

2
(𝜔𝑅)
2
(

1

1 − 𝑘cot 𝑘
−

3

𝑘2
) sin 𝜃𝑒𝑖𝜔𝑡 + c.c. (A.6)

and the maximum of 𝜏 is located on the equatorial plane
𝜃 = 𝜋/2. The maximum wall shear stress over a period of

oscillation and over space grows with the fluid viscosity ] and
reaches the following limiting value 𝜏max as ] → ∞ (with
] = 𝜇/𝜌 being the kinematic viscosity of the fluid):

𝜏max =
𝜌𝐴

5
(𝜔𝑅)
2
. (A.7)

The solution for the motion of a viscoelastic fluid is obtained
by introducing a complex viscosity (i.e., a complex Womers-
ley number in (A.5a)); see [10, 11] for further details.

B. Model 2

We now take into account the presence of a thin layer of
aqueous between the retina and the vitreous substitute fluid.
We assume that the two fluids have the same density 𝜌

but different viscosities (𝜇
𝑎
for the aqueous and 𝜇V𝑠 for the

vitreous substitute). For the sake of simplicity we assume that
the aqueous layer is arranged concentrically with respect to
the vitreous substitute, as shown in Figure 1(b), so that the
aqueous layer thickness is constant and equal to 𝑑.

The problem is still governed by the Navier-Stokes equa-
tions for the two fluids and, at the interface between the fluids,
we impose the continuity of the velocity and the dynamic
boundary condition. Assuming again that the sphere rotates
according to (A.1) and that 𝐴 ≪ 1 the solution can be found
analytically and reads

𝑢
𝑎
= 0 (B.1a)

V
𝑎
= 0 (B.1b)

𝑢V𝑠 = 0 (B.1c)

VV𝑠 = 0 (B.1d)

𝑤V𝑠 = 𝑐
1
𝐴𝜔(

𝑅

𝑘V𝑠𝑟
)

2

[𝑅 sin(
𝑘V𝑠𝑟

𝑅
) − 𝑘V𝑠𝑟 cos(

𝑘V𝑠𝑟

𝑅
)]

× 𝑒
𝑖𝜔𝑡 sin 𝜃 + c.c.

(B.1e)

𝑤
𝑎
= 𝐴𝜔(

𝑅

𝑘
𝑎
𝑟
)

2

{𝑐
2
[𝑅 sin(

𝑘
𝑎
𝑟

𝑅
) − 𝑘
𝑎
𝑟 cos(

𝑘
𝑎
𝑟

𝑅
)]

+𝑐
3
[𝑅 cos(

𝑘
𝑎
𝑟

𝑅
) + 𝑘
𝑎
𝑟 sin(

𝑘
𝑎
𝑟

𝑅
)]}

× 𝑒
𝑖𝜔𝑡 sin 𝜃 + c.c.,

(B.1f)

where the subscripts 𝑎 and V𝑠 denote the aqueous and the
vitreous substitute, respectively. Moreover, the constants 𝑐

1
,

𝑐
2
, and 𝑐

3
are determined by the boundary conditions and 𝑘

𝑎

and 𝑘V𝑠 are given by (A.5a) and (A.5b) using the viscosity of
the aqueous and the vitreous substitute, respectively.
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The wall shear stress on the equatorial plane is equal to

𝜏|
𝜃=𝜋/2

= 𝐴𝜇
𝑎
𝜔[(1 −

3

𝑘2
𝑎

) (𝑐
2
sin 𝑘
𝑎
+ 𝑐
3
cos 𝑘
𝑎
)

+
3

𝑘2
𝑎

(𝑐
2
cos 𝑘
𝑎
+ 𝑐
3
sin 𝑘
𝑎
)] 𝑒
𝑖𝜔𝑡

+ c.c.

(B.2)

C. Model 3

We now wish to study the stability of the interface between
the aqueous layer and the vitreous substitute. For simplicity
we assume that the thickness 𝑑 of the aqueous layer is much
smaller than the radius of the sphere𝑅 and, as a first approach
to the problem, we neglect the effect of wall curvature and
consider a two-dimensional problem in the (𝑥, 𝑦) plane
(see Figure 1(c)). Thus we consider two immiscible fluids
occupying the regions of space 0 ≤ 𝑦 < 𝑑 and 𝑦 > 𝑑,
respectively, with kinematic viscosities ]

𝑎
and ]V𝑠, and again

assume that the two fluids have the same density. The flow is
induced by periodicmotion of the rigid wall, located at 𝑦 = 0,
with amplitude 𝐴 and frequency 𝜔.

We work in terms of the following dimensionless vari-
ables (denoted by superscript stars):

(𝑥
∗
, 𝑦
∗
) =

(x,y)
𝑑

, u∗
𝑖
=
u
𝑖

𝑈
,

𝑝
∗

𝑖
=

𝑝
𝑖

𝜌
1
𝑈2

, 𝑡
∗
=
𝑈

𝑑
𝑡,

(C.1)

where 𝑈 is the maximum wall velocity and the subscript 𝑖
denotes either the aqueous (𝑖 = 𝑎) or the vitreous substitute
(𝑖 = V𝑠). By scaling the governing equations we introduce the
following dimensionless parameters:

𝑚 =
𝜇V𝑠

𝜇
𝑎

, (C.2a)

𝑅 =
𝑈𝑑

]
𝑎

, (C.2b)

𝑆 =
𝜎

𝜌𝑑𝑈2
, (C.2c)

𝜔
∗
=

𝑑

𝑈
𝜔, (C.2d)

where 𝑚 represents the ratio between the fluid kinematic
viscosities, 𝑅 is the Reynolds number of the flow (based on
the aqueous viscosity), 𝑆 is a dimensionless surface tension
(where 𝜎 is the dimensional surface tension on the interface),
and 𝜔

∗ is a dimensionless frequency.
We decompose the flow in a basic state and infinitesimally

small perturbation as follows:

u∗
𝑖
= U∗
𝑖
+ u∗
𝑖
, (C.3a)

𝑝
∗

𝑖
= 𝑃
∗

𝑖
+ 𝑝
∗

𝑖
, (C.3b)

where capital letters indicate the basic flow and small letters
with a bar refer to perturbation quantities.

The basic flow is unidirectional (in the 𝑥-direction) and
can be solved in closed form.Wedonot report the details here
for the sake of space.

For the stability analysis we consider two-dimensional
perturbations u∗ = (𝑢

∗

𝑥
, 𝑢
∗

𝑦
, 0). This allows us to introduce

the stream function 𝜓, defined as

𝑢
∗

𝑥𝑖
=
𝜕𝜓
𝑖

𝜕𝑦
, (C.4a)

𝑢
∗

𝑦𝑖
= −

𝜕𝜓
𝑖

𝜕𝑥
. (C.4b)

We adopt the quasi-steady approach; that is, we assume
that perturbations evolve on a time scale that is much smaller
than the characteristic time scale of the basic flow. This
implies that we study the stability of a “frozen” basic flow at
time 𝜏, with 0 ≤ 𝜏 < 2𝜋/𝜔. The suitability of this approach
can be verified a posteriori by checking the relativemagnitude
of the time scale of perturbations with respect to that of the
basic flow.

Taking advantage of the assumed infinite extension of
the domain in the 𝑥-direction we expand the unknowns in
Fourier modes as follows:

𝜓
𝑖
= 𝑒
𝑖𝛼(𝑥−Ω𝑡)

𝜓
𝑖
(𝑦, 𝜏) + c.c., (C.5)

where 𝛼 is the dimensionless wavenumber andΩ denotes the
complex eigenvalue of the system, whose real part represents
the phase speed of perturbations and whose imaginary
part represents the growth rate. Moreover, let 𝜂

∗ denote
the dimensionless perturbation of the interface position,
measured in units of 𝑑. We impose that

𝜂
∗
= 𝜂 (𝑡) 𝑒

𝑖𝛼(𝑥−Ω𝑡)
+ c.c. (C.6)

The final system of the equations for the perturbation
evolution is given by two Orr-Sommerfeld equations, one
for each fluid, together with suitable boundary conditions
[31]. The system can be written as a generalized eigenvalue
problem:

Av = ΩBv. (C.7)

If Im(Ω) < 0, the system is linearly stable; if, on the other
hand, Im(Ω) > 0, then the system is linearly unstable. Zero
values of the growth rate separate the space into stable and
unstable subspaces.The system (C.7) is discretized employing
a second-order finite-difference scheme with uniform spatial
step and is efficiently solved using an inverse iteration
algorithm.
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