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Abstract: Sustainable development involves the usage of alternative sustainable materials in order
to sustain the excessive depletion of natural resources. Plant fibers, as a “green” material, are
progressively gaining the attention of various researchers in the field of construction for their potential
use in composites for stepping towards sustainable development. This study aims to provide
a scientometric review of the summarized background of plant fibers and their applications as
construction and building materials. Studies from the past two decades are summarized. Quantitative
assessment of research progress is made by using connections and maps between bibliometric data
that are compiled for the analysis of plant fibers using Scopus. Data refinement techniques are also
used. Plant fibers are potentially used to enhance the mechanical properties of a composite. It is
revealed from the literature that plant-fiber-reinforced composites have comparable properties in
comparison to composites reinforced with artificial/steel fibers for civil engineering applications,
such as construction materials, bridge piers, canal linings, soil reinforcement, pavements, acoustic
treatment, insulation materials, etc. However, the biodegradable nature of plant fibers is still a
hindrance to their application as a structural material. For this purpose, different surface and
chemical treatment methods have been proposed in past studies to improve their durability. It can be
surmised from the gathered data that the compressive and flexural strengths of plant-fiber-reinforced
cementitious composites are increased by up to 43% and 67%, respectively, with respect to a reference
composite. In the literature, alkaline treatment has been reported as an effective and economical
method for treating plant fibers. Environmental degradation due to excessive consumption of natural
resources and fossil fuels for the construction industry, along with the burning of waste plant fibers,
can be reduced by incorporating said fibers in cementitious composites to reduce landfill pollution
and, ultimately, achieve sustainable development.

Keywords: sustainable materials; plant fibers; green materials; scientometric analysis; construction
materials’ applications

1. Introduction

The methodology of reduction in the environmental impact of any product is es-
sentially the reconsideration of said impact throughout the whole life cycle, considering
factors [1] such as the (1) production method, (2) development method, (3) packaging, (4)
preservation, (5) usage, and (6) disposal and/or recycling. Potential retaliation from the
customers may be faced by the designers in the event that they ignore environmental as-
pects during the design process. Keeping in mind the enhanced competition in the product
market, the need to incorporate environmentally friendly materials is becoming the main
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basis of design today. An elongated piece of thread/hair-like continuous filament is called a
fiber, whereas a fiber group that is twisted in the form of filament, thread, or rope is termed
“fibers” [2–4]. These are highly beneficial as an element of composite materials. The sources
of natural fibers are minerals, plants, and animals. Neto et al. [5] presented the broad
classification of natural fibers into three main groups: plant (e.g., cellulose/lignocellulose),
mineral, and animal fibers (Figure 1).

Figure 1. Schematic view of natural fibers’ classification [5].

Accordingly, fibers are broadly classified into three categories: (1) natural plant fibers,
(2) manmade fibers, and (3) synthetic fibers. The manmade and synthetic fibers have been
studied by various researchers for their possible applications as construction and building
materials [6–10]. Alyousef et al. [11] investigated waste-polypropylene-fiber-reinforced
concrete for its possible application as an insulation material. However, natural fibers
have some unique advantages as compared to manmade and synthetic fibers, such as
low cost, environmental friendliness, and abundant resources [12,13]. Figure 2 depicts the
natural plant fibers’ broader classification, as presented in [14]. Almost 2000 types of plant
fibers are available globally, e.g., wheat straw, coir, palm, kenaf, sugarcane bagasse, cotton,
bamboo, basalt/wool, flax, corn, hemp, hay, jute, henequen, ramie, sisal, banana, and
pineapple leaf [15–25]. Some plant fibers are shown in Figure 3. Alyousef et al. [26] studied
sheep-wool-fiber-reinforced composites under impact loading, and reported satisfactory
outcomes. Plant fibers are gaining the attention of researchers in the construction material
sciences field for the exploration of their potential to be used in composites, with the aim of
sustainable development. In the past decade, the popularity of eco-friendly plant fibers
has been considerably enhanced because of their favorable properties, including cheap and
abundant availability, flexibility in handling and usage, low density, comparable mechanical
characteristics, high strength-to-weight ratios, etc. [27–34]. However, properties such as low
durability, poor bonding, increased water absorption, and comparatively worse thermal
and mechanical properties with respect to artificial fibers, still provide much hindrance
in practical applications of plant fibers [35–39]. Various efforts in terms of hybridization,
incorporation of nanofillers, and treatment of fibers have been made to overcome said
deficiencies of plant fibers. Alyousef et al. [40] applied the fiber hybridization technique for
enhancing the durability of plant-fiber-reinforced concrete. Accordingly, in recent years,
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processed plant-fiber-reinforced composites have been considered for construction and
building material applications [28,39,41–51].

Figure 2. Natural fibers’ classification [14].

Figure 3. Natural fibers [52].

Today, the key concern of modern development is sustainability. In pursuit of this,
global warming due to swift ozone layer depletion because of environmental degradation
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is also a pressing issue. Environmental degradation is mainly caused because of extreme
consumption of natural resources and fossil fuels. Hence, in pursuit of sustainable develop-
ment, as per the sustainability goals defined by United Nations Development Programme
(UNDP), the growing environmental pollution (the cause of ozone layer depletion) needs
to be reduced. The burning of agricultural/plant wastes in subtropical and tropical areas
is the main contributor to air/environmental pollution. Furthermore, the progressing
consumption of natural resources and fossil fuels to cater for the needs of the construction
industry also contributes towards environmental degradation. Therefore, the incorporation
of different agricultural waste/plant fibers in various composites can play a significant role
in the achievement of the UNDP sustainability goals. This incorporation would not only
contribute towards a reduction in the overall costs of composites, it would also decrease
the consumption of conventional materials, ultimately leading towards a reduction in the
consumption of natural resources.

In pursuit of sustainable development, as per the UNDP sustainability goals, the envi-
ronmental pollution that is depleting the ozone layer needs to be addressed. The selection
of materials for manufacturing and associated design of sustainable materials plays a signif-
icant role in the construction industry. The composites are tailor-made materials that exhibit
variable properties dependent on the matrix–reinforcement phase. The incorporation of
plant fibers (e.g., agricultural waste) as a reinforcement in various composites leads toward
sustainable development in terms of reducing environmental pollution, conserving natural
resources, and improving the economy. These agricultural wastes are otherwise burned,
contributing significantly to environmental pollution. Unlike steel/synthetic fibers [47,53–55],
plant fibers—e.g., hemp, jute, bamboo, kenaf, etc. [38,56,57]—have multiple benefits, such
as; low costs and abundant availability. Alyousef et al. [58] reported the same for sheep
wool fiber when used as dispersed reinforcement in a cementitious concrete composite
to enhance the mechanical properties of said concrete composite. The incorporation of
low-density (1.2–1.6 g/cm3) plant fibers produces lighter composites compared to synthetic
fibers. Accordingly, the demand for composites reinforced with plant fibers (e.g., palm,
kenaf, sugarcane, jute, hemp, sisal, coir, banana, etc.) is increasing in the construction
industry. However, the durability of plant fibers is still questionable, due to their organic
and biodegradable nature, thus restricting their applications as structural/critical materials.
The durability of plant fibers and the fiber–matrix interaction are typically optimized by
applying chemical treatments to plant fibers.

Hence, it can be said that the potential incorporation of abundantly and locally avail-
able plant fibers/agricultural byproducts in different matrices, as reviewed in the present
study, can play a significant role in the development of green and sustainable structures.
However, as revealed from the literature, the applicability of plant-fiber-reinforced compos-
ites is still questionable for structural materials, due to their lesser density affecting their
mechanical properties, and their organic/biodegradable nature affecting the long-term
durability of the composites. Several studies have been conducted on multiple treatment
methods for improving the mechanical properties and the long-term durability of plant
fibers and plant-fiber-reinforced composites for use in civil engineering structural applica-
tions. Therefore, to summarize the available literature on plant fibers and their composites
for construction and building materials covering all of the abovementioned aspects, this
review on plant fibers is essential for the development of eco-friendly composites.

2. Scientometric Analysis
2.1. Methodology

In this study, a scientometric analysis of the literature on plant fibers is carried out
to show the error proximity of multiple studies [43,59–61]. Scientometrics, if used alone,
produces less skewed and more rational results [62,63]. Research over the past two decades
is summarized in the present study. Quantitative assessment of research progress is made
by using connections and maps among bibliometric data. A compilation of bibliomet-
ric data for the analysis of plant fibers was carried out using Scopus. Data refinement
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techniques were also used. In the specific drop-down menu—i.e., document type—the
“review”, “article”, “dissertations”, and “books” options were selected. In addition, for
“language”, “English” was chosen. Scientific visualization is used in scientometric reviews,
which is a method formulated by researchers for analyzing literature reviews for differ-
ent purposes [64]. This explains the issues faced by researchers in performing literature
reviews manually, and also develops links between countries, authors, sources, articles,
and keywords in a specific study area [65]. VOSviewer (version: 1.6.16) was used to create
the scientific visualization and mapping. This is an open-source, free visualization tool
that is highly recommended in the literature for application in various fields [66,67]. The
analysis was performed by utilizing VOSviewer, with “create a map from bibliographic
data” as a parameter of “type of data” and “read data from bibliographic database files”
as a parameter of “data source”. VOSviewer was applied for importing the CSV files
from Scopus. The analysis of all of the frequently appearing keywords, articles, sources,
most referenced articles/authors, and regional participation was performed as a step for
mapping the review of the science. Maps were utilized to depict different factors, their
co-occurrence, and relationships between them, whereas tables were used to summarize
the numerical figures.

2.2. Scientific Mapping Results and Discussions
2.2.1. Annual Publication Trends

The Scopus analyzer was used to analyze the data gathered from its database to
assess the research areas with the closest relevancy. It is noteworthy that bibliometric data,
starting from 2011, were retrieved by using the time duration limit. Figure 4 shows the
annual trends of the publications in the explored research area, from 2011 to 2022 (March).
The keywords/terms that we searched in Scopus were “plant fibers”, “applications of
plant fibers”, “plant fiber reinforced composites”, “plant fibers building and construction
material” and “plant fiber structural and non-structural applications”. It was observed that
there was a gradual rise in the number of publications regarding the utilization of plant
fibers for different composites. In the same manner, the cumulative publications were also
increased. It is an interesting fact that researchers are exploring the potential utilization
of plant fibers from various sources for their incorporation in different composites for
structural and non-structural applications.

Figure 4. Annually published articles.

2.2.2. Scientific Mapping of Keyword Co-Occurrence

The vital areas of a specific research domain are mainly depicted and indicated by
keywords. The most frequently occurring keywords that were used in the present review
are discussed in Section 2.1. The co-occurrence network of keywords, along with their visu-
alization, link strength density, and interconnectivity, is shown in Figure 5. The keyword
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node size depicts a particular keyword’s frequency, whereas co-occurrence of respective
publications represents the keyword’s position. The color visualization of the last five years
was carried out, such that bigger nodes show a greater number of studies on natural/plant
fibers from various sources. Different keywords were bifurcated using distinct/different
colors, representing the co-occurrence of keywords in multiple publications. Figure 5a
depicts the defined keyword clusters in the following colors: green, blue, red, and yellow.
The yellowish tint in the visualization depicts the emerging trend of plant fiber applications
in the recent past. The most frequently co-occurring keywords are represented by green
nodes, i.e., the composites that are reinforced with plant fibers for various applications.
It can be said that all of the abovementioned keywords have repeatedly been utilized in
publications regarding different sources of plant fibers. This trend significantly supports
the concept of sustainable development, as can also be seen in the density visualization
(Figure 5b). The lower- and higher-density keywords are presented with unique colors.
The color order is red, depicting the highest density; yellow, moving from the higher side
towards the lower one; followed by green and ultimately, blue, depicting the lowest density.
This observation could assist in the selection of keywords to conveniently and effectively
retrieve the published data on the required domain in future studies. The linkage of all the
plant fiber aspects/factors with keywords related to sustainable development is shown in
Figure 6. It can be concluded that sustainable development in terms of plant fibers’ appli-
cability is significantly linked with those plant fibers’ properties, chemical composition,
bio-degradable nature, related composites, etc.

Figure 5. Network based on all keywords: (a) occurrence during the last 5 years; (b) density showing
the recent focus on sustainable development.
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Figure 6. Sustainable development linkage with all factors.

3. Plant Fiber Types and Annual Production

“Fiber” is a hair-like continuous filament material extracted from an elongated piece,
just like a thread, whereas the “fibers” refers to a group of fibers coiled into rope [2,3].
However, they may also be applied in considerably short lengths, or may be ground into
powder for application as a filler. Natural fibers are non-manmade and non-synthetic fibers
that are extracted from animals or plants. Natural fibers are gaining much attention from
researchers for incorporation as dispersed reinforcement in different composites, because
of their considerable and comparable mechanical properties, readily abundant availability,
flexible handling, and sustainability [68–73]. The source-based classification of natural
fibers is shown in Figure 7. Among all of these natural fibers, plant fibers are highest in
market demand, as they are the most widely used in multiple applications.

Figure 7. Source-based classification of natural fibers [74].
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Ramamoorthy et al. [75] classified plant fibers into six categories: straw, seed, bast,
wood, grass, and leaf fibers. Bast fibers comprise tube-like cell walls, and are extracted
from the outermost layers of various plant stems. Multiple industries—particularly the
construction industry—incorporate the application of this type of fiber. Furthermore, the
need for bast-fiber-reinforced polymer composites is increasing day by day because of
their significant properties, such as economy, reliability, non-toxicity, lighter weight, and
structural soundness. The extraction from non-fibrous material scrap produces a hard
fiber known as leaf fiber. Leaf fiber is coarser and stiffer compared to bast fiber, resulting
in its comparatively lesser market demand [76]. The fibers obtained from various plant
seeds are named seed fibers. Coconut husk, kapok, and cotton are among the major seed
fibers that are incorporated in hybrid natural-fiber-reinforced composites. Similarly, the
incorporation of different straw fibers (e.g., rice, rape, barely, wheat, etc.)—due to the
abundant production of these crops in various subtropical regions—in different matrices
(e.g., soil, straw boards, bales, earthen bricks, brick blocks, mud mortar, cement–sand
mortar, lightweight cement walls, etc.), for a number of structural and non-structural
applications, has also been studied by many researchers [77–80]. Due to their lower water
content, the applications of straw fibers also include straw-reinforced polymers. In most
cases, straws are considered to have less microbial respiration, along with relatively more
stability [81]. Therefore, the composites reinforced with straw fibers are excellent. Wheat
straw is the product of the wheat crop, and is usually available in surplus to requirements
in many countries. Hence, due to its cheap availability and easy access, the use of wheat
straw in civil engineering applications is effective [43,44,46,68,82,83].

Fibers extracted from lengthened sclerenchyma cells found in various components of
the plant are termed grass fibers. Grass fibers are the same derivatives of synthetic fibers
for incorporation in composites. This fiber has been studied for reinforcement in polymer
matrices in multiple works aiming to obtain partially biodegradable green composites.
In woody plants, there is a fibrous biological tissue that is found in the internal parts of
the roots, branches, and stems, and is named wood fiber. As per the taxonomy of plants,
woody species are classified into two major types: softwood and hardwood. These are
essentially biomaterials with an optimal hierarchy that transfers both external and internal
forces, depicting its suitability as the structural material for various applications [84]. The
annual production of some natural fibers is given in Table 1.
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Table 1. Reviews of the chemical/physical/mechanical properties, chemical treatments, annual production, and approximate cost of plant fibers.

Plant
Fiber Source

Chemical Composition Physical/Mechanical Properties
Reference

Annual Production Approx. Cost

Lignin Cellulose Hemi–
Cellulose Crystallinity Tensile

Strength
Tensile

Modulus Density Elongation
at Break Production Reference Price

per Ton Reference

Wt.% Wt.% Wt.% Wt.% MPa GPa g/cm3 % – (×103) – USD –

Bamboo Stem 10.2 73.8 12.5 40–60 140–230 11–17 1.25 2 [14,74,85–87] 10,000 [88,89] 500 [89,90]
Sugarcane
Bagasse Stem 25–32 32–34 19–24 76 290 17 1.5 1–3 [74,86,91,92] – – – –

Hemp Stem 3–5 70–92 18–22 50–90 690 70 1.48 1.6–4

[4,14,27,57,74,
93–95]

215

[88,89]

1550
[89,90]Kenaf Stem 15–19 44–87 22 48.2 215 53 1.45 1.6 770 400

Jute Stem 5–13 51–84 12–20 50–80 393–773 15.4–26.5 1.3 1.5–2.5 2500 950
Ramie Stem 0.6–1 68–76 13–15 55.5 560 24.5 1.5 2.5–3.8 100 – –
Flax Stem 2.2–5 60–81 14–20.6 50–90 345–1035 27.6 0.6–1.1 2.7–3.2 810 3150 [89,90,96]Sisal Leaf 8–11 67–78 10–14.2 50–70 347–700 9.4–22 1.03–1.5 2–2.5 [74,95,97–100] 380 650
Coir Fruit 40–45 32–43 0.15–0.25 27–33 139 4–6 1.2 30 [74,95,101] 100 – –

Pineapple Fruit 4.2 66.2 19.5 35.9 400–627 1.44 0.8–1.6 14.5 [74,102,103] – – 455 [89,90]
Cotton Seed – – – – 287–587 5–12 1.5–1.6 7–8 [104–107] 18,500 [88,89,108] – –
Wood Stem – – – – – 7–70 0.5–1.4 – [105,109] 1,750,000 – –
Wheat
Straw Stem 18.9–25.1 43.1–44.7 32.9–35.3 57.5 21.2–40 4.76–6.58 0.02–0.11 5.4 [110–112] 731,460 [113–116] 60 [116]
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4. Properties of Plant Fibers
4.1. Chemical Composition

Considerable variation in the chemical constituents of plant fibers of diverse types
and origins is usually observed [117]. This variation may also be influenced due to grow-
ing and harvesting conditions. The lignocellulosic composition of various plant fibers is
shown in Figure 8 and listed in Table 1. The lignocellulosic composition of plant biomass
mainly comprises lignin

[
C9H10O3(OCH3)0.9−1.7

]
x, cellulose (C6H10O5)n, and hemicellu-

lose (C5H8O4)m, in the form of strong and complex cellulose–hemicellulose–lignin bonds
within a plant [75,118,119]. Figure 9 shows the main structure of a natural lignocellulosic
fiber that comprises lignin, hemicellulose, and cellulose, as reported in [74]. Usually, the
ranges for lignin, hemicellulose, and cellulose in a conventional lignocellulosic material are
15 to 25%, 30 to 60%, and 20 to 40%, respectively. The mechanical properties of the fibers and
their respective matrices are significantly dependent on these lignocellulosic compositions.

Figure 8. Structure of a plant fiber [120].

Figure 9. Natural lignocellulosic fiber [74].

Cellulose is the main component in biomass, and has several applications in different
fields of the industry today [121–126]. It is essentially a linear homopolymer with a greater
molecular weight that consists of β-D-glucopyranosyl units interlinked with 1–4 glycosidic
linkages (Figure 10). It may also be present in anhydroglucose monomer linear chain units,
linked with 1-4 linkages, or balanced at the end terminal with reducing and non-reducing
sugar units. The cellulose chain characteristics may be assigned to reactive (−OH) groups
that occupy the C-2, C-3, and C-6 positions. It should be noted here that the ability of such
hydroxyl groups to make hydrogen bonds plays an important role in having crystalline
packing, and also drives the cellulose’s physical properties. The said interlinked hydrogen
bonding of different molecules of cellulose forms microfibers, which interact to make a fiber.
Cellulose fibers, due to their biodegradability, low weight, cheap and abundant availability,
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renewability, and unabrasive nature, as well as their comparable mechanical properties, are
being utilized for multiple applications.

Figure 10. Cellulose structure, i.e., β-D-glucopyranose interlinked with (1–4) glycosidic bonds in
a polymer [127].

Hemicellulose is the second most abundant lignocellulosic constituent, comprising
polysaccharide short chains such as galactomannan, xylan, glucomannan, glucuronoxy-
lan, xyloglucan, and arabinoxylan, which are grouped together with β-(1,4) and β-(1,3)
glycosidic bonds. The low degree of non-crystallinity and the polymerization nature of
hemicellulose cause the disintegration of monosaccharides; therefore, most of its appli-
cations are in cosmetics, hydrogels, and drug deliveries. As far as lignin is concerned, it
comprises 3D crosslinked polymer with structural units of phenyl propane, and has varia-
tions based on the replacement of methoxyl groups with aromatic rings. These are further
crosslinked with aryl ether linkages, such as carbon–carbon bonds, β-O-4, and α-O-4, e.g., 5-
5, β-β. Guaiacyl (G), p-hydroxyphenyl (H), and syringyl (S) are the three basic constituents
of the polymer lignin. The function of lignin is to provide a safeguard by linking covalently
with hemicellulose and cellulose, increasing the lignocellulosic biomass recalcitrance.

4.2. Physical and Mechanical Properties

Some of the physical and mechanical properties of different plant fibers are given in
Table 2. The mechanical characteristics of plant fibers are comparatively worse than those
of the artificial and synthetic fibers, such as glass fiber, etc. [128]. However, due to the
lower density of plant fibers, the physical properties—e.g., strength, property-to-density
ratio, and stiffness—of plant fibers are comparable with those of artificial fibers [129,130].
The common geometric properties of plant fibers include their length, diameter/width,
and corresponding aspect ratio (Table 2). The fibers’ properties are dimension-dependent.
Aspect ratio is one of the governing factors behind their mechanical properties, and can
be extracted from geometric classification. A lesser aspect ratio restricts the fibers’ rein-
forcement capability. The aspect ratio of the fiber in any matrix must be higher than the
critical value for having maximum stress transfer to the fiber prior to matrix failure in
order to achieve maximum reinforcement. Meanwhile, a lower aspect ratio of the fiber
with respect to the critical value leads to inadequate stress transfer, ultimately resulting
in poor reinforcement. Doan [131] reported that the fiber length plays an important role
in improving fiber-reinforced composites’ mechanical performance. Generally, an increas-
ing trend in the mechanical properties of composites is observed with the increase in the
length of the fibers [132]. Baiardo et al. [133] found that the mechanical characteristics of
short-fiber-reinforced composites are mainly dependent on (1) fiber aspect ratio, lengthwise
distribution, volume, and the fibers’ orientation in the composite; (2) the natural properties
of the fibers and matrix, and (3) effective adhesion between the matrix and fibers, which
provides for load transfer in the composite. However, a decline in tensile strength was
reported upon reducing the fiber length from 9 to 3 mm, due to two major reasons: the exis-
tence of gaps, and the weaker bonding between the fiber and the matrix [134]. As far as the
effect of the fiber cross-section on the mechanical properties of fiber-reinforced composites
is concerned, [135] reported its significant effect on bonding between cementitious matrix
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and fibers, as well as the flexural toughness of fiber-reinforced composites. Furthermore,
in some scenarios, fiber is simply incorporated as a filler [136,137]. Plant-based natural
fibers do not cause much damage, as they are nonabrasive due to their biodegradable
nature. However, higher water absorption is one of the major hindrances of plant fibers for
various applications. This is a basic characteristic of plant fibers because of free hydroxyl
along with existing polar groups. It tends to lead to reduced dimensional stability and
mechanical characteristics, but it may also act positively towards biocomposites’ biodegrad-
ability [138]. In the process of water absorption, the plant fiber cell walls are saturated
with water. Furthermore, the void spaces are occupied by water. The water absorption is
dependent on various parameters, such as fiber permeability, fiber loading, temperature,
surface protection, fiber orientation, void content, exposed surface area, diffusivity, and
hydrophilicity [14]. Plant fibers are good thermal and acoustic insulators due to their
cellular and hollow nature. Due to this hollow structure, the bulk density of plant fibers
is reduced, resulting in their lighter weight. The 40–50% lesser density of plant fibers
compared to synthetic fibers is a bonus. The densities of plant fibers vary from type to
type. Accordingly, the densities of some plant fibers, along with their respective mechanical
properties, are given in Table 1. However, the thermal stability of plant fibers is a matter
of concern. Accordingly, limited thermal stability is therefore another challenge for using
plant fibers in different composites, as 200 ◦C is the temperature limit for the processing of
plant fibers [105]. Different surface treatments are used to enhance the thermal stability of
plant fibers. Various techniques are applied to evaluate the thermal characteristics of plant
fiber composites, and to recognize and assess the applicability of various plant fibers for
specific applications [5]. The approaches applied in the literature to analyze the thermal
stability of plant fibers include differential scanning calorimetry (DSC), thermogravimetric
analysis (TGA), and dynamic mechanical analysis (DMA). The main such techniques are
summarized in Figure 11, as reported in [139]. In parallel, plant fibers have high stiffness
and strength (Table 1). It may be noted that all plant fibers have cellulose fibrils of 10–30 nm
in diameter, and consist of up to 30–100 cellulose molecules in a chain conformation that
improve the mechanical strength of the fiber. The Young’s modulus and tensile strength of
plant fibers are in direct proportion to their cellulose content [14]. As already mentioned,
the chemical composition of plant fibers consists of lignin, cellulose, hemicelluloses, waxes,
and pectin. Figure 12 shows the scanning electron microscope (SEM) image of a cross-
section of plant fiber. In plant fibers, the reinforcing components are cellulose microfibrils,
and these microfibrils are surrounded by lignin and hemicelluloses. Upon application of
loading, these microfibrils are in line with the axis of the fiber. The fiber failure occurs
because of breakage in hydrogen bonds due to the loss of bonding between matrix elements
and reinforcing fibrils. Accordingly, the lower the cellulose content of a plant fiber, the
lower its tensile strength [140]. The plant fiber stiffness is determined by its cellulose fibrils’
orientation with respect to the fiber axis. The spiral orientation of fibrils with respect to the
fiber axis results in the ductility of the plant fibers. Meanwhile, the higher tensile strength
and rigidity of plant fibers are due to the parallel orientation of fibrils with respect to the
fiber axis [141,142]. It should be noted here that the physical/mechanical properties of
plant fibers are origin- and climate-dependent. However, plant fibers with poor mechanical
properties may also be utilized in non-structural applications.

The fracture strain, also known as elongation at break, is the ratio of change in length
to the original length after the specimen is broken. It shows the plant fiber’s ability to
resist the change in shape to avoid crack formation by providing a bridging mechanism.
EN ISO 527 is the test standard for the determination of elongation at break. Usually,
the physical and mechanical properties of synthetic fibers are better than those of plant
fibers. However, in the case of elongation at break and specific modulus, plant fibers are
better. Fibers from leaf and bast possess low elongation at break compared to stalk or
seed fibers. Elongation at break values for various plant fibers are summarized from the
literature in Table 1. The capability of plant fibers to bear the bending load that is applied
perpendicular to their longitudinal axis is called flexural strength. In this scenario, the
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plant-fiber-reinforced beam composites are more appropriate. In this way, the higher fiber
content means greater modulus and flexural strength. Long plant fibers—such as bast and
leaf fibers—have the highest efficiency among the lignocellulosic reinforcements. The fiber
length is a key factor to improve the fracture toughness and flexural strength of composites
incorporating plant fibers.

Table 2. Plant fibers’ properties.

Plant Fibers

Geometric Dimensions Mechanical Properties

Mean Length Mean Width Aspect Ratio Stiffness Ultimate Stress

(mm) (µm) (-) (GPa) (MPa)

Bamboo 2.7 14 193 - -
Sugarcane Bagasse 0.68–1.7 20–22.8 29.8–85 - -

Jute 2 20 100 20–55 200–500
Hemp 25 25 1000 30–60 300–800
Coir 0.7 20 35 - -

Wheat Straw 15 15 100 - -
Ramie 12–15 20–75 2000–6000 - -
Cotton 25 20 1250 - -

Sisal 3 20 150 9–22 100–800
Kenaf 5 21 238 - -
Flax 33 19 1737 50–70 500–900

References [14,143–146] [14,147]

Figure 11. Summary of plant fibers’ thermal evaluation methods [139].

Figure 12. A natural plant fiber cross-section [14].
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5. Treatment Methods of Plant Fibers

In addition to enhancing the mechanical properties of composites by incorporating
plant fibers, their durability should also be given proper consideration due to the biodegrad-
able nature of these fibers. Deficiencies/degradation of plant-fiber-reinforced composites,
in terms of durability, are usually observed due to their organic nature. This might be
due to the mineralization of fibers and alkaline attacks under exposure to climatic condi-
tions [148,149]. The complex microstructural heterogeneity and high water absorption of
plant fibers also affect the properties of their composites. Furthermore, the pectin and waxes
present in the cell walls of plant fibers prevent the interlocking within a matrix. Accordingly,
this leads to poor adhesion of the fiber with the matrix, poor strength properties, and weak
dispersion of force. The structural composition of plant fibers—i.e., lignin, cellulose, hemi-
cellulose, wax, and pectin—shows an unsteady effect due to moisture and weak adhesion
with the surrounding matrix [150,151]. Hence, there is a need to modify/improve the plant
fibers’ properties to overcome the deficiencies associated with them. The extraction of one
plant fiber (i.e., pineapple) from the respective plant in a raw and chemically treated form
is shown in Figure 13, as presented by Putra et al. [152]. These alterations in plant fibers are
intended to modify the chemical, physical, or morphological properties of the fibers, or to
safeguard the natural hydrophilic fibers against proper bonding with the surrounding ma-
trix. The main purpose of chemical treatments for plant fibers is essentially to improve the
fibers’ properties by modifying their microstructure in parallel with enhancement of their
surface morphology, chemical groups, tensile strength, and wettability [153,154]. Multiple
techniques—i.e., chemical, biological, and physical—have been proposed. Among these,
some treatment techniques for different plant fibers are summarized from the literature
in Table 3. Multiple treatments—including benzoyl chloride, alkalis, acetic anhydride,
potassium permanganate, acetic acid, silane, and peroxides—are used to treat plant fibers.
As reported in the literature [155], these treatment techniques are intended for improving
the plant fibers’ mechanical properties by modifying their crystallinity and eliminating the
weaker constituents—i.e., fats, lignin, and pectin—from the surfaces of the fibers. Further-
more, as a result of chemical treatment, the structural components with partial cementing
are split and removed, providing a rough and clean fiber structure. This rough surface of
plant fibers improves the bonding mechanism of the fiber with the surrounding matrix,
thus enhancing the mechanical properties of the composite [155].

Figure 13. Pineapple fiber: (a) plant, (b) leaves, (c) raw fiber, (d) 1% NaOH treatment solution, and
(e) treated fibers [152].
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Table 3. Different proposed treatments for plant fibers.

Plant Fibers Treatment Techniques References

Bamboo Acetylation, potassium permanganate, fiber hybridization [56,156,157]
Sugarcane Bagasse acetylation, alkali, stearic acid, fiber hybridization, hydrogen peroxide [153,158–160]

Hemp Potassium permanganate, nanoparticle grafting [161,162]
Kenaf Alkali, nanoparticle grafting, fiber hybridization [163–166]

Jute Alkali, benzoylation, sodium bicarbonate, fiber hybridization, water
immersion, nanoparticle grafting [153,159,166–170]

Ramie Steam blasting, nanoparticle grafting, silane [171–173]
Flax Silane, nanoparticle grafting, fiber hybridization [174–176]
Sisal Alkali, acetylation, nanoparticle grafting, water immersion [168,177–180]
Coir Alkali, permanganate, fiber hybridization, water immersion [168,181–184]

Pineapple Alkali, fiber hybridization [185,186]
Cotton Silane, surface fibrillation, nanoparticle grafting [120,187,188]

Wheat Straw Alkali, boiling, fiber hybridization, water immersion, nanoparticle grafting [43,44,46,184,189]

Tserki et al. [190] explored the impact of acetylation on wood, hemp, and flax fibers.
The removal of non-crystalline fractions from fibers was observed after this treatment.
These altered surface properties led to improvements in interface stress transfer charac-
teristics. Hossain et al. [191] also observed similar behavior upon application of alkaline
treatment of ladyfinger fiber. Latiff [192] also reported a 47.5% improvement in the tensile
strength of fibers upon soaking in benzoylation treatment for 30 min. The SEM images
of two alkaline-treated and -untreated plant fibers (i.e., abaca and coir) are shown in
Figures 14 and 15, respectively. Similarly, the SEM images of untreated and treated jute
fiber are shown in Figure 16. Hence, it can be concluded that a considerable enhancement
in the mechanical properties of plant fibers and their respective matrices can be attained by
applying chemical treatments.

Figure 14. SEM images of untreated abaca and coir fibers: (A) abaca fiber bundle (@ mag 750 x),
(B) abaca fiber detailed surface view (@ mag 3.5 kx), (C) coir fiber bundle (@ mag 750 x), and (D) coir
fiber detailed surface view (@ mag 3.5 kx) [193].
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Figure 15. SEM images of 5%-NaOH-treated abaca and coir fibers: (A) abaca fiber bundle (@ mag
750 x), (B) abaca fiber detailed surface view (@ mag 3.5 kx), (C) coir fiber bundle (@ mag 750 x), and
(D) coir fiber detailed surface view (@ mag 3.5 kx) [193].

Figure 16. SEM images of alkali-treated jute fiber: (a) raw, (b) treated [194].

6. Application of Plant Fibers as Construction and Building Materials

The structural and non-structural applications of plant fibers are increasing expe-
ditiously in multiple fields of engineering. Plant fibers have been incorporated as rein-
forcement in various composites, including sugarcane [195,196], hemp [196], corn [197],
kenaf [198–202], ramie [94], water hyacinth [203], flax [204], ginger [205,206], coir [207],
cotton [208,209], sisal [210], banana [211], oil palm [212,213], sugar palm [214,215], and
wood [108]. Figure 17 shows a broader classification of plant-fiber-reinforced composites.

In addition to biodegradability, there are other several benefits of plant fibers, in-
cluding easy availability, the substitution of timber plastic composites, low cost, and
reduced deforestation [216]. Plant fibers can potentially be utilized in multiple compos-
ites [217]. Ilyas et al. [218] reported plant fibers as an alternative material to carbon and
glass fibers. Plant fibers—such as hemp, oil palm, jute, curauá, bamboo, and kenaf—
when incorporated in different composites, have multiple applications in the construction
industry [43,60,68,73,153,219–221]. In addition, the plant fibers can also be used as potential
materials for insulation, acoustic, and architectural applications, i.e., subtypes of construc-
tion and building materials [18–25]. Plant fibers are considered to be more appropriate
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materials to meet the needs of the modern era, such as three-dimensional flexibility and
forest management, while achieving a building that is both functional and aesthetically
pleasing. It should also be mentioned here that, due to the availability of plant fibers in a
wider variety range, their applications may also lead towards novel creative methods of
enhancing the interaction of people with surrounding spaces.

Figure 17. Classification of plant-fiber-reinforced composites [52].

The properties of plant-fiber-reinforced cementitious composites are comparable to
those of steel and artificial-fiber-reinforced composites for applications in civil engineer-
ing [130,168,222]. As already mentioned, significant interest has been established in the
past few years towards incorporating plant fibers in cementitious composites to obtain
alternative economical, eco-friendly, and sustainable construction and building materials.
Plant fibers can potentially be incorporated as dispersed reinforcement in concrete to over-
come concrete’s traditional deficiencies. The enhancement in the energy-absorbing capacity
of brittle concrete can be achieved by using plant fibers in it [168,223,224]. Researchers have
used plant fibers—such as banana, vakka, wheat straw, ramie bast, pineapple leaf, jute,
abaca leaf, kenaf bast, flax, coir, palm, hibiscus cannabinus, elephant grass, bamboo, malva,
sisal, guaruman, sansevieria leaf, piassava, hemp, sugarcane, and date—as dispersed rein-
forcements in cementitious composites for different civil engineering applications, as an
alternative replacement for artificial/steel fibers [43,183,225–237]. Ali et al. [66] evaluated
the dynamic and mechanical properties of coconut-fiber-reinforced concrete for possible
application in earthquake-resistant housing. Terai and Minami [230] experimentally deter-
mined the shear and flexural properties of bamboo-reinforced cementitious composites.
The fracture energy of elephant-grass-, hemp-, and wheat-straw-reinforced concrete was
evaluated by Merta and Tschegg [238]. Wheat-straw-reinforced mortar and concrete were
explored by Albahttiti et al. [239] and Farooqi and Ali [43], respectively. Hence, it can be
said that plant fibers have significant potential to be used as an alternative construction
and building material.

6.1. Mechanical Properties of Plant-Fiber-Reinforced Cementitious Composites
6.1.1. Compressive Strength

The aim of using plant fibers as alternative and sustainable construction and building
materials leads towards their application as dispersed fibers in cementitious composites.
Remarkable studies have been conducted to experimentally determine the mechanical
properties of various plant-fiber-reinforced cementitious composites. Accordingly, the
compressive strengths of different plant fibers have been reported in the literature. The
percentage differences in the compressive strength of some plant-fiber-reinforced cementi-
tious composites with respect to reference/control composites are shown in Figure 18. The
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percentage difference in the compressive strength of wheat-straw-reinforced concrete com-
pared to that of plain concrete is shown in Figure 18a, as reported in the literature [43,79,240].
A decrease in compressive strength is observed upon the incorporation of wheat straw in
concrete. Similarly, the percentage difference in the compressive strength of rice-straw-
reinforced concrete is presented in Figure 18b. Although Chin and Nepal [79] reported an
enhancement of up to 7% in the compressive strength of rice-straw-reinforced cementitious
composites, at the same time, decreases in the compressive strength of said composites were
also reported by Li et al. [241] and Liu et al. [242]. As far as the incorporation of coconut
fibers in cementitious composites is concerned (Figure 18c), most studies have reported en-
hanced compressive strength [60,243–245], whereas Khan and Ali [246] reported a slightly
reduced compressive strength of coconut-fiber-reinforced concrete. Usually, enhanced
compressive strength is reported upon the addition of jute fiber to cementitious compos-
ites (Figure 18d) [247–251]. In the same manner, as shown in Figure 18e, the addition of
hemp fibers to cementitious composites also usually results in an increase in compressive
strength [252–254]. Figure 18f shows that the compressive strength of sisal-fiber-reinforced
concrete is more or less same (i.e., from 97% to 106%) as that of control specimens [255–257].
The percentage differences in the compressive strength of pineapple, sugarcane bagasse,
and flax fibers are shown in Figure 18g–i, respectively. In most of the reported studies,
enhancement in the compressive strength was observed with respect to reference com-
posites [83,258–266]. However, Sawsen et al. [267] reported reduced compressive strength
for flax-fiber-reinforced concrete. The addition of plant fibers is primarily considered for
increasing compressive toughness instead of compressive strength. The performance of a
structure cannot be gauged by its compressive strength only, as its toughness parameter
also contributes to its overall performance [268,269]. Hence, the dispersed plant fibers are
usually incorporated in brittle cementitious composites to increase their toughness with
minimal or no loss of compressive strength [270]. The enhanced compressive strength in
the case of some plant-fiber-reinforced cementitious composites is an added bonus.

6.1.2. Flexural Strength

The mechanical properties of plant-fiber-reinforced cementitious composites in terms
of flexural strength have also been investigated for a variety of applications in construction
and building materials. Accordingly, the percentage differences in the flexural strengths
of various plant-fiber-reinforced cementitious composites, as extracted from the literature,
are shown in Figure 19a–i. It may be observed from the reported studies that wheat-straw-
reinforced cementitious composites have more or less similar flexural strength to that of
control composites [43,79,240]. However, enhanced flexural strength has been reported in
literature for rice-straw-reinforced cementitious composites [79,242,271]. In contrast, Li
et al. [241] reported reduced flexural strength of rice-straw-reinforced concrete compared to
that of plain concrete. In the case of the flexural strength of coconut-fiber-reinforced cemen-
titious composites, most studies have reported increased flexural strength [243–246,272]. In
a similar way, the majority of studies have reported enhancements in the flexural strength
of jute- [247,248,251,273,274] (Figure 18d), hemp- [252–254] (Figure 18e), sisal- [4,256,275]
(Figure 18f), pineapple- [83,258,260] (Figure 18g), sugarcane-bagasse- [4,263,275] (Figure 18h),
and flax- [264–267] (Figure 18i) fiber-reinforced cementitious composites, compared to
control specimens/composites. Overall, it may be concluded that, in comparison to com-
pressive strength, the effect of fiber is more significant with respect to enhancements in
the flexural strength of cementitious composites. In the case of airport and road pavement
applications, the flexural strength is a governing parameter [276]. Hence, the reported
enhancements in the flexural strength of most of the plant-fiber-reinforced cementitious
composites may significantly contribute to the structural performance of pavements [277].
However, the hybrid effect of plant fibers with natural mineral fibers will be an interest-
ing area to explore for civil engineering applications, because previous studies [278–286]
have reported the enhanced mechanical properties of concrete with the use of natural
mineral fibers.
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Figure 18. Percentage difference in compressive strengths of (a) Wheat straw, (b) Rice straw,
(c) Coir, (d) Jute, (e) Hemp, (f) Sisal, (g) Pineapple, (h) Sugarcane Bagasse, and (i) Flax fiber re-
inforced cementitious composites with respective reference composites.

Figure 19. Percentage difference in flexural strengths of (a) Wheat straw, (b) Rice straw, (c) Coir,
(d) Jute, (e) Hemp, (f) Sisal, (g) Pineapple, (h) Sugarcane Bagasse, and (i) Flax fiber reinforced
cementitious composites with respective reference composites.
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7. Conclusions

The present study was intended to perform a scientometric analysis and a comprehen-
sive review of the types, properties, treatment methods, and applications of plant fibers as
a step in pursuit of sustainable development. A scientometric analysis was performed on
the bibliometric data of the last decade (2011–2022) extracted from the Scopus database,
and was analyzed by VOSviewer to evaluate the co-occurrence of keywords in the field of
natural fibers. Furthermore, the aspects of sustainability in terms of using plant fibers in
construction and building materials, along with moving a step towards reducing landfill
pollution, were also discussed. The conclusions of the conducted study are as follows:

• Scientometric analysis revealed an emerging trend of plant fibers for cementitious
composites, with a considerable rise in the last five years. Furthermore, it was found
from the analysis that there is a strong linkage of plant fiber keywords with sustain-
ability, sustainable development, and environmental impact. Hence, it can be said that
multiple techniques to reduce environmental degradation by using plant fibers are
under consideration today. In this scenario, the interest in the usage of ecologically and
environmentally friendly plant fibers and composites has been steadily increasing over
the last decade. Their excellent specific properties, environmental advantages, multi-
scale structure applications, abundant availability, low cost, and technical feasibility
are among the reasons behind the popularity that they have gained.

• The plant fibers that are most commonly incorporated in various composites are
coir, flax, jute, hemp, and wheat straw, while sugar palm, roselle, and kenaf are
emerging fibers due to their high stiffness and mechanical strength, which make them
appropriate for multiple applications in the civil engineering field. Generally, the
composition of plant fibers is lignin, cellulose, hemicellulose, and pectin. As reported
by several researchers, cellulose is the key factor behind the appreciable mechanical
properties of plant fibers, as cellulose provides good structural integrity and shape to
the fibers. The facial interaction of plant fibers with the surrounding matrix, due to
their smaller particle size, enhances the reinforcement effectiveness to a greater extent.
However, the structural applications of plant fibers are still quite limited due to the
poor fiber–matrix adhesion and low moisture resistance. These limitations of plant
fibers can be eliminated by chemical treatments such as alkalization, benzoylation,
silane, and acetylation treatment. Among these, alkali treatment has emerged as an
effective and economical method.

• Plant-fiber-reinforced composites have several major applications as construction and
building materials, including earthquake-resistant housing, bridge piers, canal linings,
soil reinforcement, pavements, etc. The mechanical properties of various plant-fiber-
reinforced cementitious composites in terms of compressive and flexural strength have
been reported in several studies as being improved by up to 43% and 67%, respectively,
with respect to reference composites.

• Processing of natural resources by consuming fossil fuels to meet the construction
industry’s needs leads to environmental degradation. Furthermore, agricultural/plant
waste burning is also a major contributor to air/environmental pollution. Heading
towards sustainable development, the incorporation of plant fibers—e.g., agricultural
waste/byproducts—as an alternative to synthetic fibers for reinforcement in different
composites can play a significant role in sustainable development by reducing landfill
pollution. However, the long-term performance of plant fibers (e.g., agricultural waste)
and their reinforced composites is questionable, due to their organic nature.

8. Future Recommendations

After conducting a detailed scientometric review of the utilization of plant fibers for
sustainable development, we noted that the available research is not sufficient to enable
the practical implementation of plant fibers for structural applications in the construction
industry. Depending on the advantages of plant fiber applications, it is recommended
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to conduct a detailed investigation to explore their potential for civil engineering struc-
tural applications.

Furthermore, it should be noted here that the durability of plant fibers is a matter of
concern. The durability of plant fibers, along with the alkaline nature of cementitious com-
posites, does not provide much hindrance to their use in structural applications. Therefore,
the durability of plant fibers must also be given proper consideration, due to their organic
nature. Accordingly, more effective pretreatment techniques with a lower environmental
impact need to be explored for enhancing the application of plant fibers in construction
(structural members).

In general, short discrete fibers, regardless of type and/or source, can be added to
concrete to enhance the tensile strength and ductility performance of concrete composites.
Therefore, further research should also be carried out regarding the development of opti-
mized design methods that enhance the plant-fiber-reinforced composites’ ductility and
strength (e.g., compressive, splitting–tensile, flexural, and shear strengths), manufacturing
techniques, and applicability for the construction industry. Perhaps future research focus-
ing on the development of computational techniques should also be carried out to cover
the research gap caused by the progressing growth in computational solutions to address
complex problems. The development of optimization algorithms for extracting the optimal
parameters and design for experimental techniques to conduct variation analysis should
also be explored in detail for the reduction in the consumption of time and cost.

Furthermore, future research should also be carried out to explore new compos-
ites with combinations of different fibers (i.e., natural and synthetic)—i.e., hybrid fiber-
reinforced composites—and the adoption of new methods for the manufacturing of said
composites. Last but not least, the life-cycle assessment (LCA) for plant fibers’ devel-
opment would also benefit the long-term sustainable growth of plant-fiber-reinforced
composites’ applications.
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193. Valášek, P.; Müller, M.; Šleger, V.; Kolář, V.; Hromasová, M.; D’Amato, R.; Ruggiero, A. Influence of Alkali Treatment on the
Microstructure and Mechanical Properties of Coir and Abaca Fibers. Materials 2021, 14, 2636. [CrossRef]

194. Wang, H.; Memon, H.; Hassan, E.A.M.; Miah, S.; Ali, A. Effect of Jute Fiber Modification on Mechanical Properties of Jute Fiber
Composite. Materials 2019, 12, 1226. [CrossRef]

195. Jumaidin, R.; Adam, N.W.; Ilyas, R.A.; Hussin, M.S.F.; Taha, M.M.; Mansor, M.R.; Azlan, U.A.-A.; Yob, M.S. Water transport and
physical properties of sugarcane bagasse fibre reinforced thermoplastic potato starch biocomposite. J. Adv. Res. Fluid Mech. Therm.
Sci. 2019, 61, 273–281.

196. Asrofi, M.; Sapuan, S.M.; Ilyas, R.A.; Ramesh, M. Characteristic of composite bioplastics from tapioca starch and sugarcane
bagasse fiber: Effect of time duration of ultrasonication (Bath-Type). Mater. Today Proc. 2020, 46, 1626–1630. [CrossRef]

197. Sari, N.H.; Pruncu, C.I.; Sapuan, S.M.; Ilyas, R.A.; Catur, A.D.; Suteja, S.; Sutaryono, Y.A.; Pullen, G. The effect of water immersion
and fibre content on properties of corn husk fibres reinforced thermoset polyester composite. Polym. Test. 2020, 91, 106751.
[CrossRef]

198. Aisyah, H.A.; Paridah, M.T.; Sapuan, S.M.; Khalina, A.; Berkalp, O.B.; Lee, S.H.; Lee, C.H.; Nurazzi, N.M.; Ramli, N.; Wahab,
M.S.; et al. Thermal Properties of Woven Kenaf/Carbon Fibre-Reinforced Epoxy Hybrid Composite Panels. Int. J. Polym. Sci.
2019, 2019, 5258621. [CrossRef]

199. Jaafar, C.A.; Zainol, I.; Ishak, N.; Ilyas, R.; Sapuan, S. Effects of the liquid natural rubber (LNR) on mechanical properties and
microstructure of epoxy/silica/kenaf hybrid composite for potential automotive applications. J. Mater. Res. Technol. 2021, 12,
1026–1038. [CrossRef]
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