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Abstract: City sizes are rapidly expanding, and urban air pollution is a serious challenge in China.
PM2.5 (fine particulate matter) is the primary pollutant of urban pollution. This study aimed to
examine the correlations between PM2.5 and city size. In this paper, using the panel data of 278 cities
in China from 2007 to 2016, we constructed a static and dynamic panel model based on the STIRPAT
(Stochastic Impacts by Regression on Population, Affluence and Technology) analytical framework.
We found that there was a significantly inverted N-shaped correlation between PM2.5 and city size.
Two inflection points were found at 949,200 and 3,736,100. We found no evidence to support the EKC
(Environmental Kuznets Curve) hypothesis, while the “Pollution Haven Hypothesis” gained support.
The contradiction between PM2.5 and city size will exist for the long term. Policy recommendations
were proposed based on our findings. Controlling the city size does not seem to be necessary for
very large cities as they have passed the second inflection point. Cities with a growing population
are under great pressure to prevent PM2.5 pollution and need to implement greater measures to
reduce pollution.

Keywords: PM2.5; city size; STIRPAT; China

1. Introduction

China’s urbanization ratio (measured by population) increased from 44.9% in 2007 to 58.52% in
2017, as the size of Chinese cities has grown rapidly. The number of cities with an urban population over
1 million increased from 57 in 2007 to 75 in 2016. Beijing and Shanghai have become megacities, whose
populations have reached 18.79 million and 24.19 million, respectively. The continuous expansion of
the city size has caused “urban diseases”, of which pollution has become the first and foremost. Han [1]
argued that the rapidly growing urbanized population in China has caused serious environmental
pollution, particularly air pollution. Urban pollution is closely linked to the size of the city—as the size
of the city increases, the total amount of urban pollution emissions increases. Therefore, the expansion
of cities has created serious urban pollution and placed tremendous pressure on the environment.
Urban pollution leads to economic losses and threatens the climate and human health. Xie et al. [2]
used a CGE (Computable General Equilibrium) model, a class of economic models that use actual
economic data to estimate how an economy might react to changes, to estimate economic losses, where
the results showed that without control measures, China will experience a 2.00% loss in gross domestic
product (GDP) and a 25.2 billion USD increase in health expenditure from PM2.5 (fine particulate
matter) pollution in 2030. Tai [3] found that there was a strong positive correlation between PM2.5
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components and temperature across most of the USA. Studies have shown that there is a causal
relationship between PM2.5 exposure and cardiovascular morbidity and mortality [4]. A reduction
in exposure to ambient fine-particulate air pollution has contributed to significant and measurable
improvements in life expectancy in the United States [5].

Air pollution has increasingly attracted public attention in China. In 2015, more than 99% of deaths
due to household air pollution and approximately 89% of deaths due to ambient air pollution occurred
in low-income and middle-income countries, and more than 50% of global deaths caused by ambient
air pollution in 2015 occurred in India and China [6]. The Chinese government has acknowledged the
dangers posed by pollution and has set specific targets for environmental improvement and restrictions
on the use of certain resources. China has implemented a vast network of stations to monitor air
quality in more than 400 cities. The capacity to track emissions has been central to developing policy
and to implementing data-driven regulatory frameworks. As a result, China has increased its reliance
on non-fossil energy sources (predominantly renewables and nuclear) from 9.4% of total energy use
in 2010 to 12.0% in 2015, surpassing the 12th Five-Year Plan target of 11.4% by 2015. The most recent
Five-Year Plan aims to increase non-fossil energy use to at least 15% by 2020, and to at least 20%
by 2030.

Although many preventive measures have been undertaken, the current condition of air pollution
in China is still undeniably serious. In 2017, among the 338 prefecture-level (and above) cities, only 99
cities were reported to meet the environmental air quality standards, accounting for only 29.3% of
the total number of cities. Moreover, the air quality of 239 cities was below standard, accounting for
70.7%. According to the National Ambient Air Quality Standards set by the U.S. EPA (Environmental
Protection Agency), the PM2.5 standard is 35 µg/m3. As depicted in Figure 1, in recent years, more
than 70% of cities in China have not met the environmental standards.
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Many cities have set out clear plans regarding city size limits in China. For example, from
the perspective of ecological capacity (available water resources and per capita water resources),
Beijing has determined that the size of its urban population should be under 23 million in the long
term. According to the City Master Plan, many other cities have proposed controlling their city size
(measured by population) such as Shanghai, Guangzhou, Shenzhen, and Wuhan. Controlling the size
of the city seems to have become an important means of managing “urban diseases”. However, from
another perspective, the expansion of city size is conducive to the formation of the urban economy of
scale. The high concentration of the population has led to the intensive use of energy and an efficient
reduction in pollution emissions, which has resulted in a gradual decline in per capita pollution.
However, limiting the city size may not decrease the urban pollution.

City size is an important topic in urban economics research and is usually measured by urban
population. The optimal city size is reached when the urban marginal costs equal the marginal
benefits. Camagni et al. [7] formulated an equilibrium urban size model and generated a model using
59 European cities, concluding that there was no single optimal city size as each city had its own
“equilibrium” size. Duan [8] used the cross-sectional data of 284 prefecture-level cities to study the
optimal city size. On the basis of quantile regression, the city size was shown to be affected by factors
such as market size, public finance, knowledge spillover, and urban–rural income gap. Wang [9]
reviewed China’s urbanization process and explored the optimal size and urbanization path of Chinese
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cities, which showed that the city size was related to the economic development level, traffic conditions,
and geographical location. Pollution is another important topic. The Environmental Kuznets Curve
(EKC) proposed by Grossman and Krueger [10] explains the coordinated development of economic and
environmental degradation. The EKC hypothesis argues that there exists an inverted U-shape between
economic development and pollution, implying that environment pollution increases with economic
output at an early stage, but decreases as economic output surpasses the inflection point. The EKC
hypothesis has been validated in upper middle and high-income countries [11], where the existence of
the inverted U-shaped relationship has been adapted for different environmental degradation factors,
such as CO2 [12], SO2 [13], and waste water [14].

Some scholars have investigated the relationship between air pollution and city size; however,
no consistent conclusions have been reached. Han et al. [15] stated that large cities had contributions
of 5.40 ± 4.80 µg/m3·PM2.5 year per million people in China. Shukla and Parikh [16] focused on
the relationship between ambient air quality and city size and studied the relationship theoretically
and empirically using data from international cities. They found that a positive association between
poor air quality and city size and developed–developing country differences emerged. Han [17]
selected 350 prefectures in China to estimate the nexus between PM2.5 and city size using one-way
analysis of variance (ANOVA) and Fisher’s least significant difference (LSD) and found that PM2.5 was
significantly correlated with city size. Oliveira [18] found support of a power-law superlinear scaling
behavior between CO2 emissions and city size using data from U.S. cities. Cole and Neumayer [19]
found evidence that population increases were matched by proportional increases in carbon dioxide
emissions and a U-shaped relationship for sulfur dioxide emissions. Crame [20] made an empirical
case study based on a modified IPAT (Human Impact, Population, Affluence and Technology)
model and found that a large population was associated with a greater increase in air pollutant
emissions. Zhang [21] used panel data from 29 provinces spanning the period from 1997 to 2012 to
demonstrate that population quality increased China’s carbon emissions. Liddle [22] utilized panel
regressions based on 12 different time spans in 80 countries to evaluate the carbon emissions elasticity
of the population. Liddle’s results indicated that elasticity was likely not robust or statistically
significantly different from either an OECD (the Organisation for Economic Co-operation and
Development) or a non-OECD country. Zhou and Liu [23] concluded that urbanization, represented
by population, positively affected CO2, particularly in China’s eastern and central regions. U-shaped
relationships [24] have also been detected, which suggests a complicated correlation between city size
and the atmospheric environment.

Air pollution is the foremost form of urban pollution and has led to wide public concerns.
Airborne particulate matter and ambient air pollution are proven group 1 human carcinogens [25].
Urban population size and its related activities have been confidently attributed to urban air pollution,
and there is a significant correlation between air pollution and the population [26]. As the Chinese
government is continually proposing new urbanization, it is bound to cause a further expansion of
the city size. Will the expansion of city size inevitably lead to an increase in PM2.5 pollution? What is
the relationship between PM2.5 pollution and city size? Can controlling the size of the city improve
the quality of the urban environment? This paper aimed to answer these questions by examining the
correlation between PM2.5 pollution and city size. The goal of this study was to achieve a win–win
situation for both city size and PM2.5 pollution.

In general, the correlation between city size and air pollution has been widely studied based
on different quantitative techniques, research areas, and variables. Several shortcomings still exist
regarding the relationship between city size and air pollution. First, PM2.5 is the primary air pollutant
of air pollution, but many previous studies have focused on other pollutants such as NOx and SO2.
Therefore, there has been little research in terms of PM2.5, and an inadequate understanding of the
relationship between city size and PM2.5 still remains. Second, studies have seldom taken into account
the nonlinear relationship and regional heterogeneity for country-level research. Third, both panel and
cross-section data and approaches have been used, but the endogeneity problem has been neglected.
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Therefore, this paper attempts to fill these gaps. This paper collected unbalanced panel data from 278
cities in China. The long time span and high number of observation samples allowed us to obtain a
robust conclusion in comparison with previous studies based on provincial data. On the basis of the
extended STIRPAT (Stochastic Impacts by Regression on Population, Affluence and Technology) model,
a classic useful analytic tool for disciplining environmental policy with an empirical foundation, this
study built fixed panel models to estimate the correlations between city size and PM2.5, and dynamic
panel models were used for checking the robustness.

The remainder of the paper is organized as follows. Section 2 presents the data description and
model specification, which is followed by the empirical results and regional heterogeneity test in
Sections 3 and 4. Finally, Section 5 presents our conclusions.

2. Model and Data

2.1. Theoretical Framework

The IPAT model proposed by Ehrlich and Holdren [27] is a classic model for analyzing the impact
of human activities on the environment. The basic equation of the model is I = PAT, where I represents
pollution; P represents population; A represents the level of abundance (understood as per capita
consumption or per capita GDP); and T refers to technology (understood as the impact of unit economic
activity on pollution, so it can be expanded into multiple economic variables). The IPAT model has
been successfully used to analyze sustainability assessments until recent years [28]. The IPAT model
was widely adopted and extended into models like the Kaya equation [29], ImPACT [30], IPBAT [31],
and ImPACTS [32]. However, this type of model has obvious shortcomings. First, it is based on
the assumption that the change in pollution and the change of various influential factors occur at
the same scale, that is, P (or A, T) doubles as well as environmental pollution. This clearly does not
match reality. Second, the model is given in the form of accounting equations, so hypothesis testing
cannot be performed. Third, the model cannot capture nonlinear relationships [33]. To overcome the
shortcomings of the IPAT models, Dietz and Rosa developed these models into a stochastic model,
that is, STIRPAT [34]:

Ii = aPb
i Ac

i Td
i ei. (1)

Take the natural logarithm of the two sides of the equation:

ln Ii = α + b ln Pi + c ln Ai + d ln Ti + εi, (2)

where subscript i denotes the observational units; a represents a constant term and b, c, and d are
coefficients; e represents an error term; and α and ε are the values of a and e, respectively, after taking
the natural logarithm form. Dietz and Rosa also pointed out that P, A, and T could be decomposed,
in addition to other reasonable control variables that could be added to the equation.

The STIRPAT model has been widely and successfully applied. For example, Shahbaz et al. [35]
investigated the relationship between CO2 emissions and urbanization in Malaysia using the STIRPAT
model and VECM (Vector Error Correction Model) Granger causality test. Chai et al. [36] adapted
the STIRPAT model to forecast future natural gas consumption in China. In addition, Hua et al. [37]
established a STIRPAT model and analyzed the effect of fiscal spending on air pollution in Chinese cities.
The previous literature indicates that the STIRPAT model is flexible and can be refined using different
functional forms. Thus, a STIRPAT model was used in this study to explain the city size-PM2.5 nexus.

2.2. Econometric Model

On the basis of the STIRPAT model, we set up the econometric model by expanding and
decomposing the P, A, T variables. The basic static panel model was established as follows:
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ln PMit = β0 + β1 ln CZit + β2(ln CZit)
2 + β3(ln CZit)

3 + β4 ln PGDPit
+β5(ln PGDPit)

2 + β6 ln ECit + β7 ln ESit + β8 ln TOit
+β9 ln PEit + ui + λt + ηit

(3)

In addition to the basic static model, we set up a dynamic model for a robustness check. Equation
(4) shows the dynamic panel model, which includes lagged PM2.5 as an independent variable. On
the one hand, the basic static model is confronted with the endogeneity problem. The dynamic panel
model can alleviate this problem by using lagged variables as instrument variables. On the other hand,
current pollution may be influenced by past situations. It has been proven that PM2.5 pollution shows
a snowball effect in the dimension of time [38].

ln PMit = β0 + α ln PMit−1+ + β1 ln CZit + β2(ln CZit)
2 + β3(ln CZit)

3

+β4 ln PGDPit + β5(ln PGDPit)
2 + β6 ln ECit + β7 ln ESit

+β8 ln TOit + β9 ln PEit + ui + λt + ηit

(4)

where subscript i represents the cities and t is the time in years. β0 is the constant, and ηit is the
error term. β1–β9 represent the slope coefficients. City fixed-effects µi and time fixed-effects λt are
also included.

First, city size (denoted by CZ) is the core explanatory variable. The primary indicator of city size
is urban population, that is, the people living in cities and not in rural areas. To explore the nonlinear
relationship between city size and PM2.5, we added three squared and cubic terms of city size into the
econometric model.

Second, abundance is measured by per capita GDP (denoted by PGDP). To capture the inverted
U-shaped relationship, the squared per capita GDP was added to the model.

Third, while Lin et al. [39] employed energy intensity to measure technology, Poumanyvong and
Kaneko [40] indicated technology using the share of industry and service in GDP. Thus, we decomposed
T into two variables—energy consumption (denoted by EC) and economic structure (denoted by ES).
These are measured by the amount of liquefied petroleum gas supply and the ratio of secondary
industry, respectively.

Finally, two control variables were introduced to our model: trade openness (denoted by TO) and
public expenditure (denoted by PE). The “Pollution Haven Hypothesis” predicts that the liberalized
trade in goods will lead to the relocation of pollution from developed countries to developing countries.
The trade openness is measured by the amount of foreign capital actually utilized. Expansionary
fiscal spending has validated an alleviation effect on CO2 emissions [41]. Public expenditure is an
indispensable control variable.

2.3. Econometric Methodology

There are two estimator approaches for the static panel model; namely the fixed effects model
and the random effects model. We selected the optimal model using the Hausman test. The null
hypothesis of the Hausman test is that the difference in coefficients is not systematic. The Hausman
test can be used to differentiate between fixed effects model and random effects model in panel data.
In this case, random effects is preferred under the null hypothesis because of higher efficiency, while
under the alternative, fixed effects is at least as consistent and thus preferred. If the null hypothesis is
rejected, the fixed effects model is suitable. We conducted the Hausman test, and the results showed
that the Chi-square p-value was 0.000, which means that the model rejects the null hypothesis at the
1% significance level. Thus, the fixed effects model was used to estimate the static panel model.

Regarding the dynamic panel model, the difference and system generalized methods of moments
(DGMM and SGMM, respectively) can be used for the estimation. The DGMM is prone to the problem
of weak instruments. The SGMM considers both difference and level equations as an equation system
that can improve the estimation efficiency. This study adopted SGMM as the estimator approach for the
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dynamic panel model. Furthermore, SGMM requires the Hansen J test to ensure that the instruments
are exogenous and the AR(2) test to examine no second-order serial correlation.

The curve shapes between PM2.5 and city size can be determined from the signs of coefficients
β1, β2, and β3, as shown in Table 1. To obtain a valid result, the model is estimated as follows: test β1,
β2, and β3 first; if β3 is not significant (p > 0.1), then drop the third power of city size and reevaluate
the model to examine the U-shape or inverted U-shape curve; if β2 is not significant (p > 0.1), then
eliminate the square city size and re-evaluate the model.

Table 1. Curve shapes and the signs of coefficients.

The Signs of Coefficients Curve Shapes

β1 = β2 = β3 = 0 No relevance

β1 6= 0, β2 = β3 = 0 Monotonically increasing (β1 > 0) linear relationship
Monotonically decreasing (β1 < 0) linear relationship

β1 < 0, β2 > 0, β3 = 0 U-shape
β1 > 0, β2 < 0, β3 = 0 Inverted U-shape
β1 > 0, β2 < 0, β3 > 0 N-shape
β1 < 0, β2 > 0, β3 < 0 Inverted N-shape

2.4. Data

The PM2.5 data in this paper were obtained from the Department of Physics and Atmospheric
Science, Dalhousie University, Canada. Donkelaar et al. [42] estimated PM2.5 by combining aerosol
optical depth (AOD) retrievals from NASA, MODIS, MISR, and Sea WIFS instruments with the
GEOS-Chem chemical transport model, which were subsequently calibrated to global ground-based
observations of PM2.5 using geographically weighted regression (GWR). We deflated per capita GDP
data into comparable data from 2007. RMB is the official currency of the People’s Republic of China.
We converted the amount of foreign investment into RMB using the annual average exchange rate of
RMB for that year and then used the GDP deflator to deflate. Other variables related to price factors
were also deflated by the GDP deflator. We removed the missing values, and subsequently assigned
the value of 0 to the value of 1 to make its logarithm meaningful. Finally, we obtained the unbalanced
panel data of 2389 observations in 278 cities from 2007 to 2016. The data description and source are
shown in Table 2. Table 3 presents the descriptive statistics of the main variables.

Table 4 presents the correlation coefficients among the core variables, partly for checking the
relationships among variables, especially the correlation between PM2.5 and city size. It is clear that
the correlation coefficients between PM2.5 and city size were statistically significant at the 1% level.

Table 2. Data description and source. GDP—gross domestic product.

Variables Definition Description Source

PM PM2.5
City ground-level fine particulate

matter

The Atmospheric Composition
Analysis Group in Dalhousie

University
CZ City size Urban population China City Statistical Yearbook

PGDP GDP per capita GDP per capita China City Statistical Yearbook

EC Energy Consumption The amount of liquefied
petroleum gas supply China City Statistical Yearbook

ES Economic Structure Secondary industry output/GDP China City Statistical Yearbook

TO Trade Openness The amount of foreign capital
actually utilized China City Statistical Yearbook

PE Public Expenditure Fiscal spending China City Statistical Yearbook
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Table 3. Variable descriptive statistics.

Variable Mean Standard Deviation Min Max

ln PM 3.56 0.47 1.55 4.46
ln CZ 4.69 0.82 2.76 7.79

ln PGDP 10.23 0.60 8.62 12.79
ln EC 9.25 1.50 1.39 13.90
ln ES 3.89 0.22 2.77 4.44
ln TO 11.67 2.01 0.00 16.55
ln PE 14.27 0.78 12.05 17.77

Table 4. Correlation coefficients.

lnPM lnCZ lnPGDP lnEC lnES lnTO lnPE

ln PM 1
ln CZ 0.266 *** 1

ln PGDP 0.007 0.441 *** 1
ln EC 0.155 *** −0.126 *** 0.264 *** 1
ln ES 0.374 *** 0.523 *** 0.479 *** 0.087 *** 1
ln TO 0.220 *** 0.710 *** 0.714 *** 0.048 ** 0.670 *** 1
ln PE 0.156 *** 0.601 *** 0.370 *** −0.101 *** 0.500 *** 0.543 *** 1

Note: *** indicates significance at the 1% level. ** indicates significance at the 5% level.

3. Results

3.1. Baseline Results

To avoid the multicollinearity problem and examine the respective influences of each independent
variable, we employed stepwise regression. The empirical results for Equation (3) are presented in
Table 5. Column 1 includes only two core explanatory variables: city size and per capita GDP. Other
variables were introduced into columns 2–5 in sequence.

Almost all of the coefficients were very significant. The F statistics were statistically significant at
the 1% level, which indicates that the models were significant as a whole. On the basis of columns
1–5, the coefficient signs and significance of the city size and per capita GDP were invariant as other
variables were added, showing that the results were robust. The added variables were also significant,
especially in column 5. The variables selected in the model were all relevant to PM2.5.

The coefficient signs of city size (ln CZ, (ln CZ)2, (ln CZ)3) suggest that an inverted N-shaped
curve nexus existed between PM2.5 and city size. All coefficients of city size were statistically significant
at the 1% level, which demonstrates a robust inverted N-shaped curve. PM2.5 showed a significant
negative response to the expansion of city size at the early stage. When the city size reached the first
inflection point, it exerted a positive and significant effect on PM2.5. As the city size increased to the
second inflection point, the effect was negative and significant. The first inflection point was 949,200
and the second was 3,736,100 as estimated based on column 5. According to the urban population
statistics of 2016, 131 cities, accounting for 45.8% of 286 cities in China, had not reached the first
inflection point; most of these cities are located in the central and western parts of China. Only 24
developed cities had passed the second inflection point. Therefore, city size had a positive and
statistically significant impact on PM2.5 for the 131 cities.

The coefficients of per capita GDP were negative and significant at the 1% level, while its squared
terms were significantly positive, reflecting a U-shaped relationship between PM2.5 and economic
development, and rejecting the existence of an Environmental Kuznets Curve (EKC).
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Table 5. Empirical results of the static panel model.

Independent
Variable

lnPM

(1) (2) (3) (4) (5)

ln CZ
−1.757 *** −1.738 *** −1.714 *** −1.751 *** −1.699 ***

(−3.52) (−3.46) (−3.59) (−3.69) (−3.42)

(ln CZ)2 0.340 *** 0.336 *** 0.333 *** 0.341 *** 0.330 ***
(3.39) (3.33) (3.44) (3.54) (3.27)

(ln CZ)3 −0.022 *** −0.021 *** −0.022 *** −0.022 *** −0.021 ***
(−3.29) (−3.21) (−3.33) (−3.45) (−3.15)

ln PGDP
−0.731 *** −0.710 *** −0.613 *** −0.596 *** −0.421 **

(−5.82) (−5.69) (−4.36) (−4.15) (−2.58)

(ln PGDP)2 0.029 *** 0.028 *** 0.024 *** 0.023 *** 0.016 **
(4.75) (4.60) (3.46) (3.25) (2.17)

ln EC
−0.009 * −0.008 −0.008 −0.009 *
(−1.76) (−1.53) (−1.59) (−1.69)

ln ES
−0.066 −0.085 * −0.111 **
(−1.44) (−1.79) (−2.38)

ln TO
0.007 ** 0.007 **
(2.36) (2.43)

ln PE
−0.034 *
(−1.93)

cons 10.960 *** 10.913 *** 10.621 *** 10.600 *** 9.976 ***
(10.69) (10.60) (10.56) (10.53) (9.30)

N 2389 2389 2389 2389 2389
R-squared 0.122 0.124 0.126 0.129 0.132

F 54.68 *** 44.76 *** 42.07 *** 38.48 *** 34.76 ***

Note: The t statistics are presented in parentheses. *** indicates significance at the 1% level. ** indicates significance
at the 5% level. * indicates significance at the 10% level.

Energy consumption exerted a negative effect on PM2.5, but the coefficients were small and
not significant in columns 3 and 4. Similarly, the economic structure and the share of secondary
industry presented an insignificant negative effect on PM2.5. Energy consumption and economic
structure seemed to affect PM2.5 weakly and insignificantly. This negative effect may be the result
of the promotion of clean energy and economic structural transformation proposed by the Chinese
government, especially after the 2008 financial crisis. Fiscal spending measured by public expenditure
also had a negative impact on PM2.5 with a 10% significance level, which indicates that fiscal policy
work aimed to alleviate PM2.5 as a 10% increase in public expenditure reduced PM2.5 by 0.34%.
Regarding trade openness, a positive and significant (at the 5% level) effect on PM2.5 was observed,
corresponding to the “Pollution Haven Hypothesis”. An increase in the amount of foreign investment
by 10% would lead to an increase in PM2.5 by approximately 0.07%, which was weak but significant.

3.2. Robustness

3.2.1. Period Results

We separated all of the data into two periods, 2007–2011 and 2012–2016. We employed the same
method for the baseline results to estimate Equation (3). Tables 6 and 7 present the empirical results of
the two periods 2007–2011 and 2012–2016. The coefficient signs of city size (ln CZ, (ln CZ)2, (ln CZ)3)
were in accordance with the baseline results. All coefficients of city size were statistically significant
at least at the 10% level. The results of both periods demonstrate a robust inverted N-shaped curve
between PM2.5 and city size.
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Table 6. Empirical results of the static panel model for 2007–2011.

Independent
Variable

lnPM (2007–2011)

(1) (2) (3) (4) (5)

ln CZ
−1.579 * −1.541 * −1.573 * −1.473 * −1.506 *
(−1.97) (–1.88) (−1.91) (−1.75) (−1.80)

(ln CZ)2 0.332 ** 0.326 * 0.332 ** 0.311 * 0.317 *
(2.03) (1.94) (1.97) (1.81) (1.85)

(ln CZ)3 −0.023 ** −0.023 ** −0.023 ** −0.022 * −0.022 *
(−2.09) (–2.01) (−2.04) (−1.87) (−1.90)

ln PGDP
−0.979 *** −0.683 ** −0.704 ** −0.536 * −0.511 *

(−3.97) (−2.55) (−2.56) (−1.75) (−1.68)

(ln PGDP)2 0.043 *** 0.029 ** 0.030 ** 0.024 * 0.022 *
(3.56) (2.31) (2.33) (1.69) (1.76)

ln EC
−0.165 * −0.166 * −0.167 * −0.165 *
(−1.87) (−1.88) (−1.93) (−1.96)

ln ES
−0.003 −0.004 −0.004
(−0.45) (−0.60) (−0.59)

ln TO
0.0240 0.025
(1.21) (1.28)

ln PE
−0.015 ***

(−2.65)

cons 11.571 *** 10.532 *** 10.667 *** 9.787 *** 9.866 ***
(5.82) (5.29) (5.26) (4.38) (4.42)

N 1160 1160 1160 1160 1160
R-squared 0.045 0.05 0.05 0.052 0.056

F 11.12 *** 9.231 *** 7.903 *** 7.893 *** 7.603 ***

Note: The t statistics are presented in parentheses. *** indicates significance at the 1% level. ** indicates significance
at the 5% level. * indicates significance at the 10% level.

Table 7. Empirical results of the static panel model for 2012–2016.

Independent
Variable

lnPM (2012–2016)

(1) (2) (3) (4) (5)

ln CZ
−2.468 *** −2.592 *** −2.588 *** −2.378 *** −2.378 ***

(−4.04) (−4.78) (−4.76) (−4.38) (−4.35)

(ln CZ)2 0.487 *** 0.506 *** 0.506 *** 0.454 *** 0.454 ***
(3.84) (4.39) (4.38) (3.91) (3.88)

(ln CZ)3 −0.032 *** −0.033 *** −0.033 *** −0.028 *** −0.028 ***
(−3.69) (−4.01) (−4.01) (−3.46) (−3.44)

ln PGDP
−1.789 *** −1.604 *** −1.603 *** −0.662 ** −0.661 **

(−6.95) (−5.71) (−5.67) (−2.01) (−2.01)

(ln PGDP)2 0.074 *** 0.065 *** 0.065 *** 0.025 * 0.025 *
(6.27) (4.96) (4.91) (1.68) (1.68)

ln EC
−0.296 *** −0.284 *** −0.280 *** −0.282 ***

(−4.27) (−3.94) (−4.01) (−3.93)

ln ES
−0.002 −0.006 −0.006
(−0.51) (−1.38) (−1.39)

ln TO
0.190 *** 0.190 ***

(4.70) (4.66)

ln PE
−0.002
(−0.17)

cons 18.289 *** 16.375 *** 16.385 *** 13.281 *** 13.298 ***
(11.25) (9.73) (9.73) (7.60) (7.57)

N 979 979 979 979 979
R-squared 0.127 0.158 0.158 0.200 0.200

F 36.99 *** 37.49 *** 32.51 *** 33.37 *** 29.69 ***

Note: The t statistics are in presented parentheses. *** indicates significance at 1% level. ** indicates significance at
5% level. * indicates significance at 10% level.
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3.2.2. Dynamic Panel Model

The dynamic panel model was estimated using SGMM for the robustness test. Table 8 displays
the empirical results of the dynamic model. The signs of the coefficients were almost in accordance
with the static model. The AR(1) tests showed that the first-order series was correlated significantly,
while the AR(2) tests did not reject the absence of second-order autocorrelation. As variables were
added to the model, the p-values of the Hansen test increased obviously, which implied that there was
no rejection of the hypothesis of the validity of lagged variables in the levels and in the difference of
instruments. Thus, the results were effective and robust. It is notable that the coefficients of the lagged
PM2.5 were positive and strongly significant. Consequently, the previous PM2.5 increasingly led to the
aggravation of the current PM2.5.

Table 8. Empirical results of the dynamic panel model.

Independent
Variable

lnPM

(1) (2) (3) (4) (5)

ln PMt−1
0.504 *** 0.504 *** 0.520 *** 0.511 *** 0.522 ***
(90.75) (114.17) (204.25) (290.45) (166.22)

ln CZ
−0.852 *** −1.326 *** −1.157 *** −0.884 *** −0.634 ***
(−10.44) (−18.47) (−31.96) (−18.62) (−11.79)

(ln CZ)2 0.172 *** 0.269 *** 0.237 *** 0.185 *** 0.136 ***
(11.61) (20.14) (33.80) (19.57) (12.85)

(ln CZ)3 −0.011 *** −0.017 *** −0.015 *** −0.012 *** −0.009 ***
(−12.61) (−21.05) (−33.95) (−19.87) (−12.94)

ln PGDP
−0.556 *** −0.568 *** −0.603 *** −0.532 *** −0.511 ***
(−16.65) (−15.72) (−34.61) (−47.21) (−17.76)

(ln PGDP)2 0.026 *** 0.027 *** 0.029 *** 0.025 *** 0.024 ***
(16.80) (16.20) (34.98) (45.75) (17.20)

ln EC
−0.034 *** −0.031 *** −0.027 *** −0.022 ***
(−18.45) (−23.74) (−30.20) (−29.51)

ln ES
0.046 *** 0.018 *** 0.003
(11.85) (6.18) (0.78)

ln TO
0.007 *** 0.007 ***
(34.04) (34.43)

ln PE
−0.023 ***
(−24.44)

cons 4.565 *** 5.643 *** 5.352 *** 4.528 *** 4.279 ***
(23.19) (25.49) (51.96) (51.08) (23.96)

N 1782 1782 1782 1782 1782

Hansen test
245.2 252.1 258.7 259.4 257.7

[0.004] [0.088] [0.458] [0.909] [0.998]

AR (1)
−10.21 −10.17 −10.22 −10.20 −10.25
[0.000] [0.000] [0.000] [0.000] [0.000]

AR (2)
−0.154 −0.0560 0.323 0.0380 0.255
[0.878] [0.955] [0.746] [0.970] [0.799]

Note: The t statistics are presented in parentheses. p-values are presented in square brackets. *** indicates
significance at the 1% level.

Through comparison of the baseline results and the two robustness tests, periods, and dynamic
panel mode, effective and robust conclusions were drawn. There exists an inverted N-shaped
relationship between PM2.5 and city size. We found no evidence in support of the EKC hypothesis,
while the “Pollution Haven Hypothesis” was validated.
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4. Regional Heterogeneity

China has a large territory with many differences between the regions. We divided the 30
provinces into three regions as per the official division method, which is mapped in Figure 2. Both PM2.5

and city size were different in the different regions. Cluster maps, showing the clusters and outliers
of PM2.5 concentrations for 2007 and 2016, are given in Figure 3. Figure 4 displays the average
PM2.5 concentration between 2007 and 2016 in the three different regions. The PM2.5 concentration
is higher in eastern China than that in central and western China. Overall, the past 10 years has
witnessed a decrease in the PM2.5 concentration. However, we can see quite different patterns in
different regions. Although the PM2.5 concentration was higher than in central China, there were
some similarities between eastern and central China in the changing trends of PM2.5 concentration.
There were significant drops between 2007 and 2012, resulting in the lowest level in 2012. This was
followed by a fluctuating increase until 2015. In 2016, there was a significant decline. In western China,
the PM2.5 concentration experienced a steady decrease from 2007 to 2016.
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There were differences in both the PM2.5 concentration and city size among the three regions.
In the National Main Functional Area Planning released by the Government of China, the land space in
China has been divided into four areas: optimized development area, key development area, restricted
development area, and prohibited development area. While most of the eastern and central regions
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belong to the optimized and key development areas, most of western China belongs to restricted and
prohibited development areas.

PM2.5 pollution in China has been proven to have regional differences [43]. Wu [44] found that
the relationship between PM2.5 and population in China was complex because of regional differences.
Thus, we examined whether regional differences existed for the relationship between PM2.5 and city
size in a territory as vast as China.

The regional empirical results are shown in Table 9. The F statistics were statistically significant at
the 1% level, indicating that the three models were suitable and significant. There were differences in
different regions, for example, in eastern China, an inverted N-shaped curve existed between PM2.5

and city size that was significant at the 10% level and was in line with all sample regressions (shown in
column 5, Table 3). However, the relationship in central and western China was different. The results
demonstrated a U-shaped curve relationship and a negative linear relationship in central and western
China, respectively. In western China, the coefficients of per capita GDP were consistent for all cities,
which negates the EKC hypothesis. The coefficients of per capita GDP in eastern and central China
were contrary to those in western China at an insignificant level.

Table 9. Regional empirical results.

Independent Variable
lnPM

Eastern Central Western

ln CZ
−0.968 * −0.696 *** −0.139 ***
(−1.83) (−2.74) (−2.86)

(ln CZ)2 0.192 * 0.071 **
(1.84) (2.47)

(ln CZ)3 −0.012 *
(−1.81)

ln PGDP
0.509 * 0.001 −1.214 ***
(1.88) (0.00) (−3.33)

(ln PGDP)2 −0.02 −0.009 0.049 ***
(−1.64) (−0.49) (2.71)

ln EC
–0.009 –0.004 −0.020 **

(−1.47) (−0.52) (−2.39)

ln ES
−0.190 *** −0.248 *** 0.213 ***

(−3.92) (−4.88) (3.22)

ln TO
0.003 0.008 0.005
(0.60) (1.36) (1.49)

ln PE
−0.149 *** 0.023 0.042

(−7.79) (0.83) (1.35)

cons 5.131 *** 6.781 *** 9.761 ***
(3.15) (4.04) (5.49)

N 906 916 567
R-squared 0.144 0.149 0.233

F 14.88 *** 17.67 *** 20.87 ***

Note: The t statistics are presented in parentheses. *** indicates significance at the 1% level. ** indicates significance
at the 5% level. * indicates significance at the 10% level.

For the other controlled variables, energy consumption exhibited a negative impact on PM2.5,
which was similar throughout China, with different levels of significance. While the economic structure
exerted a significant and negative effect on PM2.5 in eastern and central China, a positive and significant
effect was observed in western China. The effects of trade openness were positive but weak in all three
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regions. Public expenditure presented a negative and significant effect only for eastern China, with
weak effects for central and western China.

5. Conclusions and Implications

This study investigated the relationship between PM2.5 and city size in China. PM2.5 pollution
leads to serious public concerns. In this study, we provided city-level evidence of the effect of city
size on PM2.5 pollutants. This paper applied the theoretical and analytical framework of the STIRPAT
model to a static panel model using 278 cities between 2007 and 2016, and the dynamic models were
built for the robustness check. Regional differences were also examined. Our conclusions are as
follows:

(1) There was a significantly inverted N-shaped correlation between PM2.5 and city size. According
to the estimation, the two inflection points were 949,200 and 3,736,100.

(2) We found no evidence to support the EKC hypothesis, while the “Pollution Haven Hypothesis”
was proven. Energy consumption, the share of second industry, and public expenditure all
presented a negative and significant effect on PM2.5.

(3) We found that regional differences did exist. In Eastern China, the N-shaped correlation between
PM2.5 and city size was in accordance throughout China. The EKC hypothesis has still not
been validated. The regional regressions showed a U-shaped curve relationship and negative
linear relationship in central and western China. In different regions, the coefficient signs and
significance of energy consumption, the share of second industry, and public expenditure were
heterogeneous and complicated.

On the basis of our findings, we propose the following policy recommendations to facilitate a
more environmental city.

(1) The positive correlation between PM2.5 and city size will exist for most cities for the long term.
Only 24 developed cities, most of them located in eastern China, have passed the second inflection
point. Almost every city is facing or will face the situation of increasing PM2.5 as the size of the
city expands. To this end, policy makers in cities with a growing population need to implement
greater measures to reduce pollution.

(2) The inverted N-shaped correlation suggests that controlling the city size does not seem to be
necessary for very small and very large cities. PM2.5 did not increase with the size of the city for
very large cities, possibly because an efficient reduction in pollution emissions has been reached
in large cities as a result of technological progress.

(3) The effect of trade openness seems to suggest that international firms are more environmentally
friendly. Policy makers may consider taking measures to attract more FDI (Foreign Direct
Investment) to reduce pollution.

(4) The different estimation results for eastern, western, and central China suggest that it is necessary
for local governments to have more flexibility in designing policies on environmental issues.
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