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An Agent-Based Model for Pathogen Persistence and
Cross-Contamination Dynamics in a Food Facility

Amir Mokhtari∗ and Jane M. Van Doren

We used an agent-based modeling (ABM) framework and developed a mathematical model
to explain the complex dynamics of microbial persistence and spread within a food facility
and to aid risk managers in identifying effective mitigation options. The model explicitly con-
sidered personal hygiene practices by food handlers as well as their activities and simulated a
spatially explicit dynamic system representing complex interaction patterns among food han-
dlers, facility environment, and foods. To demonstrate the utility of the model in a decision-
making context, we created a hypothetical case study and used it to compare different risk
mitigation strategies for reducing contamination and spread of Listeria monocytogenes in a
food facility. Model results indicated that areas with no direct contact with foods (e.g., load-
ing dock and restroom) can serve as contamination niches and recontaminate areas that have
direct contact with food products. Furthermore, food handlers’ behaviors, including, for ex-
ample, hygiene and sanitation practices, can impact the persistence of microbial contamina-
tion in the facility environment and the spread of contamination to prepared foods. Using
this case study, we also demonstrated benefits of an ABM framework for addressing food
safety in a complex system in which emergent system-level responses are predicted using a
bottom-up approach that observes individual agents (e.g., food handlers) and their behaviors.
Our model can be applied to a wide variety of pathogens, food commodities, and activity pat-
terns to evaluate efficacy of food-safety management practices and quantify contamination
reductions associated with proposed mitigation strategies in food facilities.

KEY WORDS: Agent-based modeling; food facility; Listeria monocytogenes; microbial cross-
contamination; pathogen persistence

1. INTRODUCTION

Persistence of microbial pathogens in the
food-facility environment and potential for cross-
contamination of food products during preparation
have been implicated as factors contributing to
several well-documented outbreaks of foodborne
illness (Brown, Hoover, Selman, Coleman, & Schurz
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Rogers, 2017; Ferreira, Wiedmann, Teixeira, &
Stasiewicz, 2014; Heiman et al., 2016; Jackson et al.,
2011; Munther & Wu, 2013). In its recommendations
for food-safety plans, based on requirements of
the Food Safety Modernization Act, U.S. Food
and Drug Administration draft guidance specifies
that pathogen persistence and spread within a food
facility are controlled and managed predominantly
by measures that provide basic environmental and
operational conditions needed to produce safe and
wholesome foods. Such measures, also known as
prerequisite programs (PRPs), are based on the
principles of hazard analysis and critical control
points (HACCP) and may include proper clean-
ing and disinfection as well as personal hygiene
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practices, among other practices (Gaze, 2015; Food
and Drug Administration [FDA], 2018). While risk
factors contributing to microbial persistence and
spread in food facilities have been identified (Valero,
Rodriguez, Posada-Izquierdo, & Peres-Rodriguez,
2016; Wirtanen & Salo, 2007), their potential impacts
on the likelihood and levels of contamination in
prepared foods are not well understood.

Mathematical models, when grounded in ob-
servational and experimental data, can provide
numerous insights into the relationships between
food-safety risks and contamination events. Such
models can further facilitate evaluation and ex-
ploration of different mitigation options, in terms
of their potential impacts on reducing the risk of
foodborne illnesses (e.g., Duret et al., 2017; Ivanek,
Grohn, Wiedmann, & Wells, 2004; Mokhtari &
Jaykus, 2009; Mokhtari, Oryang, Chen, Pouillot, &
Van Doren, 2018; Pouillot et al., 2015; Schaffner,
2004). The purpose of the work described here
was to develop a mathematical model to explain
the complex dynamics of microbial persistence and
spread within a food facility and to provide a frame-
work to aid risk managers in identifying effective
mitigation options. To this end, we developed the
FDA’s Quantitative Microbial Risk Assessment
Model for Food Facilities, hereafter referred to
as F2-QMRA. This model can serve as a virtual
laboratory to (i) identify “hot spots” of potential
contamination in different areas of a food facility
(e.g., food processing area, restroom, loading dock)
that can act as contamination niches during facility
operation, (ii) examine food-handler activities and
behaviors that can result in microbial contamination
of foods, and (iii) evaluate the effectiveness of
candidate mitigation options aimed at reducing the
likelihood and level of microbial contamination in
the facility environment and prepared foods.

Challenges inherent in modeling a dynamic sys-
tem, such as operations in a food facility, include
(i) tracking persistence and spread of microbial
pathogens in tandem with movements of food han-
dlers and foods over time, (ii) accounting for spa-
tial heterogeneity of microbial contamination and
presence of contamination-harborage sites in the
facility environment, (iii) quantifying likelihood of
cross-contamination events over time and space dur-
ing facility operation, and (iv) capturing temporal
and spatial relationships among multiple activities
that may occur during facility operation (e.g., un-
loading food ingredients, using restrooms, preparing
foods) and the impact of these activities on spread of

microbial contamination in the facility environment
and to prepared foods.

F2-QMRA addresses these challenges by adopt-
ing an agent-based modeling (ABM) framework that
simulates behaviors and activities of food handlers
in a food facility, while explicitly tracking spatial
distribution of microbial contamination on individ-
ual objects in the facility environment. ABM is a
computer simulation technique used to study the in-
teractions among people, objects, places, and time. It
employs a bottom-up approach to modeling complex
systems, starting from the individual agents involved
(Abar, Theodoropoulos, Lemarinier, & O’Hare,
2017). ABM differs from traditional, regression-
based methods in that it allows for exploration
of complex systems that display dependence of
individuals and feedback loops in causal mechanisms
(El-Sayed, Scarborough, Seemann, & Galea, 2012).
Compared with discrete-event simulation models
that represent a top-down modeling approach with
simulation events that typically are reactive and
limited in capabilities (Duret et al., 2017; Pouillot
et al., 2015), ABM is more flexible and provides a
suitable framework for dynamic systems in which
agents frequently interact with each other and whose
behaviors can change (Chan, Son, & Macal, 2010).
ABM has gained increasing attention over the past
decade, with numerous applications in modeling
risks associated with infectious disease transmis-
sion and recent applications in modeling microbial
cross-contamination (Carley et al., 2006; Mokhtari
et al., 2018; Smolinski, Hamburg, & Lederberg, 2003;
Venkatramanan et al., 2018).

To demonstrate the utility of F2-QMRA, we cre-
ated a hypothetical case study and used it to compare
different risk mitigation options for reducing con-
tamination and spread of Listeria monocytogenes in a
food facility with four distinct rooms: food processing
area, common area (office), restroom, and loading
dock. The overall structure of F2-QMRA is intended
to be flexible, so that with minor modifications it can
readily accommodate a variety of facilities with dif-
ferent designs and purposes (e.g., food service, retail)
as well as activities.

2. METHODS

2.1. Overview of the Model

F2-QMRA, including the ABM simulation
framework, was written in the open-source language
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Fig. 1. Example layout for a food facility that includes four distinct areas: food processing area, common area (office), restroom, and
loading dock.

R version 3.4.2 (the R code is available on request:
FDAFoodSafetyRiskModel@fda.hhs.gov). We used
an ABM simulation framework to model a food fa-
cility with food handlers represented as individual
agents. Each food handler participated in selected
daily activities (e.g., unloading ingredients in the
loading dock, preparing foods in the food process-
ing area, among other activities) and demonstrated
certain behaviors (e.g., personal hygiene practices).
Interactions among food handlers and between food
handlers and facility environment then were used to
produce emergent, facility-level dynamics that could
not be deduced or forecasted by the observation of
each individual food handler.

F2-QMRA allows users to explicitly define the
facility layout, including individual rooms and ar-
eas. Each food facility was modeled as a network,
with nodes representing distinct areas (e.g., food pro-
cessing area, office, and restroom). For each node,
room-specific objects were explicitly defined to allow
simulation of potential cross-contamination events
between food handlers and objects during facility

operation (Fig. 1). Each object within a room was
defined using a set of attributes (Table I) and fur-
ther assigned to one of the four sampling zones,
based on the principles of environmental monitoring
(PEM) zoning concept (Almond Board of California,
2010; Brouillette et al., 2014; FDA, 2017). These sam-
pling zones represent different levels of risk, in terms
of likelihood of transferring contamination to food
products once microbial contamination is introduced
to contact surfaces (Table II).

In view of the numerous scenarios and spatial
resolution of the model, the F2-QMRA code was
written to be launched on parallelized processors us-
ing a high-performance computing cluster (Office of
Management, Center for Food Safety and Applied
Nutrition, FDA, College Park, MD). Nonetheless,
the code can be run on a desktop. The model was
vectorized to simultaneously simulate 10,000 inde-
pendent food facilities with the same set of distinct
rooms. We considered variability in initial (base-
line) contamination assumptions, different contami-
nation transfer rates among food handlers and food
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Table I. List of Attributes Defined for Each Specific Type of Object in F2-QMRAa

Object-Specific Attributes Definition

Name Specific object name (e.g., slicer)
Surface area Object surface area (ft2)
Fraction of the surface area representing

holes and cracks
Represents the ability of the object to harbor pathogens and reintroduce microbial

contamination to the environment during facility operation regardless of the surface
sanitation events (see Section 2.2.2 for further discussion)

Total number of grids Number of 4′′ × 4′′ grid cells defined on the object surface area representing potential
swab sample locations (see Section 2.2.1 for further discussion)

Total number of grids for
cross-contamination

Number of grid cells on the object involved in a cross-contamination eventb

Sanitation and disinfection technique Sanitation or disinfection method defined for the object; options include no sanitation,
using surface sanitizer, and using surface disinfectantc

Zone id Represents sampling zone id (see Table II)

aEach specific object is individually tracked within the ABM framework.
bNumber of grid cells involved in a cross-contamination event is less than the total number of grids defined for a specific object (see Section
2.2.5 for further discussion).
cSurface sanitizers were only applied to food-contact surface areas (e.g., cutting board) and meant to reduce, not eliminate, the occurrence
and growth of microbial pathogens. Surface disinfectants were applied to non–food-contact surface areas that were frequently touched to
eliminate microbial pathogens.

Table II. Definition of Environmental Sampling Zones in a Food Facility

Sampling Zones Definition Examples

Zone 1 Areas in the facility that are direct food product contact
surfaces before the product is sealed in a package

Utensil, food-contact surface, conveyor belt, slicer

Zone 2 Non–product-contact areas in the facility that are closely
adjacent to food product contact surfaces

Non–food-contact surfaces, equipment framework

Zone 3 Non–product-contact surfaces that are in the processing area
but not adjacent to Zone 1 surfaces; Zone 3 surfaces,
however, have the possibility of leading to food product
cross contamination

Floors and walls in the food processing area

Zone 4 Areas remote from food product processing areas; Zone 4
areas, if not maintained in good hygienic condition, can lead
to cross-contamination of Zones 1, 2, and 3

Restroom environment (e.g., toilet, sink), office
area, loading dock

as well as non–food-contact surface areas, and sanita-
tion practices (e.g., wearing gloves, cleaning contact
surfaces). Each food facility was assumed to operate
10 hours per day (between 8:00 a.m. and 6:00 p.m.)
for 30 days.

2.2. Mathematical Descriptions

2.2.1. Spatial Distribution of Microbial Pathogens
in Environment

Microbial pathogens may enter the food-facility
environment through raw food ingredients, food
handlers, or mobile equipment, such as carts;

through leaks and openings throughout the build-
ings; or through pests, and further spread within the
facility environment (Den Aantrekker et al., 2003;
Fredriksson-Ahomaa, Korte, & Korkeala, 2000;
Lawrence & Gilmour, 1995; Miettinen, Bjorkroth,
& Korkeala, 1999; Norton et al., 2001; Thorberg &
Engvall, 2001). To characterize the spatial distribu-
tion of microbial pathogens (e.g., L. monocytogenes)
within the facility environment, we used the ap-
proach discussed in Mokhtari et al. (2018), and
broke down the surface area for each object (e.g.,
floors, walls, and other objects in a room) to 4′′ × 4′′

grid cells representing potential swab-sample loca-
tions. In each Monte Carlo realization of the model,
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the initial number of contaminated grid cells on each
object (nci) was calculated as:

nci ∼ Binomial (Ni , pci ) , (1)

pCi ∼ β (# positive samples

+ 0.5, # negative samples + 0.5) , (2)

where Ni is the number of grid cells defined for
Object i (e.g., cutting board in the food process-
ing area) and pci is prevalence of contamination,
representing fraction of contaminated surface area,
calculated for Object i using the environmental sam-
pling data (Miconnet, Cornu, Beaufort, Rosso, &
Denis, 2005). Assumptions regarding initial levels of
contamination (cfu/+grid cell) were further assigned
to the contaminated grid cells for each object (see
Table VIII).

2.2.2. Persistence of Microbial Pathogens
in Environment

Microbial pathogens can hide in harborage sites
(contamination niches) that are difficult to clean and
disinfect. Water and organic soil may stagnate in
harborage sites that are difficult to clean and disin-
fect and difficult to rinse and where some disinfectant
may thus still be present after rinsing. As bacteria
are able to adapt to low disinfectant concentration,
conditions are consequently met for bacterial growth
(Carpentier & Cerf, 2011; FDA, 2018; Holah et al.,
2012; Motarjemi & Lelieveld, 2014). These cells
then can spread to nearby surroundings through a
variety of activities, such as cleaning events (e.g.,
scrubbing the floor of the food processing area) or
cross-contamination events (e.g., transfer from
surface to food during slicing). Presence of microbial
pathogens in a contamination niche after a cleaning
event depends on several factors, including the
efficacy of cleaning, the efficiency of the sanitizer
or disinfectant used during cleaning, and initial
number of bacterial cells prior to the cleaning event
(Carpentier & Cerf, 2011). Studies have shown that
cleaning efficacy is lower on surviving bacterial cells
attached to the surface than on recently attached
cells (Marouani-Gadri et al., 2010; Pan, Breidt, &
Kathariou, 2006).

For an object with an ability to harbor micro-
bial pathogens in holes and cracks (e.g., floor of the
food processing area, slicer), we assumed that ini-
tial pathogen load (cfu) on a grid cell defined on
the object’s surface area (C0) can be divided into

two compartments: (i) bacterial cells on more acces-
sible parts of the grid’s surface area (C0AS − cfu)
and (ii) bacterial cells that are harbored in holes and
cracks and are difficult to clean (C0HC − cfu), where
C0 = C0HC + C0AS. We also assumed that fresh cells
added to the grid were initially on the more accessi-
ble surface areas (i.e., C0AS). Pathogen removal dur-
ing the first cleaning event of grid i was modeled as:

CASi ∼ Binomial
(

C0ASi ,
1

10(RSD×EffSD,AS)

)
, (3)

where RSD is the contamination reduction due to
use of sanitizer or disinfectant during a cleaning
event (log10), and EffSD,AS is the efficacy of sanita-
tion/disinfection activity (values between 0 and 1)
for pathogens on more accessible parts of the grid’s
surface area. This parameter represents the likeli-
hood of achieving the expected RSD. A fraction of
the residual pathogens on the accessible surface area
after a cleaning event (CASi ) was further added to the
pathogen load in holes and cracks of the grid cell:

CHCi = C0HCi +�CAS→HCi , (4)

CASi = CASi −�CAS→HCi , (5)

�CAS→HCi ∼ Binomial
(

CASi ,
SAHCi

SAi

)
, (6)

where SAHCi is surface area for holes and cracks
in grid i, and SAi is grid i surface area. A sub-
sequent cleaning event not only reduces pathogen
loads on the more accessible surface area of the grid
(Equation (3)), but also can further reduce pathogen
loads in the harborage sites, although with a lower
cleaning efficacy (Marouani-Gadri et al., 2010; Pan,
Breidt, & Kathariou, 2006):

CHCi ∼ Binomial
(

C0HCi ,
1

10(RSD×EffSD,HC)

)
, (7)

where C0HCi is pathogen load in harborage sites
on grid i, and EffSD,HC is the efficacy of sanita-
tion/disinfection activity (values between 0 and 1)
for pathogens in the harborage sites on grid i. We
also assumed that a fraction of pathogen loads in
the harborage site (RFHC→AS) was released during
the subsequent cleaning event (e.g., due to scrubbing,
washing with low-pressure hoses or high-pressure
jets) and added to the surface area that was more
readily available for spreading to other objects in
contact with the grid’s surface area (e.g., subsequent
contacts with food handlers’ hands or food serv-
ings). Therefore, contamination levels (cfu) on the
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more accessible surface area and in the holes and
cracks of the grid i were updated as:

CASi = C0ASi +�CHC→ASi , (8)

CHCi = C0HCi −�CHC→ASi , (9)

�CHC→ASi ∼ Binomial (CHCi , RFHC→AS) . (10)

During a cleaning event, reduction of pathogens
on accessible surface areas and in holes and cracks
of contaminated objects could occur simultaneously
with release of pathogens from harborage sites of
contaminated objects to more accessible surface ar-
eas. We simplified the modeling approach by assum-
ing that these two events occurred in order, as de-
scribed in Equations (4)–(6) and Equations (7)–(10).

2.2.3 Growth of Microbial Pathogens in
Contamination Niches

We assumed that, between two consecutive
cleaning events, pathogen-harborage sites on a grid
cell would have optimal growth conditions; hence, we
could anticipate increase in pathogen loads trapped
in those areas. We used the following equations to
calculate the microbial pathogen growth in contami-
nation niches (Koseki & Isobe, 2005):

dq
dt

= μ× q, q (0) = q0, (11)

dX
dt

= μ× q
(1 + q)

×
(

1 − min
(

X
Xmax

, 1
))

×X, X (0) = X0, (12)

Xmax = log10
(
10BCmax × SAHCi

)
, (13)

where X(t) represents the log10 of the pathogen loads
in holes and cracks (log10 CHCi), q(t) is a dimension-
less quantity related to the physiological state of the

pathogens; μ is the specific growth rate; Xmax rep-
resents maximum population density (MPD), calcu-
lated based on the maximum bacterial concentration
on a contact surface (BCmax − log10 cfu/cm2) and
the surface area for holes and cracks in grid cell i
(SAHCi); and X0 is the initial population size (log10

CHC0i). The lag time variable q evolves according to
exponential growth, and q0 determines the duration
of the lag time in microbial growth. We further de-
scribed the effect of ambient temperature (T), pH,
and water activity (aw) on μ of a microbial popula-
tion using the cardinal secondary growth model as
below (Rosso, Lobry, Bajard, & Flandrois, 1995):

μ = μopt × CM2 (T) × CM1 (pH) × SR1 (aw)

×ξ (T, pH, aw) , (14)

CMn (X) =

⎧⎪⎨
⎪⎩

0; i f X ≤ Xmin
(X−Xmax)× (X−Xmin)n

(Xopt − Xmin)n−1 × [(Xopt − Xmin) × (X − Xopt ) −
(Xopt − Xmax) × ((n − 1) Xopt + Xmin − 2 × X)]

; if Xmin < X< Xmax , (15)

SRn (X) =
⎧⎨
⎩

0; if X ≤ Xmin(
X−Xmin

Xopt −Xmin

)n
; if Xmin < X< Xmax

, (16)

ξ (T, pH, aw) =

⎧⎪⎨
⎪⎩

1; if ψ ≤ 0.5
2 × (1 − ψ) ; if 0.5 < ψ < 1

0; if ψ ≥ 1
, (17)

ψ =
∑

X

(
Xopt −X

Xopt −Xmin

)3

2 ×∏
X�=Y

(
1 −

(
Xopt −X

Xopt −Xmin

)3
) , (18)

where μopt is the optimal growth rate for pathogens
and Xmin, Xmax, and Xopt are minimum, maximum,
and optimal values of X ∈ (T, pH, aw). We substi-
tuted the model for μ into the coupled differential
equations, then numerically solved the system of
equations by the fourth-order Runge-Kutta method,
to predict pathogen growth in holes and cracks of
grid i during the time between two consecutive clean-
ing events. Initial values for specific growth param-
eters (i.e., aw, pH) were randomly selected from
the range of possible values (see Table VIII) and
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assigned to individual objects that contained holes
and cracks at time = 0. To simplify the modeling
approach, we did not include changes in selected
growth parameters during facility operation.

2.2.4. Inactivation of Microbial Pathogens on
Contact Surfaces

The number of viable microbial pathogens gen-
erally decreases over time when the microorganism
is in an environment that does not support growth.
We assumed that more accessible parts of each con-
tact surface did not support growth of pathogens and
that, hence, pathogens on such areas may experience
decline over time. However, when growth condi-
tions were not met in pathogen-harborage sites on a
grid (e.g., aw ≤ awmin), pathogens could decline over
time. The rate of inactivation is dependent on a vari-
ety of factors, including pH, acidulant identity, acidu-
lant concentration, water activity, concentration of
antimicrobials, and temperature (Ahmad & Marth,
1989; Buchanan & Golden, 1995; Buchanan, Golden,
& Philips, 1997; Buchanan, Golden, & Whiting, 1993;
Buchanan, Golden, & Whiting, 1994; Cole, Jones, &
Holyoak, 1990; El-Shenawy & Marth, 1989; Parish
& Higgins, 1989; Sorrells, Enigl, & Hatfield, 1989).
Levels of microbial pathogens on more accessible
parts of each contact surface and in contamination-
harborage sites (when growth conditions were not
met) were updated as:

Ci ∼ Binomial
(

C0i ,
1

10(LR× �t)

)
, (19)

where LR is the rate of inactivation (log10 cfu/hour)
and �t is the timestep (hours) between two consec-
utive events during which pathogen levels were up-
dated (e.g., �t = 1 hour).

2.2.5. Microbial Cross-Contamination During
Tactile Contact Events

We modified the approach discussed in Hoelzer
et al. (2012) for modeling cross-contamination be-
tween any two objects (e.g., A and B) as follows, to
enable us to consider (i) the impact of spatial dis-
tribution of microbial contamination on objects in-
volved in a tactile contact event and (ii) pathogen
loads on surface areas that are more readily avail-
able for transferring to other objects during tactile
contacts (CAS):

CA,AS ∼ Binomial

(
nA∑

i=1

C0A,ASi , 1 − TRAB

)

+Binomial

⎛
⎝ nB∑

j=1

C0B,ASj ,TRBA

⎞
⎠ , (20)

CB,SA =
nA∑

i=1

C0A,ASi +
nB∑
j=1

C0B,ASj − CA,AS, (21)

where nA and nB are the numbers of grid cells on
Object A and Object B, respectively, involved in the
contact event; C0A,ASi is initial microbial contamina-
tion (cfu) on the readily accessible areas of grid i on
Object A; and C0B,ASj is initial microbial contamina-
tion (cfu) on the readily accessible areas of grid j on
Object B. TRAB and TRBA are contamination trans-
fer rates (0 � TR � 1) from Object A to B and from
Object B to A, respectively. Updated microbial con-
tamination values on Objects A and B after a contact
event (CA,AS and CB,AS, respectively) were randomly
distributed among the more readily accessible sur-
face areas of the selected grids involved in the con-
tact event.

When an agent (i.e., food handler) was involved
in a contact event, the model considered contamina-
tion level on the agent’s hands (or gloves) when the
receiving object in Equations (20) and (21) was an-
other agent or an object other than the room floor.
When the receiving object in these equations was
the room floor, the model considered contamination
level on the agent’s shoes.

2.2.6. Dynamic Schedule of Events

Successful implementation of an ABM frame-
work relies on proper scheduling of different events
and real-time activities (e.g., scheduling tactile
contacts between a food handler and the slicer
during a food-preparation activity). Most food
facilities operate in dynamic environments where
unpredictable real-time events may cause a change
in prescheduled activity plans, and a previously
feasible schedule may turn infeasible (Ouelhadj &
Petrovic, 2008). We used the predictive-reactive
scheduling (PRS) approach to identify and prioritize
a list of real-time events and activities that may
occur during the operation of a food facility. The
PRS approach is the dynamic scheduling technique
most commonly used in modeling complex systems,
such as manufacturing operations (Aytug, Lawley,
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Table III. Example List of Predefined Activities in F2-QMRA

Activity Names Activity Priority Activity Location Start Time End Time
No. Agents Involved

in the Activity

Morning arrivala 10 Office 7:00 a.m. 8:00 a.m. All
Idle time in the morning 5 Office 8:00 a.m. 9:00 a.m. All
Unloading food ingredients 10 Loading dock 8:30 a.m. 9:00 a.m. 2
Food processing area

sanitation
10 Food processing area 8:30 a.m. 9:00 a.m. 2

Morning food preparation 5 Food processing area 9:00 a.m. 12:00 p.m. All
Lunch and break 5 Office 12:00 p.m. 1:00 p.m. All
Afternoon food

preparation
5 Food processing area 1:00 p.m. 5:00 p.m. All

Loading prepared foods to
food trucks

10 Loading dock 4:00 p.m. 5:00 p.m. 2

Facility sanitation 10 All rooms 4:00 p.m. 5:00 p.m. 2
Idle time in the afternoon 5 Office 4:00 p.m. 6:00 p.m. All
Restroom visitb 10 Restroom 8:00 a.m. 6:00 p.m. All
Departurec 10 NA 5:00 p.m. 6:00 p.m. All

aEach food handler arrived at a random time between 7:00 a.m. and 8:00 a.m. in the morning.
bStart times for restroom visit activities were randomly selected for food handlers between 8:00 a.m. and 6:00 p.m. Duration of the restroom
visit activity was randomly selected for each event.
cEach food handler departed at a random time between 5:00 p.m. and 6:00 p.m. in the afternoon.

McKay, Mohan, & Uzsoy, 2005; Herroelen & Leus,
2005; Mehta & Uzsoy, 1999; Vieira, Herrman, & Lin,
2000; Vieira, Herrman, & Lin, 2003).

F2-QMRA generated a daily dynamic schedule
that included a list of all events and activities that
could occur during a single day in a facility. In a
dynamic schedule, an event may represent participa-
tion in a particular daily activity (e.g., morning food
preparation, personal hygiene, or surface sanitation)
or the occurrence of a tactile contact between two
agents (e.g., contacts between food handlers in the
loading dock), between an agent and an object (e.g.,
contact between a food handler and the slicer in the
food processing area), or between two objects (e.g.,
contacts between a food serving and cutting board
in the food processing area). Each event was defined
by its occurrence time (e.g., 9:36 a.m.), its location
(e.g., food processing area), and list of agents and/or
objects involved in the event (e.g., a food handler
and a slicer). The model used a predefined daily list
of food handlers and facility-operation activities to
create the dynamic schedule, including all contact
events. Table III shows examples of predefined
daily activities, including activity priority, activity
location, start and end times for each daily activity,
and number of food handlers involved in each
activity. Activity priorities were used for individual
agents to select among the list of activities that could
occur at the same time (e.g., morning idle time in

the office area vs. unloading food ingredients in the
loading dock), with higher likelihood of participa-
tion assigned to activities with higher priorities. For
concurrent activities with similar priorities, an agent
randomly selected among the list of available options
(e.g., unloading food ingredients in the loading dock
vs. sanitizing the food processing area).

Fig. 2 shows a simplified flow diagram illustrating
how a dynamic schedule was created in F2-QMRA.
Each food handler arrived in the morning, at an
arrival time randomly selected between 7:00 a.m.
and 8:00 a.m. (bold box in Fig. 2). The Arrival Event
for Agent i was added to the dynamic schedule.
The model also generated Restroom Visit Events
with random occurrence times between 8:00 a.m.
and 6:00 p.m. for Agent i and added them to the
schedule. When all agents arrived at the facility and
corresponding arrival and restroom visit events were
recorded, the model sorted the schedule and selected
the first event that had the earliest occurrence
time (e.g., Arrival Event for Food Handler #3 at
7:05 a.m.). If the selected event corresponded to
initiation of a particular activity (e.g., arrival), the
model added a new tactile contact event between
the agent involved and the doorknob assigned to the
activity location representing the agent entering the
specific activity location (Table III). The model also
went through the list of activity-specific behavioral
rules (Table IV) and added corresponding events to
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37 

Agent i arrives at 
time = t

i

i ≤ n
No 

No 

Add Arrival Event 
to the schedule

Add a new XC Event to the 
schedule 

(contact with doorknob- Agent i
enters the room)

Sort the schedule 
based on the event 
times (ascending)

Select the first 
event in the 

schedule

Execute the event
(see Equations (20)

and (21))
XC event?

Generate Restroom Visit 
Events for Agent i and add 

to the schedule

Sanitation or 
Disinfection 

event?

Sanitize or disinfect 
contact-surface areas in 
the selected room (see 

Equations (3)–(7))

Yes 

No 

Eliminate the 
executed event from 

the schedule

Generate the next XC Event(s) 
initiated by Agent i (random contact 
with objects or agents in the room- 

(See Equation (22)))

t
XC

≤

 t
Activity-endtime

Add the new XC Event(s) 
to the schedule 

Yes 

Add a new XC Event to the schedule 
(contact with doorknob- Agent i

leaves the room)

Yes 

Select the next event for Agent i
based on the list of daily activities 

and activity priorities (Table III), as 
well as current simulation time

Yes 

Restroom 
Visit event?

Search the schedule and 
eliminate all future events 
related to Agent i outside 

the restroom

No

Yes 

No 

Add the new 
event to the 

schedule 

Impose 
behavioral rules 

(Table IV)

Fig. 2. Dynamic scheduling component of F2-QMRA.

the schedule, when applicable (e.g., prior to entering
the food processing area, each food handler might
clean his/her shoes).

Each contact event potentially resulting in cross-
contamination was further executed by updating con-
tamination levels on agents and/or objects involved
in the event (Equations (20) and (21)). After ex-
ecuting a contact event, the model removed the
event from the dynamic schedule and generated a
list of new events representing potential future con-
tact events among the agent involved in the original
activity and other agents present in the room and/or
objects assigned to the activity location. Times asso-
ciated with these new contact events were generated
using a Poisson process (Lawler, 2006):

tXC,i = t0XC − Ln (1− ∝)
CRi

, (22)

where t0XC represents the time associated with the
original contact event (e.g., time associated with con-
tact with the office doorknob), α represents a ran-
dom number generated between 0 and 1, and CRi is
the activity-specific contact rate among the agent ini-
tially involved in the contact event and other agents
or objects involved in the contact event (e.g., con-
tact rate between a food handler and the slicer dur-
ing the food-preparation activity). F2-QMRA further
sorted the list of potential contact events and se-
lected the one that occurred in the nearest future. If
time associated with the selected contact event was
within the ongoing activity timeline (e.g., between
9:00 a.m. to 12:00 p.m. during the morning food
preparation activity), the new event was added to the
dynamic schedule; otherwise, the agent was forced
to leave the area at the end of the current activity
time and select a new activity based on those listed in
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Table V. Room-Specific Objects Defined for the Case Study Scenarios

Room-Specific Objects Zone id
No. Grids Defined
for Each Objecta

No. Specific Object
in Selected Roomb

Fraction of the Object
Surface Area Representing

Holes and Cracksb

Food processing area
Utensil 1 1 10 0
Slicer 1 30 3 1E-1
Scale 1 40 1 0
Sink 1 200 2 0
Fridge 2 800 1 1E-2
Trash can 3 100 1 0
Food-contact surface 1 250 4 1E-3
Non–food-contact surface 2 50 10 1E-2
Floor 3 4,000 1 1E-3
Walls 3 8,000 4 0
Doorknob 3 1 1 0

Common area (office)
Chair 4 40 4 0
Desk 4 200 2 0
Floor 4 1,500 1 1E-2
Walls 4 3,000 4 0
Doorknob 4 1 1 0

Restroom
Toilet 4 40 1 0
Sink 4 100 1 0
Flush 4 1 1 0
Floor 4 750 1 1E-2
Walls 4 1,500 4 0
Doorknob 4 1 1 0

Loading dock
Cart 4 100 2 0
Ingredient package 3 50 20 0
Floor 4 3,000 1 1E-1
Walls 4 6,000 3 0
Doorknob 4 1 1 0

aValue of 1 indicates no spatial resolution was considered for the object.
bModel assumptions—zero values represent no capacity to harbor microbial contamination.

Table III. The model continued generating new
events, executing current events in the dynamic
schedule, updating the dynamic schedule, and mov-
ing agents between different rooms in the facility
until the end of the operation time (e.g., day = 30;
time = 6:00 p.m.).

2.3. Summary of the Model Inputs

F2-QMRA includes inputs that require quan-
titative estimates. The data we used to populate
selected model inputs related to the facility setup
and tactile-contact rates during facility operation
are summarized in Tables V and VI, respectively.
Transfer coefficients, used in Equations (20) and
(21), varied from one transfer to another accord-

ing to lognormal distributions. We used specific
source-recipient transfer-rate data (e.g., transfer rate
between stainless steel representing the slicer blade
and the deli meat representing the food ingredient)
generated in a systematic literature review con-
ducted by Hoelzer et al. in this model (Hoelzer et al.,
2012). Minimum, maximum, and optimal values of
T, pH, aw, and μopt for growth of L. monocyto-
genes (Equations (14)–(18)) are listed in Table VII
(Augustin & Carlier, 2000; Augustin, Zuliani,
Cornu, & Guillier, 2005; dos Reis-Teixeira, Alves,
& de Martinis, 2017; Le Marc et al., 2002). In the
absence of surface-specific data for modeling survival
of L. monocytogenes on the more accessible parts of
each contact surface and in contamination-harborage
sites, we used data generated for the survival of
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Table VI. List of Random Tactile Contacts and Their Rates During Different Activities

Number of Random Tactile Contactsa (Min, Most Likely, Max)

Activity-Specific Objects Food Handler Ingredient/Food Packages

Food preparation (food processing area)
Utensil ESb

Slicer (5,8,10)
Scale (2,3,5)
Sink (2,3,5)
Fridge (3,4,5)
Trash can (2,3,5) (0,1,1)d

Ingredient/food packages (2,3,5)
Food-contact surface ESb

Non–food-contact surface (2,3,5) (0,1,2)
Floor (10,20,30) (2,3,5)
Walls (0,1,1)
Doorknob EEc

Other food handlers (1,2,3)
Arrival and idling (office)

Chair (2,3,5)
Desk (2,3,5)
Floor (5,10,15)
Walls (0,1,1)
Doorknob EE c

Other food handlers (3,4,5)
Restroom visit (restroom)

Sink ESb

Toilet ESb

Flush ESb

Floor (3,5,8)
Walls (0,0,1)
Doorknob EEc

Loading/unloading ingredients/prepared
foods (loading dock)

Ingredient/food packages (5,8,10)
Cart (2,3,5) (1,2,3)
Floor (15,20,25) (3,4,5)
Walls (0,1,1)
Doorknob EEc

Other food handlers (2,3,5)

aNumbers of random tactile contacts during different activities are basic model assumptions.
bEvent specific: (i) for preparing a food serving, series of random tactile contacts are created between the food handler, food, food-contact
surface, and utensil; and (ii) each restroom visit includes individual contacts between food handler and toilet, flush, and sink (in order).
cEntry/exit: one doorknob contact is initiated upon entry and exit from each room.
dRandom contacts between food/ingredient packages and trash can represent accidental events based on the observed inspection data (data
not shown here).

L. monocytogenes on a conveyor belt’s material with
or without antimicrobial additives, and at temper-
atures of 10 °C, 25 °C, and 37 °C (Chaitiemwong,
Hazeleger, & Beumer, 2010). Data suggested large
decreases in numbers of pathogens during the first
6 hours and lower decrease rates between 6 and
72 hours. Due to the dynamic nature of the facility
environment, and to simplify the modeling approach,
we calculated the total decline in the numbers of

L. monocytogenes during 72 hours and estimated
the hourly rate of reduction (LR-log10 cfu/hour) as a
function of ambient temperature (T—°C):

LR = 0.0004 × T + 0.0612. (23)

For other model inputs, in which values were not
specifically governed by the microbiology, chem-
istry, or physics of the situation (e.g., initial
levels of contamination on different objects in rooms,
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Table VII. Minimum, Maximum, and Optimal Growth Parameters for Listeria monocytogenes

Growth Parameters Units Minimum Maximum Optimal Value Reference

Temperature (T) °C 4.26 45.50 37 Le Marc et al. (2002)
pH Unitless 4.71 9.61 7.10 Augustin and Carlier (2000);

Augustin et al. (2005)
Water activity (aw) Unitless 0.913 1.00 0.997 Augustin and Carlier (2000)
Growth rate (μ) log10 cfu/hour - - [0.57, 1.32]a Augustin and Carlier (2000);

Augustin et al. (2005)
Maximum bacterial

concentration on a
surface (BCmax)

Log10 cfu/cm2 - - [6, 8]b dos Reis-Teixeira et al. (2017)

aOptimal growth rate for L. monocytogenes was modeled as a range of values based on the available data on wide variety of foods, including
seafoods, dairy, and vegetables.
bMaximum bacterial concentration on a contact surface was modeled as a range of values based on the available data.

surface-sanitation frequency, surface-sanitation effi-
ciency, among others), we used discrete distributions
representing values with equal probabilities span-
ning across the range of possible options, rather than
choosing a specific set of baseline values. Using this
approach, we were able to efficiently generate data
on a wide range of what-if scenarios during a single
Monte Carlo simulation.

2.4. Probabilistic Analysis Scenarios

F2-QMRA includes inputs that represent
variability or uncertainty in available data. For
example, during a food-preparation event, the
number of tactile contacts between employee’s
hands (or gloves) with specific objects in the food
processing area (e.g., food-contact surface, slicer,
and refrigerator, among others) was simulated using
probability distributions representing variability
in such events. Meanwhile, the prevalence of con-
tamination or fraction of each contact-surface area
(e.g., floor of the food processing area) that was
contaminated was represented with an uncertainty
distribution based on the number of positive samples
collected from that surface area (Equation (2)).
Alternative approaches can be used to distinguish
between variability and uncertainty in inputs and
their contribution to the output variation (Cullen
& Frey, 1999; Frey, Mokhtari, & Zheng, 2004). The
choice of an appropriate approach should be made
taking into account the assessment objectives, data
quality objectives, and availability of data.

To demonstrate the model’s capabilities in quan-
tifying the spread of microbial contamination in a
food facility, we chose a one-dimensional probabilis-
tic simulation. In this approach, we incorporated,

but did not distinguish, variability and uncertainty
in inputs, thereby exploring the impact of the pos-
sible/potential range of values for each model input
(Mokhtari & Frey, 2005). We further developed a
factorial design in which selected, predefined values
were randomly assigned to different inputs and prop-
agated through the model, using a Monte Carlo simu-
lation. Each Monte Carlo simulation included 10,000
model realizations, or runs, with each realization rep-
resenting a “treatment” in the factorial design, for
which specific combinations of values were randomly
assigned to different model inputs. For example, one
realization could represent a factorial design treat-
ment in which initial level of contamination on the
slicer was assumed to be 1 − log10 cfu/+grid; num-
ber of positive samples taken from the slicer (out of
10 collected samples) was assumed to be 1; and the
slicer was assumed to be cleaned every day, among
other assumptions. A fully balanced factorial design
would include all combinations of values assigned to
all model inputs and was deemed unrealistic; instead,
we created an unbalanced factorial design that in-
cluded partial combinations of values assigned to se-
lected model inputs, using our simulation sample size
of 10,000 model realizations to reduce the required
computational time and resources.

We further created four overarching scenarios
involving initial levels of contamination on the sur-
face areas of the objects located in each individual
sampling zone (e.g., Scenario (i) represented initial
contamination on objects assigned to Zone 1, while
all other objects received no initial contamination).
For each scenario, we generated four outputs across
30 days of model simulation: (i) daily pathogen
prevalence in prepared foods (percent contaminated
food servings with at least 1 cfu/25 g of sample as
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the level of detection for L. monocytogenes), (ii)
daily average levels of L. monocytogenes in prepared
foods that were positive (log10 cfu/+serving), (iii)
daily average prevalence for objects assigned to dif-
ferent sampling zones, and (iv) daily average levels
of L. monocytogenes on positive objects assigned to
different sampling zones (log10 cfu). For the latter
two outputs, contamination prevalence and level
of individual objects assigned to different sampling
zones were checked every hour during facility
operation and average daily values were recorded
at the end of each operation day. An object in a
sampling zone (e.g., food-contact surface in Zone 1)
was considered positive for L. monocytogenes if one
or more grid cells on the object was contaminated
with the bacterium. By aggregating results across
individual objects assigned to each sampling zone,
average daily values of contamination prevalence
and level were also calculated for each sampling
zone. Full descriptions of selected model inputs
and the discrete values assigned to the inputs
for the four overarching scenarios are provided
in Table VIII.

2.5. Global Model Sensitivity Analysis

Sensitivity analyses offer a vital tool for quanti-
fying the effects of input parameters on model pre-
dictions, thereby providing insight into which of the
model inputs may be most influential, and, hence,
answer questions related to the most effective mit-
igation options for reducing risks (Cullen & Frey,
1999; Mokhtari & Frey, 2005; Saltelli, Chan, & Scott,
2000). The utility of sensitivity analysis can be max-
imized when the analysis considers the full range of
values associated with model inputs by varying multi-
ple inputs simultaneously. This approach, referred to
as global sensitivity analysis, acknowledges potential
interactions and nonadditive effects (Saltelli, Taran-
tola, & Chan, 1999). However, global sensitivity
analysis has not been widely used because the prob-
abilistic model outputs can be unwieldy, and meth-
ods of analyzing these data can be computationally
intensive (Cariboni, Gatelli, Liska, & Saltelli, 2007;
Fieberg & Jenkins, 2005; Naujokaitis-Lewis, Curtis,
Arcese, & Rosenfeld, 2009; Saltelli et al., 1999). To
address these limitations, we used random forest as
a global sensitivity analysis method to identify the
most influential model inputs. Random forest is a
nonparametric classification method that applies ran-
dom subsets of the data to produce thousands of clas-
sification and regression trees (CART), which then

are used to calculate classification error rates and to
quantify model-input importance values as a mea-
sure of sensitivity (Breiman, 2001; Gromping, 2009;
Jones & Linder, 2015). Random forest has demon-
strated several key advantages for sensitivity analysis
of complex models (Harper, Stella, & Fremier, 2011):
(i) it is accessible and easy to use because multiple
packages are available in R and can be downloaded
for free; (ii) sensitivity measures for model inputs
include the effects of all higher-order interactions
and do not assume linearity; and (iii) generating ro-
bust global sensitivity results for models with a fairly
large number of inputs requires a sample of hun-
dreds of the model’s Monte Carlo realizations, rather
than a fully factorial set of several million realizations
(Wagner, 1995).

The impact of model inputs on L. monocy-
togenes contamination prevalence (%) and levels
(log10 cfu/+serving) in prepared foods was evaluated
using permutation importance scores. The permu-
tation importance scores in random forest reflect
the decrease in prediction accuracy (represented by
the % increase in the mean squared error [MSE])
resulting from permutation of a model input. If
permuting the value of a model input does not
affect (or increase) the prediction accuracy, then the
input is not related to the model output. However,
if permuting the value decreases the prediction
accuracy of the model, the model input is related
to the model output, and the larger the increase in
MSE, the stronger the relationship (Genuer, Poggi,
& Tuleau-Malot, 2010; Jones & Linder, 2015).

3. RESULTS

3.1. Model Validation

Given the number of inputs in our model, a
formal calibration (e.g., minimizing some objective
function) or a validation currently is not possible.
Nevertheless, we performed checks and controls
to ensure the validity of the model’s calculations.
Specifically, the sum of the L. monocytogenes con-
tamination levels in the facility environment, at any
point in time, was equal to the sum of: (i) L. mono-
cytogenes contamination introduced from outside
sources (initial contamination on different objects
assigned to one of the four environmental sampling
zones); (ii) growth within the facility environment,
including all contamination niches; and (iii) removal
from the facility via exiting of prepared food and
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through sanitation, disinfection, and natural die-off
on contact-surface areas. Verification of this mass
balance additionally afforded a cross-check of proper
functioning of this model. The mass balance was
controlled in all scenarios described in this study
(data not shown).

3.2. Spread of L. monocytogenes Contamination in
the Food-Facility Environment

We investigated the spread of L. monocytogenes
from objects in one sampling zone to objects in other
zones, primarily arising from contacts with employ-
ees’ hands, gloves, or shoes, as well as movement
of contaminated objects from one sampling zone to
another (e.g., movement of contaminated food in-
gredient packages from the loading dock to the food
processing area and subsequent contacts with non–
food-contact surfaces, floor, and trash can). Fig. 3
shows average contamination prevalence (%) on ob-
jects placed in different sampling zones on selected
facility-operation days when initial contamination
on Day 1 started on objects in Zone 1 (Fig. 3(a)),
Zone 2 (Fig. 3(b)), Zone 3 (Fig. 3(c)), and Zone 4
(Fig. 3(d)) and no additional contamination events
took place after the Day 1 event. The whiskers in
Fig. 3 represent the 1st and the 3rd quartiles and the
median output values (horizontal bold line in each
whisker); the ends of the whiskers (the vertical bars)
represent the 2.5th and 97.5th percentile values. The
isolated dots represent the outlier results. An outlier
was any value that lay more than one and a half
times the length of the whisker box from either side.
Results showed that once contamination was intro-
duced in a particular sampling zone (e.g., objects
assigned to Zone 1), it reached objects placed in all
other sampling zones; however, prevalence of con-
tamination eventually reduced to values close to zero
in most of the Monte Carlo realizations of the model
(e.g., median average prevalence values in different
sampling zones were close to zero), primarily due
to sanitation/disinfection activities, pathogen die-off,
and removal from facility environment via exit of
contaminated foods (e.g., enforcing pathogen mass
balance in the facility environment). This finding
is crucial, especially for scenarios in which initial
contamination was added to objects that did not have
direct contact with food servings and were not in
close proximity to the food-contact surface areas in
the food processing environment. For example, once
initial contamination was added to objects assigned
to Zone 4 on Day 1 (e.g., objects in the loading dock

and restroom environments), L. monocytogenes cells
were transferred to objects assigned to Zone 1, with
median contamination prevalence values of approx-
imately 24%, 13%, and 2% on Days 1, 2, and 3,
respectively. For the same scenario, median contam-
ination prevalence for objects in Zone 1 was approx-
imately 0% on Day 7 and beyond, although certain
Monte Carlo realizations of the model resulted in
prevalence values as high as 10% in Zone 1, even
on Day 30 (Fig. 3(d)). Summary results also showed
that L. monocytogenes persisted on objects for a
longer time in the facility environment once the bac-
terium was initially introduced to Zone 4 (Fig. 3(d))
compared with other scenarios in which initial con-
tamination was added to objects in Zones 1, 2, and
3 (Figs. 3(a)–3(c), respectively). For example, once
contamination was initially introduced to Zone 4,
the interquartile of the average daily contamination
prevalence for objects placed in this zone ranged
between 0% and 6% with a median value of 0.7% on
Day 21 (Fig. 3(d)), while for the other three scenarios
shown in Fig. 3, interquartile ranges of the average
daily contamination prevalence for objects placed in
those zones reduced to values very close to 0% within
the first two weeks of facility operation. This was pri-
marily due to abundance of contamination niches on
objects assigned to Zone 4, represented by the frac-
tion of holes and cracks on objects assigned to this
zone as well as their surface areas (see Table V), and
possibility of L. monocytogenes harboring in holes
and cracks during routine sanitation and disinfection
activities. For the same scenario, we also evaluated
the impact of introducing additional contamination
events after the initial Day 1 contamination event.
This scenario resulted in persistence of L. mono-
cytogenes in different sampling zones beyond the
30 days included in the baseline scenario with only
one contamination event on Day 1 (data not shown).

We further investigated this scenario by identi-
fying the contamination spots in the food processing
area once L. monocytogenes was initially added to
objects assigned to Zone 4 on Day 1. Figs. 4 and
5 show average L. monocytogenes contamination
prevalence (%) and levels (log10 cfu/+object), re-
spectively, for individual objects assigned to the food
processing area on selected operation days when
initial contamination started on Day 1 from Zone
4. Results showed that main modes of L. monocy-
togenes spread from Zone 4 to the food processing
area included (i) movement of contaminated objects
from the loading dock to the food processing area
(i.e., contaminated food ingredient packages) and
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Fig. 3. Spread of L. monocytogenes contamination within food-establishment environment. Average daily contamination prevalence (%)
in different sampling zones is shown for selected operation days when initial contamination started from: (a) Zone 1, (b) Zone 2, (c) Zone
3, and (d) Zone 4.

subsequent contacts with individual objects in the
food processing area, such as the trash can, floor,
and non–food-contact surface areas; (ii) employees’
hands/gloves, in the case of the doorknob and equip-
ment used during food-preparation activities, such as

food-contact surfaces, slicer, and scale; and (iii) em-
ployees’ shoes, in the case of the floor. These transfer
modes resulted in median prevalence values of ap-
proximately 100%, 75%, 74%, and 62% for trash
can, floor, doorknob, and non–food-contact surface
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Day 1 

Day 2 

Day 3 

Day 7 

Day 30 

(a)

(b)

(c)

(d)

(e)

Fig. 4. Spread of L. monocytogenes contamination from contaminated objects in Zone 4 to the food processing area. Average daily con-
tamination prevalence (%) for objects in the food processing area is shown for selected operation days.
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Fig. 5. Spread of L. monocytogenes contamination from contaminated objects in Zone 4 to the food processing area. Average daily con-
tamination levels for positive objects (log10 cfu) in the food processing area are shown for selected operation days.
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Fig. 6. Spread of L. monocytogenes contamination from different sampling zones with initial contamination to the prepared food products:
(a) average daily contamination prevalence in prepared foods (%) and (b) average daily contamination levels in positive prepared foods
(log10 cfu/+serving).

areas, respectively, on Day 1 (Fig. 4(a)). Contami-
nation prevalence values for objects in the food pro-
cessing area declined in time, with approximately 0%
median prevalence values on Day 7 and beyond for
different objects (when no additional contamination
events took place), although certain Monte Carlo
realizations resulted in prevalence values as high as
approximately 100%, 21%, 23%, and 37% for the
floor, non–food-contact surface areas, food-contact
surface areas, and the slicer, respectively, on Day 30
(Fig. 4(d)). Similarly, results showed that median
contamination levels (log10 cfu) for contaminated
objects in the food processing area declined with
time, although for certain Monte Carlo realizations,
the model predicted that some contaminated objects
(e.g., slicers) had median contamination levels as
high as 3-log10 cfu after 30 days (Fig. 5(d)).

3.3. Spread of L. monocytogenes Contamination
from Objects in Different Sampling Zones to
Prepared Foods

F2-QMRA also predicted that prepared food
servings could be contaminated with L. monocy-

togenes initiated from different sampling zones in
the facility, although likelihood and levels of con-
tamination in foods were substantially higher when
initial contamination started from objects assigned to
Zone 1 with direct contacts with food servings (e.g.,
food-contact surfaces and slicer, among others).
Fig. 6 shows the average daily contamination preva-
lence and level (log10 cfu/+serving) on selected
facility-operation days once microbial contamination
had initiated from different sampling zones on
Day 1. Results showed that once objects in Zone 1
were contaminated with L. monocytogenes, median
value of contamination prevalence in prepared foods
on Day 1 was approximately 50%, although median
contamination prevalence values for prepared foods
dropped to 9% and 1% on Day 2 and Day 3, respec-
tively, and 0% on Day 7 and beyond. For the same
scenario and for certain Monte Carlo realizations
of the model, prevalence of L. monocytogenes
contamination in prepared foods was approximately
40% on Day 30 (Fig. 6(a)). When L. monocytogenes
contamination initiated from objects with no direct
contacts with food servings (i.e., objects in Zones
2 to 4), contamination prevalence in prepared food
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servings was substantially lower, with median value
of approximately 0% on Day 3 of facility operation
and beyond (Fig. 6(a)).

Similarly, Fig. 6(b) shows that when contamina-
tion initiated from objects with direct contact with
food products (i.e., objects in Zone 1), average con-
tamination levels in prepared foods that were pos-
itive (log10 cfu/+serving) were substantially higher,
with a wider range of variability, compared with
scenarios in which microbial contamination initiated
from objects with no direct contacts with food serv-
ings (i.e., objects in Zones 2 to 4). Results also
showed that levels of L. monocytogenes in positive
foods generally declined during facility operation
when no additional contamination events took place
(after initial contamination on objects at the begin-
ning of Day 1). For example, while contaminated
objects in Zone 1 (e.g., slicer, food-contact surface,
among others) resulted in a median L. monocyto-
genes level of approximately 2-log10 cfu in positive
foods on Day 1, median values declined to approxi-
mately 0-log10 cfu/+serving after 30 days.

3.4. Sensitivity Analysis

We further evaluated the impact of model inputs
on prevalence and levels of L. monocytogenes in
prepared foods during the 30 days of facility oper-
ation using the random forest method. Sensitivity
analysis results showed that, in addition to the initial
conditions of the food-contact surfaces (i.e., both the
initial contamination level and the number of posi-
tive swab samples), pathogen detachment factor (i.e.,
fraction of L. monocytogenes released from holes
and cracks of different contact-surface areas to more
accessible surface areas during cleaning events),
hygiene practices (e.g., sanitation/disinfection
compliance, cleaning efficacy and efficiency, and
sanitation frequency, for the food preparation area),
and parameters supporting growth of L. mono-
cytogenes on slicer (pH and aw) were among the
top-ranked inputs impacting the average prevalence
of L. monocytogenes contamination in prepared
foods (Fig. 7(a)). Average L. monocytogenes con-
tamination levels in positive food products (log10

cfu/+serving) were primarily influenced by the
initial contamination conditions (i.e., both initial
L. monocytogenes levels and the number of pos-
itive swab samples) associated with objects with
direct contact with food products (e.g., food-contact
surface, slicer, and utensil), although sanitation com-

Impacts o
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(a)

(b)

Fig. 7. Top-ranked model inputs impacting: (a) L. monocytogenes
contamination prevalence (%) in prepared foods and (b) L. mono-
cytogenes contamination levels in positive prepared foods (log10
cfu/+serving).

pliance, efficacy, and efficiency also influenced the
L. monocytogenes levels in positive foods (Fig. 7(b)).

3.5. Mutual Impact of Selected Model Inputs on
Prevalence and Levels of L. monocytogenes in
Prepared Foods

We also investigated the interaction effects
between the top two model inputs: sanitation/
disinfection compliance and initial contamination
on food-contact surfaces (log10 cfu/+grid). Since
food-contact surfaces were placed in Zone 1, we
focused on results obtained from Scenario (i), as
described in Section 2.4, for which initial contami-
nation levels were assigned to all objects in this zone
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Fig. 8. Mutual impact of initial contamination on food-contact surface areas (C0.FCS) and sanitation/disinfection compliance during se-
lected facility operation days on: (a) average daily contamination prevalence in prepared foods (%) and (b) average daily contamination
levels in positive foods (log10 cfu/+serving).
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(including food contact surfaces), while other objects
in Zones 2–4 received no initial contamination.
Figs. 8(a) and (b) show the mutual impacts of these
two model inputs on average prevalence (%) and
average levels (log10 cfu/+serving), respectively, of
L. monocytogenes in prepared foods, on selected
days of facility operations. Results showed that while
compliance with sanitation/disinfection activities can
reduce prevalence and levels of L. monocytogenes in
prepared foods, full compliance can only lead to zero
or very small average prevalence values when food-
contact-surface areas were not initially contaminated
with high levels of the bacterium (i.e., �2 log10

cfu/+grid). For example, Fig. 8(a) shows that the
most likely value for average contamination preva-
lence in prepared foods was approximately 0% when
facility employees fully complied with sanitation
and disinfection activities during facility operation,
although Monte Carlo realizations of the model re-
sulted in average prevalence values as high as 12.5%
in foods after 30 days. However, when food-contact-
surface areas were highly contaminated (e.g., 6-log10

cfu/+grid) on Day 1, full sanitation/disinfection com-
pliance during facility operation timeline could only
reduce the average prevalence of L. monocytogenes
in prepared foods to 2.5%, with 50% of positive
foods having average contamination levels as high as
0.3-log10 cfu after 30 days (Fig. 8(b)).

4. DISCUSSION

A limited number of studies have looked com-
prehensively at modeling persistence and spread of
microbial pathogens in food facilities. For example,
Schaffner (2004) proposed an approach to evaluat-
ing the possibility of modeling cross-contamination
of Listeria species, total L. monocytogenes, or
specific L. monocytogenes strains using a probabilis-
tic quantitative mathematical model. Schaffner’s
approach provided a starting framework for predic-
tive modelers and scientists studying L. monocyto-
genes to begin research, together with an ultimate
goal of understanding and controlling contamina-
tion in food-processing plants. Schaffner’s model
did not incorporate a dynamic representation of
cross-contamination events, including impact of
food handlers’ behavior, in terms of compliance
with personal hygiene and environmental sanitation
practices.

Ivanek et al. (2004) developed a plant-specific
compartmental mathematical model of L. mono-
cytogenes cross-contamination to describe the bac-

terium’s transmission among food, food-contact sur-
faces, employees’ gloves, and the environment in
a smoked-fish-processing plant. Using a difference-
equation system based on the Reed-Forest model,
Ivanek et al. (2004) described only changes in con-
tamination prevalence of food products and different
contact surfaces during facility operation and did not
quantify the level of L. monocytogenes contamina-
tion in their model.

Mokhtari and Jaykus (2009) developed a com-
partmental exposure model that characterized the
dynamics of foodborne transmission of human
norovirus in the retail-food-preparation environ-
ment. They used sensitivity analysis to identify model
inputs that provided the greatest contribution to
risk of virus contamination of prepared foods, while
what-if scenario analyses were applied to evaluate
the relative efficacy of potential control strategies
for reducing the likelihood of contamination dur-
ing food preparation. While their exposure model
tracked spread of contamination in a retail facility
and to prepared foods in time, it followed each food
handler individually, and, hence, did not consider
possible interactions between food handlers that may
influence the extent of microbial cross-contamination
in the facility environment. Furthermore, the model
did not include presence of contamination niches in
the facility environment.

Pouillot et al. (2015) developed a quantitative
risk assessment model to simulate the behavior of re-
tail employees in a delicatessen department and used
it to track L. monocytogenes potentially present in
such an environment and its foods. Using a discrete-
event simulation framework, that model assessed the
risk of foodborne invasive listeriosis associated with
current practices in retail delis and examined the
impact on that risk from mitigations meant to reduce
or prevent L. monocytogenes growth or contamina-
tion in RTE foods prepared in retail deli settings.
The model demonstrated flexibility and granularity
in modeling microbial cross-contamination events;
however, it did not incorporate a dynamic activity
schedule beyond a chronological sequence of events
that might occur in a deli department. Furthermore,
while the model presented a simplified approach
for modeling contamination niches associated
with certain objects in the deli department (e.g.,
slicer, floor), it did not include spatial distribution
of contamination on food- and non–food-contact
surfaces or pathogen persistence and growth in
the facility environment, including contamination
niches.
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Duret et al. (2017) developed a quantitative risk
assessment model using a discrete-event simulation
framework to quantify and study the risk associated
with norovirus transmission to consumers through
food contaminated by infected food employees in
a retail food setting. The risk assessment focused
on the impact of ill food workers with symptoms of
diarrhea and vomiting, and potential control mea-
sures against transmission of norovirus to foods. The
model examined the behavior of food employees
regarding exclusion from work while ill and after
symptom resolution, and preventive measures limit-
ing food contamination during preparation. Similar
to the model developed by Pouillot et al. (2015), the
model described the series of consecutive and pre-
defined activities undertaken by the food employees.
Furthermore, while food-employee behavior, in
terms of compliance with hygiene practices (e.g.,
handwashing, gloving), was explicitly modeled, spa-
tial distribution of norovirus particles in the facility
environment, including food- and non–food-contact-
surface areas, also were considered, using a simplified
approach that assumed all surface contamination
was available for potential transfer upon tactile
contact.

Mokhtari et al. (2018) developed a probabilistic
mathematical model for the postharvest processing
of leafy greens, focusing on Escherichia coli O157:H7
contamination of fresh-cut romaine lettuce as the
case study. That model could support the investi-
gation of cross-contamination scenarios and evalu-
ate and compare different risk mitigation options.
They used an ABM framework to predict pathogen
prevalence and levels in bags of fresh-cut lettuce and
quantify spread of E. coli O157:H7 from contami-
nated lettuce to surface areas of processing equip-
ment. Mokhtari et al.’s model focused on a series of
sequenced cross-contamination events that could oc-
cur during the postharvest processing of romaine let-
tuce (e.g., manual trimming, shredding, washing, and
bagging), without including potential dynamic events
representing interactions between facility employees
and processing equipment. Their model did not in-
clude growth and harborage of pathogens on process-
ing equipment and in contamination niches.

The current model, F2-QMRA, provides a
comprehensive, flexible framework with a dynamic
scheduling component that can accommodate a
wide range of possible activities that could result
in persistence and spread of microbial pathogens in
the facility environment and in cross-contamination
of prepared foods. F2-QMRA is able to not only

keep track of contamination changes over time
in different environmental sampling zones, but
also to explicitly model spatial distribution of con-
tamination in the facility environment, including
contamination niches that may harbor microbial
pathogens. These features are intended to enable
more accurate attribution of contamination in dif-
ferent sampling zones to likelihood and levels of
contamination in prepared foods, providing a better
understanding of microbial persistence and spread
dynamics, and to identify optimal risk mitigation
options for controlling potential cross-contamination
of prepared foods. Furthermore, the spatial design
of our model provides capacity to readily simulate
different facility environment setups beyond the
initial scope that included four rooms. We also
demonstrated the ABM framework’s capabilities to
provide insights about a complex, dynamic system
in which the emergent phenomena (e.g., spread of
microbial pathogens within a facility environment
and in prepared foods) could be better predicted in a
bottom-up approach starting from individual agents
(e.g., food handlers) and simulating their behaviors
and interactions with other agents and the facility
environment.

The ABM framework is preferable to other sim-
ulation techniques, such as discrete-event simulation,
when agents have both dynamic relationships with
other agents and their behaviors are unique. For ex-
ample, our ABM framework can simply accommo-
date different personal hygiene practices for each of
the four food handlers included in the model and has
the possibility of adjusting behaviors upon observ-
ing certain trigger events (e.g., increased sanitation
frequency once a positive sample is collected from
a contact-surface area). The ABM framework is also
preferred when individual agents have spatial aspects
to their behaviors. For example, our model can ac-
commodate different hygiene practices for individ-
ual food handlers based on their current locations
(e.g., a food handler may demonstrate higher likeli-
hood of compliance with sanitation practices in the
food processing area than in other rooms in a food
facility).

In an ideal world, all parameters in a risk as-
sessment model are expressed quantitatively and are
based on peer-reviewed scientific studies. Unfortu-
nately, comprehensive data often are not available,
and there are instances in which data are completely
lacking. In other cases, data from reasonable sur-
rogates may be used in place of agent-specific data
(Vose, 2000). Accordingly, some approximations



1018 Mokhtari and Van Doren

and assumptions were necessary in our modeling
approach, which could result in aggregation errors as
a source of uncertainty. Aggregation errors can arise
because of approximations or assumptions used in
a risk assessment model to simulate the underlying
dynamic system (e.g., spread of L. monocytogenes
contamination in a food facility). Aggregation
errors can be examined as a source of systematic
error through which bias may be introduced in
the model outputs. For example, in the absence
of experimental data, we used a conceptual model
of persistence/no persistence of L. monocytogenes
pathogens in contamination-harborage sites, as
suggested by Carpentier and Cerf (2011). We further
assumed that a certain fraction of the pathogens
placed in contamination niches (RFHC→AS) would
be released to more accessible surface areas during
each cleaning event. This assumption actually may
be consistent with what food operators have been
reporting regarding their inability to totally eradicate
L. monocytogenes from the facility environment be-
cause of the contamination-harborage sites (Ferreira
et al., 2014; Malley, Butts, & Wiedmann, 2015; Ortiz
et al., 2010; Tompkin, Scott, Bernard, Sveum, &
Gombas, 1999). In the absence of available data,
we further considered four possible values ranging
between 10−6 and 10−3 (See Table VIII) that were
randomly assigned to RFHC→AS during the Monte
Carlo simulation of the model. Considering this
range of values, the global sensitivity analysis iden-
tified RFHC→AS as the third most important model
input impacting the prevalence of L. monocytogenes
contamination in prepared foods (Fig. 7). Larger
values of RFHC→AS were associated with higher L.
monocytogenes contamination prevalence values
in prepared foods because more pathogens hidden
inside contamination niches could become readily
available to transfer to food servings during facility
operation. RFHC→AS also impacted the persistence of
L. monocytogenes in the facility environment, espe-
cially in holes and cracks of objects assigned to Zone
4. Because of lower sanitation efficacy values as-
signed to pathogens hidden inside the contamination
niches (see Table VIII), smaller values of RFHC→AS

were associated with longer survival of pathogens
in the facility environment (data not shown). We
also assumed certain values for the number of tactile
contacts between food handlers and objects assigned
to different sampling zones during selected activities
(Table VI). Unfortunately, limited data are available
for estimating common behaviors of food handlers
during facility operation, such as the number of

contacts among hands (or gloves), different sur-
faces, and foods. Most of the estimates used in this
study were, therefore, based on our exploratory
assumptions. We did not include our exploratory
assumptions related to the number of tactile contacts
in the global sensitivity analysis; however, these
model inputs, if included in sensitivity analysis, could
significantly impact the persistence of L. monocyto-
genes pathogens in the facility environment and the
spread of contamination to prepared foods. Unlike
RFHC→AS that can be challenging to populate with
real data, observational studies can be used as a
reliable means of data collection regarding behaviors
of food handlers during different food-preparation
activities (Clayton & Griffith, 2004; Green et al.,
2006; Lubran et al., 2010).

F2-QMRA is the first version of a highly flex-
ible model that can be used to evaluate pathogen
persistence and transfer in food facilities of varying
designs and with varying operations. This study
demonstrated that developing a flexible tool that
can be used as a “virtual laboratory” to evaluate
the impact of mitigation options in a food facility is
possible and valuable. When combined with a global
sensitivity analysis and what-if scenario analysis, this
model aided in our understanding of the complex
dynamics of microbial pathogen spread in a food-
facility environment and in preliminary evaluation of
candidate mitigation options. As new data become
available, model inputs can be updated (Buchanan,
Gorris, Hayman, Jackson, & Whiting, 2017). Further,
additional transfer routes, such as airborne/aerosol
transmission (Byrne, Lyng, Dunne, & Bolton, 2008;
Vontayson, 2009), may be added as data become
sufficient to characterize these processes. With
further work, such as development of a user-friendly
graphical interface, this model also could be a
valuable tool for industry and regulatory agencies as
they seek to reduce the burden of foodborne disease
associated with microbiological contamination.
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