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Cytokines are soluble and membrane-bound factors that dictate immune responses.
Dogmatically, cytokines are divided into families that promote type 1 cell-mediated
immune responses (e.g., IL-12) or type 2 humoral responses (e.g., IL-4), each capable
of antagonizing the opposing family of cytokines. The discovery of additional families of
cytokines (e.g., IL-17) has added complexity to this model, but it was the realization that
immune responses frequently comprise mixtures of different types of cytokines that
dismantled this black-and-white paradigm. In some cases, one type of response may
dominate these mixed milieus in disease pathogenesis and thereby present a clear
therapeutic target. Alternatively, synergistic or blended cytokine responses may
obfuscate the origins of disease and perplex clinical decision making. Most immune
cells express receptors for many types of cytokines and can mediate a myriad of functions
important for tolerance, immunity, tissue damage, and repair. In this review, we will
describe the unconventional effects of a variety of cytokines on the activity of a prototypical
type 1 effector, the natural killer (NK) cell, and discuss how this may impact the
contributions of these cells to health and disease.
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INTRODUCTION

Cytokines serve as messengers of the immune system, dictating the functional differentiation of
immune cells to suit the nature of threats to health (1). The dichotomy between cell-mediated
responses against intracellular viruses or bacteria and the need for humoral responses against
parasitic infection is dictated by the cytokine milieu (2). Within these dual arms of the immune
response, cytokines fine tune the immune response, for example, by determining isotype class
switching (3). The capacity of innate immune cells to recruit effector cells, process and present
Abbreviations: ADAM, A disintegrin and metalloprotease; COPD, Chronic obstructive pulmonary disorder; GM-CSF,
Granulocyte macrophage colony stimulating factor; IFN, Interferon; IL, Interleukin; ILC, innate lymphoid cells; MAPK,
Mitogen-activated protein kinase; NK cells, Natural killer cells; STAT, Signal transducer and activator of transcription; RSV,
Respiratory Syncytial Virus; TGF, Tumor transforming growth factor; TNF, Tumor Necrosis Factor; VEGF, Vascular
endothelial growth factor.
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antigens, trigger tolerogenic responses, and promote tissue repair
are all determined by and executed via release of cytokines (4, 5).

The orthodox dogma of cytokine responses suggests a
dichotomy between type 1 and type 2 cytokines, meaning that
type 1 responses will counteract type 2 responses and vice versa
(6, 7). While the prototypical type 1 cytokine IL-12 promotes
IFN-g expression, the type 2 cytokine IL-4 can suppress this
response (7). Nevertheless, IL-4 can paradoxically promote IFN-
g expression and memory responses in CD8 cytotoxic T and NK
cells (8, 9). In this review, we aim to elucidate some of the
complexity of cytokine signaling and its function during
viral infection.

Natural killer (NK) cells are part of the innate immune
compartment with a fundamental role in combating viral
infections and eliminating tumor cells (10). NK cells kill
targets rapidly via release of perforin- and granzyme-
containing cytolytic granules, or more slowly via death
receptor (e.g. FasL) interactions with target cells. At various
points during the immune response, NK cells are vital sources of
cytokines (11). These include the hallmark cytokine interferon-
gamma (IFN-g) as well as pro-inflammatory mediators like
tumor necrosis factor alpha (TNF-a) and granulocyte-
macrophage colony-stimulating factor (GM-CSF) (12, 13).
There is also evidence that NK cells can produce type 2 (e.g.
IL-5, IL-13) and immunoregulatory cytokines (e.g. IL-10, TGF-
b). This variety of functional contributions of NK cells is likely
dictated by the cytokine milieu to which they are exposed during
an immune response. How cells translate signals from this
complex cytokine milieu into concerted functional activity
remains incompletely defined. The following review aims to
shed light on NK-cell responses to unconventional cytokines.
Frontiers in Immunology | www.frontiersin.org 2
THE IL-12 FAMILY OF CYTOKINES

NK cells are highly responsive to IL-12 which triggers IFN-g
production via STAT4 phosphorylation and Tbet transcriptional
activity (14, 15). Bioactive IL-12 is heterodimer of the IL-12p40
and IL-12p35 subunits. The role of IL-12 in NK-cell biology has
been extensively reviewed elsewhere (11), and will not be
discussed in detail in this review.

IL-23 is a closely related IL-12 family member; it is a
heterodimer of IL-12p40 and IL-12p19 subunits. IL-23 is
released from activated myeloid cells, including dendritic cells
and macrophages, which are distributed in peripheral tissues
such as skin, lung and intestine (16). IL-23 shares a resemblance
with IL-12 in its ability to induce the release of IFN-g from NK
cells. In addition to phosphorylation of STAT4, IL-23 also
triggers phosphorylation of STAT3 (16). However, in mucosal
tissues IL-23 mediates a wide variety of immune responses (17).
In T cells, it supports the proliferation and activation of Th17
cells, which express IL-17 and IL-22 (18). IL-23 plays a similar
role in triggering production of these cytokines by group 3 innate
lymphoid cells (ILC3) (19).

IL-17 and IL-22 play key roles in mucosal immunology (16).
In humans, CD56bright NK cells exhibit increased expression

of IL-23R in comparison to CD56dim NK cells. Consistent with
this expression, CD56bright compared to CD56dim NK cells
showed superior ability to express IFN-g in response to IL-23
stimulation (20). In addition, IL-23 is critical during T. gondii
infection for promoting NK cell activation and expression of
IFN-g (Figure 1A). With the growing appreciation of IL-23 role
in mucosal and autoimmune pathologies (21, 22), additional
studies are required to fully understand the role of IL-23 in NK-
cell responses.
A B C

FIGURE 1 | Additional members of IL-12 family cytokines modulate NK-cell responses. Activation of NK cells are mediated by: (A) IL-23 or (B) IL-27 through
activation of STAT4 and Tbet which resulted in IFN-g expression. (C) An opposite effect to the above-mentioned cytokines was documented by IL-35 which also
utilize STA4 and promote the expression of IL-10.
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Interleukin-27 (IL-27) is a heterodimeric cytokine in the IL-
12 family comprised of Epstein-Barr virus–induced gene 3
(EBI3) and IL-27p28. The IL-27 signal is transduced by its
receptor which contains gp130 and WSX1 subunits (23).
Macrophages, microglia, dendritic cells, and inflammatory
monocytes are the main sources of IL-27. Endothelial and
epithelial cells also express IL-27 (23). The role of IL-27 in T
cell biology is diverse; initial studies showed that IL-27 mediates
the expression of Tbet, STAT4 and IFN-g in naïve T cells (23,
24). However, recent studies have demonstrated that IL-27 can
also suppress Th1- inflammatory responses by promoting the
survival and proliferation of T regulatory cells and enhancing
their ability to express IL-10 (25, 26). In a similar fashion to its
effect on Th1 cells, IL-27 is suggested to enhance the
inflammatory responses of NK cells. Indeed, human NK cells
stimulated with IL-27 showed diverse cytokine release which
included increased release of IL-10 and IFN-g (27). Moreover,
IL-27 stimulated NK cells were shown to have increased cytolytic
function associated with elevated expression of NKp46 and Tbet
(28). Combined Stimulation of NK cells with IL-27 in
combination with IL-18 or IL-15 enhanced the effects of IL-27
on NK cell activity (28, 29). In vivo, IL-27 mediates early NK cells
responses during viral infection (30, 31). In an experimental
model of influenza, deletion of IL-27R or EBI3 resulted in
reduced expression of IFN-g and repressed degranulation
responses by NK cells (31). The reduced response of NK cells
was linked to increased susceptibility to viral infection.
Interestingly and different from human NK cells, in vitro
stimulation of mouse NK cells with added IL-27 did not
enhance IFN-g expression in IL-12 and IL-18 stimulated NK
cells (31). Nevertheless, IL-27 increased the expression of IFN-g
when murine NK cells were stimulated via NKG2D (31).

In addition to these reported stimulatory effects, IL-27 can
also suppress NK-cell inflammatory responses via an indirect
mechanism. The interaction of human NK cells with IL-27-
stimulated monocytes resulted in reduced expression of IFN-g
but did not alter NK-cell cytotoxic responses (32). The inhibition
of IFN-g release was attributed to increased expression of human
leukocyte antigen class I histocompatibility antigen, alpha chain
E (HLA-E), which was demonstrated to directly interact with NK
cells (33).

The above-mentioned studies demonstrate that on one hand,
IL-27 possesses a similar function as IL-12 and can promote NK
cells activation and assist in anti-microbial responses (Figure
1B). On the other hand, indirectly, IL-27 can downregulate NK-
cell responses. Thus, additional studies should clarify under
which circumstances does IL-27 activate or suppress NK-
cell responses.

IL-35 is another member of the IL-12 family, with structural
similarity to IL-27 and IL-23. IL-35 is a heterodimeric cytokine
comprised of the IL-12p35 and EBI3 subunits (34). Several T-cell
subsets, but most prominently regulatory T cells, express IL-35
(35), which is suggested to suppress inflammatory responses in a
variety of cells (34).

In response to various stimuli, mouse NK cells were
demonstrated to express EBI3 and IL-35, but not p28, an IL-27
Frontiers in Immunology | www.frontiersin.org 3
subunit (36). A similar phenomenon was observed in the
experimental model of murine cytomegalovirus (MCMV). Post
infection NK cells were shown to express EBI3 and subunit p35
but not p28 which is associated with IL-27. Moreover, NK cells
derived from EBI3-deficient mice, expressed a lesser amount of
IL-10 and showed reduced viral latency (36). Although IL-35
appears to be an immunosuppressive agent, reduced activation of
cytotoxic cells such as NK cells and CD8 T cells might be
beneficial to the host by limiting tissue injury (37, 38) (Figure 1C).
IL-1 FAMILY OF CYTOKINES

IL-18 is a member of the type 1 cytokine family, formerly known
as interferon-g-inducing factor. Indeed, the combination of IL-18
with IL-12 provokes strong IFN-g expression in both human and
murine NK cells (13). IL-18 activates the NF-kB and p38 MAPK
pathways, and the latter enhances the stability of IFN-g
transcripts (39, 40). The combined stimulation of IL-18 and
IL-12 also mediates release of additional cytokines such as GM-
CSF and TNF-a (13). The role of IL-18 in anti-viral responses in
vivo includes support for NK cell expansion and activation
(41–44).

IL-33 is one of the most recently discovered members of the
IL-1 family (45, 46). Previous studies showed that IL-33 has dual
functionality. Intracellularly, IL-33 was demonstrated to interact
with chromatin with unknown consequences for cellular biology
(47). Extracellularly, IL-33 promotes inflammatory responses as
a damage associated molecule, released passively from cells after
injury (45). Early studies showed the ability of IL-33 to mediate
type 2 responses in basophils, T cells, mast cells and ILC2 cells
(45). However, IL-33 also mediated type 1 responses in pre-
stimulated macrophages, which resulted in increased expression
of TNF-a and IL-1b (48–50). During viral infection, IL-33 is vital
for Th1 responses and infection resolution (51). In mouse NK
cells, IL-33 enhanced the release of IFN-g in IL-12 stimulated NK
cells (52). In addition, in an experimental model which mimics
the injurious effect of smoking damage, IL-33 is released from
lung tissue and couples with inflammatory signals caused by
influenza virus infection to provoke greater IFN-g expression
than seen in the absence of smoke (53). In addition to its direct
effects on NK cells, IL-33 can also enhance the expression of IL-
12p40 and thereby indirectly enhance IFN-g production by NK
cells (53). Recent reports showed that IFN-gover-production
mediates airway hypersensitivity (AHR) and inflammation
which is not affiliated with classic AHR inducers such as
neutrophils (54). Smokers and patients with chronic
obstructive pulmonary disorder (COPD) or severe asthma
exhibit increased susceptibility to respiratory viral infections
such as influenza virus, respiratory syncytial virus, and
rhinovirus (55–60).

Human NK cells showed a similar response to IL-33 (Figure
2A). IL-33 did mediate the release of IFN-g, however, when
combined with IL-12 or IL-23 it mediated significant increase of
IFN-g expression (61). In a similar fashion to IL-18, IL-33
combined with IL-12 mediated the release of inflammatory
March 2021 | Volume 12 | Article 645850
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cytokines such as TNF-a and GM-CSF (62). Mechanistically, IL-
33 enhanced the expression of NK-cell inflammatory cytokines
via p38 MAPK signaling pathway and stabilization of IFNG
transcripts (52, 62). IL-33 also induced activation of a disintegrin
and metalloproteinase (ADAM)-17, which enhances the release
of TNF-a from NK cells (62).

Of note, IL-33 was suggested to have a similar role to IL-18 in
the context of modulating NK-cell memory responses. In an
experimental model of MCMV infection, an increase in the
expression of IL-33 was detected three days after infection
(63). Furthermore, the IL-33 receptor ST2 (Il1rl1) was essential
for proliferation of Ly49H+ memory NK cells and their ability to
eliminate virus-infected cells (63).

In a similar fashion to IL-18 and IL-33, IL-1 also enhances
IFN-g expression in IL-12 stimulated NK cells (64). In humans,
CD56bright NK cells exhibit greater sensitivity to IL-1b than
CD56dim NK cells (65). Earlier studies showed that IL-1b can
stimulate NK cell cytotoxicity (66).

In contrast to the rest of the IL-1 family, the newly discovered
IL-37 predominately suppresses innate inflammatory responses
(67–69). In hepatocellular carcinoma patients, increased
expression of IL-37 within the tumor environment was
resulted in increased infiltration of CD57+ NK cells into the
tumor as well as a better prognosis (70). A possible explanation
of improved NK cell function in the presence of IL-37 could be
drawn from Qi et al. (2018). In an experimental model of
influenza virus infection, anti-viral treatment combined with
IL-37 increased the expression of IL-18 receptor (71), where IL-
18 can promote NK-cell cytotoxic responses which in turn
contribute to viral clearance (12). Moreover, IL-37 suppresses
p38 MAPK signaling pathway (71), which was demonstrated to
activate ADAM17 (72). In human NK cells, ADAM17 was
demonstrated to shed CD16 from cell membrane (73), thus we
can speculate that IL-37 diversely downregulates ADAM17
Frontiers in Immunology | www.frontiersin.org 4
activation and TNF-a release from NK cells, while assisting in
the preservation of CD16 expression, a molecule that plays a key
role in ADCC. Thus, it appears that although IL-37 is
characterized as an anti-inflammatory cytokine, it promotes
NK cells functionality in various pathologies (Figure 2B).
INTERFERONS AND IL-15

IL-15 is a common-g chain cytokine which, unlike other
cytokines, can activate NK cells as a trans- or cis-presented
membrane bound cytokine (74). IL-15 plays a pivotal role in NK-
cell biology (1). The interaction of IL-15 with its receptor via
STAT5 phosphorylation mediates the proliferation,
differentiation, survival, and activation of NK cells (75).
Although IL-15 can activate NK cells on its own, the
combination of IL-15 with cytokines such as IL-12, IL-18 or
their combination was shown to increase the repertoire of
released cytokines and was also demonstrated to mediate
cytokine induced memory NK-cell responses (76).

In the context of viral infection, IL-15 is a key mediator in NK
cell control of viral replication via cytotoxicity (77). Interestingly,
IL-15 serum levels were shown to be associated with pediatric
viral bronchiolitis severity, which might indicate that NK cells
activated by IL-15 could play a harmful role in the course of viral
infection (77).

In a similar fashion to IL-15, type I interferons IFN-a and
IFN-b also play key roles in NK cell anti-viral responses. In the
absence of type I interferons receptor or its key signaling
molecule STAT1, NK cells showed impairment in survival,
proliferation and reduced capacity to clear virally infected cells
(78). Nonetheless, continuous stimulation with IFN-a or with
IL-15 were shown to promote NK-cell exhaustion which resulted
in reduced IFN-g expression and cytotoxicity (78–80).

The IFN family also includes IL-28a/IL-28a and IL-29. The
immune responses of these type III interferons are similar to
those induced by type I interferons (81). These cytokines signal
via IL-28R and IL-10R2 (81). In regard to NK cell responses, type
III interferons were shown to activate NK-cell responses in the
course of influenza infection and bacterial infection model (82).
In the absence of IL-28R, a reduced response of NK cells was
detected (83).
TYPE 2 CYTOKINES

IL-4 is a common-g chain cytokine, and it serves as a central
cytokine in shaping type 2 responses (84–86). In T cells, it was
shown to mediate the differentiation of Naïve T cells to Th2 via
signaling activation signal (STAT) 6 and GATA3 (87, 88). In
response to IL-4, Th2 cells release additional type 2 cytokines
such as IL-13, IL-5 and IL-4 (89, 90). Similarly, IL-4 was shown
to attract and activate ILC 2 which resulted in additional release
and expression of type 2 cytokines (91). Thus, from the orthodox
March 2021 | Volume 12 | Article 64585
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FIGURE 2 | IL-1 family cytokines regulate NK-cell responses. The combined
stimulation of IL-12 stimulated NK cell with: (A) IL-33 mediates the activation
of p38 pathway which resulted in enhanced IFN-g and TNF-a expression.
(B) In contrast, IL-37 was shown to inhibit p38 MAPK signaling pathway
which resulted in reduced IFN-g expression.
0
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perspective, IL-4 appears to strictly activate Th2 related
responses important in humoral immunity. Yet, IL-4 is also
vital for the development of memory CD8 T cells (92, 93) and for
enhanced expression of IFN-g (94).

In vivo, mouse NK cells respond to IL-4 administration with an
increased expression of IFN-g several hours after IL-4
administration. The enhanced expression of IFN-g levels was
related to the expression of STAT6 but not STAT4 (9). In a
different study, overexpression of IL-4 by hydrodynamic injection
primed splenic and liver NK cells to respond to subsequent
stimulation with IL-12 and IL-21, resulting in increased
expression of IFN-g, IL-10 and GMCSF. In addition, NK cells
derived from mice that overexpressed IL-4 showed increased levels
of granzyme B and elevated cytotoxicity towards YAC-1 cells.
Interestingly, overexpression of IL-13, which share similar
responses with IL-4, in a similar experimental setting did not
show similar results that were induced by IL-4 (95).

In a similar manner to type 1 cytokines, IL-4 was shown to
promote increased expression of IFN-g when it was combined
with type 1 cytokines such as IL-12 and IL-2 (96). In this context,
the IFN-g stimulating capacity of IL-4 was independent of
STAT6. The ability of IL-4 to support the activation of STAT5
phosphorylation likely mediates IFN-g expression (97).

In contrast to the aforementioned effects of IL-4 as a NK-cell
stimulant, pretreatment of human NK cells with IL-4 prior to
stimulation viaNKp46 did not enhance cytokine expression (98).
Yet, IL-4 stimulation did dampen cytolytic responses of NK cells
against targets lacking MHC expression. Lastly, pretreatment of
human NK cells with IL-4 prevented their ability to interact with
vascular endothelium; this phenomenon is suggested to limit the
ability to of NK cells to recruit immune cells upon interaction
with endothelial cells (99). The effects of IL-4 on NK cell
responses are summarized in Figures 3A, B.
Frontiers in Immunology | www.frontiersin.org 5
Of note, a study compared the effect of IL-13 versus IL-4
stimulation on human NK cells. Cells that were stimulated in the
presence of IL-13 in comparison to IL-4, showed increased
released of IFN-g (100). No similar effect was detected in
model animal, however, the above-mentioned study raised the
question whether IL-4 and IL-13 activate similar signaling
pathways, since both of these cytokines show a redundant role
in pathologies such as asthma and atopic dermatitis.

IL-6 is a pluripotent cytokine that contributes to transcriptional
programs for differentiation of regulatory, follicular and IL-17-
producing subsets of CD4 T cells (101). Moreover, IL-6 activates a
variety of inflammatory responses in hematopoietic cells (102). IL-6
was shown to downregulate IFN-g expression and cytotoxic responses
in CD8 T and NK cells (103, 104). Specifically, human NK cells
stimulated in the presence of IL-6 were shown to have reduced
expression of perforin and granzyme B, which resulted in reduced
cytotoxicity (104). Validation to these findings was observed during
the recent COVID-19 pandemic, in which NK cells derived from
severe COVID-19 patients, compared to healthy patients showed
reduced expression of granzyme A that was associated with IL-6
serum levels, in addition to reduced perforin expression (105).

Mechanistically, IL-6 mediates the phosphorylation of JAK3/
STAT3 and the upregulation of suppressor of cytokine signaling
3 (SOCS3) (103). In CD8 T cells, SOCS3 activation was shown to
downregulate STAT4 phosphorylation which mediates effector
functions (94). Moreover, IL-6 presence was shown to mediate
programmed death-ligand (PD-L)1 expression on NK cells, a
molecule which is associated with reduced cytotoxicity of NK
cells (106). Inhibition of JAK3 or IL-6 blockade (tocilizumab)
revoked the suppressive effect of IL-6 and improved NK-cell
cytotoxicity. Understanding the kinetics of IL-6 and its full effect
of NK cells will provide additional lines of treatment in acute life-
threatening viral infections (Figure 3C).
A B C

FIGURE 3 | Type 2 cytokines show diverse effect of NK cells activation. Two outcomes in response to IL-4, (A) Alone or combines with 1 cytokines IL-4 mediates
NK cells activation which resulted in increased expression of IFN-g, potentially via STAT5 and STAT4. (B) Suppressive effect of IL-4 resulted in reduced IFN-g and
granzyme B expression suggested by the inhibition of Tbet and STAT4 signaling pathway. (C) IL-6 shows similar suppressive effect via STAT3 signaling pathway.
March 2021 | Volume 12 | Article 645850
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IMMUNOREGULATORY CYTOKINES

IL-10 and TGF-b
Transforming growth factor beta (TGF-b) is a central cytokine in
T cell biology. In combination with IL-6, TGF-b activates the
transcriptional program for T regulatory and Th17 cells (107).
Studies aimed to understand the role of TGF-b in ILC biology
showed that TGF-b is also essential for intestinal ILC3 fate and
function (108). The interaction of TGF-b with its receptor
mediates its signal to mothers against decapentaplegic homolog
(SMAD)2 and SMAD3 which in turn promote SMAD4
translocation into the nucleus (109). In the context of cancer
immunology, TGF-b was shown to downregulate NK-cell
cytotoxic responses in addition to its ability to mediate the
release of tumor supporting cytokines such as vascular
endothelial growth factor (VEGF)-A (110, 111). Similar results
were depicted in human NK cells study, in which the addition of
TGF-b to IL-2/15 stimulated NK cells resulted in reduced IFN-g,
granzyme B and CD107a expression, all of which were attributed
to the metabolic changes that TGF-b initiates in NK cells. All
those effects were reversed when TGF-b receptor was inhibited
or knocked down (111, 112).

NK cells are also known to be activated by antibody-
dependent cell-mediated cytotoxicity (ADCC) via the
interaction of NK cells with antibody-coated target via CD16
(113). In a study performed by Trotta et al., TGF-b was shown to
downregulate NK cell activation mediated by CD16 ligation
(114). The authors suggested that the inhibitory effect of NK-
cell ADCC responses is mediated by SMAD3 which is
downstream to TGF-b interaction with its receptor (114).

Thus, it appears that TGF-b possesses the potential of
downregulating NK-cell responses. Indeed, high levels of TGF-
b were shown in chronic Hepatitis B (HBV) patients. Sun et al.
showed NK cells dysfunction and reduced activation markers
such as NKG2D and 2B4 were negatively associated with TGF-b
levels in HBV patients. The blockade of TGF-b restored the
inhibitory effect of TGF-b on NK-cell activation markers and
responses (115). TGF-b was shown to protect the host survival in
the presence of lymphocytic choriomeningitis virus (LCMV)
infection by modulating CD8 T cell responses (116). In the
specific case of HBV, although NK cells were shown to assist in
viral clearance, they are also suggested to mediate liver injury
(117). In this regard, high expression level of TGF-b was
reported in COVID-19 patients, and thus it is enticing to
examine whether those high levels of TGF-b are harmful or
protective. Additional studies will be needed to determine the full
spectrum of TGF-b in the context of viral responses.

Interestingly, an unorthodox role of SMAD4 was shown in
activating the NK-cell transcriptional program. Specific deletion
of SMAD4 (Smad4 f/fNcr1iCre) resulted in increased frequency of
ILC1 at the expense of NK cells. Moreover, Smad4 f/fNcr1iCre

compared to Smad4 f/f mice showed reduced ability to clear
tumor cells and clear virally infected cells (114). The authors
associated the important role of SMAD4 in NK cells to TGF-b
signaling which was not dependent on TGF-b receptor
(114, 118).
Frontiers in Immunology | www.frontiersin.org 6
A study led by Wang et al. showed that SMAD4 is critical for
NK cells homeostasis and maturation, however, the crucial effect
of SMAD4 was independent to the role of TGF-b receptor 2
(119). The authors suggested that SMAD4 is mediating its non-
canonical functions in cooperation with JunB, as both SMAD4
and JunB were shown to be in interaction with the promoter
region of granzyme B (GZMB), which mediates NK cells
cytolytic responses (119).

Another cytokine with inhibitory effects is the pleiotropic
cytokine IL-10. Numerous studies documented the suppressive
effect of IL-10 on inflammatory responses (120). In animal
models, IL-10 was shown to modulate T cell responses and
its deficiency was resulted in dysregulated T cell responses
which led to autoimmunity and intestinal inflammation,
demonstrating its critical role in T cell biology (121, 122). On
the other hand, IL-10 was shown to moderate harmful
inflammatory responses (123). In LCMV infected mice, IL-10
was demonstrated to downregulate the excessive innate and
adaptive proinflammatory responses, and thus provides tissue
protection at a cost of viral persistence (124).

The specific effect of IL-10 on NK-cell responses shows
contradicting evidence. In a similar fashion to the role of IL-10
in T cells, several studies showed that IL-10 suppresses the
inflammatory and cytotoxic responses in NK cells. The
suppressive role of IL-10 on NK cells effector functions was
demonstrated both directly and indirectly. Directly, T regulatory
cells were shown to release IL-10 and as a result reduced NK cell
cytotoxicity and IFN-g expression (125). Later it has been
demonstrated that IL-10 can downregulate NKG2D expression
which mediates NK-cell effector functions (126). Indirectly, viral
infections such as MCVM or LCMV were demonstrated to
elevate IL-10 expression in myeloid cells like dendritic cells
and monocytes (124, 127). As an example, in the experimental
model of MCMV, IL-10 prevented NK-cell mediated licensing of
dendritic cells, which resulted in reduced CD4 T cell activation
and reduced viral clearance (127). Interestingly, NK cells
exposure to IL-10 in combination with IL-15, mediated IL-10
release and as a result mediated infection persistence (128).

Surprisingly, IL-10 was also shown to assist in NK-cell
functionality and survival during acute MCMV infection. In
IL-10Rb deficient mice, reduced frequency of NK cells in the
lungs and spleen was observed, which was attributed to elevated
apoptosis. Here, IL-10 was shown to prevent NK cell apoptosis
which is mediated by acute MCMV infection (129). Moreover,
during human HCMV infection, a release of cmvIL‐10, a
virokine homologous to human IL-10, was detected. NK cells
stimulated with cmvIL‐10 were shown to have induced NK-cell
cytotoxic responses and activation receptors expression. cmvIL‐
10 was shown to mediate its effect with IL-10a receptor (130).

It appears that both TGF-b and IL-10 play a canonical role in
suppressing NK-cell effector responses in order to protect the
host from damaging inflammation. However, each of those
cytokines was shown to have a non-canonical pathway in
which they promote the survival and activation of NK cells.
Further studies will clarify the intriguing role of both TGF-b and
IL-10 regarding NK cells immune responses (Figures 4 and 5).
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Mixed Cytokine Milieus
The majority of pathologies are categorized as type 1, 2 or 3 diseases
and patients are being treated according to the dominant phenotype
of the disease (131–133). It appears that numerous pathologies
which progress from an acute form, transition into a chronic stage
and have the potential to aggravate and develop into subsequent
pathologies, are characterized by a complex inflammatory milieu.
For example, in COPD caused by patient’s smoking and additional
environmental factors, the lung tissue is going through injury and
remodeling, processes which are characterized by continuous
release of IL-33 and IL-4 and TGF-b respectively (134–136).
COPD patients suffer from malfunctioning epithelial tissue and
thus, are more susceptible to microbial infections (137, 138). COPD
exacerbation is mediated by respiratory microbial insults which
modulate the release of cytokines such as IL-1b, IL-12 (139). COPD
provides an example for a pathology which contains a mixed
inflammatory environment.

Another example is atopic dermatitis (AD), which presents a
diversity of phenotypes (140, 141). In atopic patients, the acute
phase is mediated by type 2 cytokines such as IL-4 and IL-13 and
Frontiers in Immunology | www.frontiersin.org 7
leads to skin barrier impairment (141, 142). The modulation of the
skin tissue by the acute phase of AD promotes tissue injury and
mediates the release of IL-33 and microbes’ infiltration (e.g.,
staphylococcus aureus) resulting in release of type 1 cytokines
such as IL-12 (143). Thus, the immune system of AD patients is
exposed to a complex inflammatory milieu which dictates
dysfunctional immune responses, suggested to lead to food
allergy, asthma or chronic rhinitis (144). Indeed, in a subsequent
disease to AD, asthma (145), which is characterized by mixed
inflammatory milieu, NK cells demonstrated a dysregulated
phenotype (146). NK cells derived from asthmatic compared to
normal patients demonstrated reduced cytotoxicity while showing
an increased expression of inflammatory cytokines. dysregulated
phenotype, on one hand reduced cytotoxicity while expressing high
levels of inflammatory cytokine, a phenomenon that might provide
an explanation to the increased susceptibility of asthma patients to
viral infection (147), and thus pose NK cells as having a pivotal role
in mixed cytokines pathologies. The next section will bring several
examples of how NK cells function in a complex inflammatory
milieu (Figure 6).

NK cells were shown to have a crucial role in the clearance of RSV
infection (148). A recent study highlighted the importance of NK cells
in disease resolution in the presence of neutralizing antibodies and by
performing ADCC (149). However, in the absence of neutralizing
antibodies, RSV triggers NK cells inflammatory responses via IL-12,
which in turnmediate the release of IFN-g (150). Excessive expression
of IFN-g was shown to mediate lung injury and inhibit efficient
clearance of RSV (151, 152). RSV was demonstrated to trigger the
expression of both type 1 (e.g. IL-12) and type 2 (e.g. IL-4) cytokines
(153). Enhanced expression of IL-4 in experimental RSV infection
enhanced disease phenotype with increased IFN-g expression but
with reduced cytotoxicity (154).

The harmful effect of RSV is not limited to neonates, which
lack the humoral response towards RSV. Studies have shown that
RSV infection promotes the exacerbation of COPD and asthma
(155, 156), which suggests that NK cells fail to perform efficient
cytotoxic responses while maintaining high expression of IFN-g
and additional inflammatory cytokines, and thus contribute to
tissue injury. However, the specific molecular mechanism which
mediates those responses is in need to be clarified.

In contrast to RSV infection, Influenza infection was shown
to be controlled on several levels; the activation receptors NKp46
and NKp44 were demonstrated to recognize viral hemagglutinin
(HA) which results in viral neutralization (157). In addition, NK
cells were shown to clear virally infected cells by cytotoxic
responses. As previously mentioned, and as demonstrated by
other studies, IL-27 meditates NK-cell viral clearance of
influenza (158). In contrast, influenza infection in mice
exposed to cigarette smoke, led to increased expression of IL-
33 and hyper-activated the NK cells which contributed to
excessive tissue damage (53). In addition, IL-4 was shown to
reduce the cellular cytotoxicity in response to influenza infection
(159), however additional studies are needed to elucidate the role
of IL-4 on NK cell responses in the course of influenza infection.

Although the role of TGF-b during respiratory viral infection
is suggested to be inhibitory by promoting viral evasion on one
FIGURE 4 | Conventional and unconventional effect of TGF-b on NK cells
activation. TGF-b suppress NK cells activation by reducing the expression of
CD16, NKG2D, IFN-g and granzyme B via the canonical pathway by SMAD2/3.
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FIGURE 6 | NK cells are exposed to complex inflammatory milieu. Various insults can provide innate immune responses which resulted in release of type 1 and type
2 cytokines which resulted in cytokines such as. IFN-g, TNF-a or IL-10 which could assist in combating pathogens but can also mediate tissue injury.
A B C

FIGURE 5 | NK cells show diversified responses in the presence of IL-10. (A) Alone, reduced expression of IFN-g and granzyme B, in addition to its ability to
prevent apoptosis via STAT3 signaling pathway. (B) In combination with IL-15, increased expression of IL-10. (C) The virokine cmvIL-10 mediates NK cells activation
which resulted in enhanced IFN-g expression.
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hand (160), while on the other hand impairing NK cells
responses, an interesting beneficiary effect for the host was
observed (161). In an experimental model of asthma, TGF-b
was shown to downregulate NK-cell responses during influenza
infection which resulted in reduced tissue injury (161).
Additional studies should be conducted to examine the
beneficial and harmful effects of TGF-b in the presence of
respiratory viral infections, and at which time points post
infection it can play each of the above-mentioned roles.

In summary, it appears that respiratory viral infections might
take advantage of a situation of a mixed inflammatory milieu. In
this type of environment, NK cells were shown to have reduced
cytotoxic responses, however, when examined in the presence of
non-type 1 cytokines, NK cells have the potential to increase the
release of IFN-g as well as additional cytokines, which in turn
might enhance tissue damage or recovery from the disease.
CONCLUDING REMARKS

Conventional rationale will suggest that type 2 cytokines (e.g., IL-
33, IL-4) should counteract type 1 (e.g. IL-12) responses, and
thus, NK cells should not be activated in the presence of type 2
cytokines. However, in the present review there are evidences
which show unorthodox responses of NK cells to non-type 1
cytokines. In fact, in the majority of the discussed cases, NK cells
were shown to express the NK-cell hallmark cytokine IFN-g, in
response to those cytokines alone, or in combination with type 1
cytokines such as IL-12 (11–13).

The common approach to research pathologies is to focus on
one molecule, receptor, signaling pathway in one or several
disease models. However, pathologies such as asthma, COPD,
atopic dermatitis and even the 2020 pandemic COVID-19 are
characterized by a heterogenous inflammatory environment
which contains diversity of cytokines (143, 162–165), and
dictates NK-cell immune responses. For example, according to
Frontiers in Immunology | www.frontiersin.org 9
the conservative cytokine response, NK-cell responses should be
suppressed in conditions such as asthma or smoking, however,
surprisingly it appears that in the presence of a mixed
inflammatory environment NK cells fail to perform cytotoxic
cell death, but remain fantastic cytokine producers, which results
in exacerbated conditions (146).

A mixed inflammatory milieu is not limited to pathological
conditions; at homeostasis, NK cells which are distributed in the
blood as well as in tissues, are exposed to tissue remodeling,
turnover and injury, all are mediated by the release of
heterogenous cytokines which should be assumed to modulate
NK cell responses. However, how NK cells function, express
cytokines and which cellular or molecular mechanisms govern
those responses, needs additional clarification.

Enhanced understanding of how complex inflammatory
environments affect NK cells will assist us in developing and
utilizing therapeutic approaches, which will modulate NK cells
responses in a variety of pathologies in which NK cells play
significant roles.
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