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Abstract
Background: The gene ENPEP encodes glutamyl aminopeptidase, which can 
cut N-terminal aspartic acid from angiotensin II, and is related to tumorigenesis 
and immune microenvironment, however, the association between the expres-
sion of ENPEP and benefits of immune checkpoint inhibitors (ICIs) has had no 
investigation.
Methods: We assess the immunotherapeutic predictive performance of ENPEP 
expression and mutation in multiple cohorts, including one discovery cohort 
(Pender cohort), four validation cohorts (Hugo cohort; Liu cohort; Mariathasan 
cohort; Zhao cohort), and one mutation cohort (Miao cohort). Cohorts from The 
Cancer Genome Atlas (TCGA) were used to explore mechanism and analysis 
prognosis.
Results: In the discovery cohort, patients with lower ENPEP expression had 
superior response rates (47.2% vs. 36.1%) and over-all survival (OS) (HR [95% 
CI] = 0.61 [0.39–0.96]; p = 0.032) compared with those with higher ENPEP ex-
pression. The association between ENPEP and immunotherapy efficacy was con-
sistently observed in validation cohorts (Hugo: OS HR [95% CI] = 0.41 [0.11–1.45], 
p = 0.158; Liu: OS HR [95% CI] = 0.73 [0.44–1.20], p = 0.211; Mariathasan: OS 
HR [95% CI] = 0.84 [0.65–1.09], p = 0.181; Zhao: OS HR [95% CI] = 0.20 [0.04–
1.01], p = 0.033; Pooled cohort: OS HR [95% CI] = 0.76 [0.61–0.95], p = 0.015), 
and in the mutation cohort (ENPEP mutation vs. wild type (WT), OS HR [95% 
CI] = 0.46 [0.26–0.93], p = 0.017). Reliably, ENPEP is associated with M2 mac-
rophage infiltration and activation in TCGA.
Conclusions: Our results demonstrated ENPEP is a potential biomarker to clas-
sify patients’ response to ICIs treatment.
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1   |   INTRODUCTION

Immune checkpoint inhibitors (ICIs), which are repre-
sented by programmed cell death (ligand) 1 (PD-1/PD-L1) 
inhibitors or cytotoxic T lymphocyte antigen 4 (CTLA-4) 
inhibitors, have achieved remarkable success across mul-
tiple types of cancers.1–5 However, despite improving over-
all survival compared to other conventional treatments, 
patients respond to ICIs in a limited subset.6,7 Thus, it is 
important to investigate biomarkers for their response to 
ICIs, in terms of clinical efficacy and understanding ICI 
resistance mechanisms.8,9

Previous studies have developed various biomark-
ers to differentiate patients who could benefit from ICI 
treatment, such as PD-L1 immunohistochemistry (IHC) 
of tumor tissue, tumor mutational burden (TMB), tumor-
infiltrating lymphocytes (TILs), and microsatellite insta-
bility (MSI) status.10–13 However, the results of PD-L1 IHC 
are not completely consistent with patients’ response to 
ICIs.14,15 Also, calculations for TMB lack a standard for-
mula.16 Along the same lines, TILs are hardly used in a 
clinical setting due to their relative high cost, and exam-
ination of a patient's MSI status is limited, with spatial 
heterogeneity of tumors. Therefore, novel and reliable 
predicting biomarkers are beneficial to the future clinical 
use of ICIs.

The efficacy of immunotherapy is affected by the 
tumor microenvironment (TME).17 Tumors have complex 
interactions with their microenvironment, leading them 
to develop a unique immune response.18 The TME is com-
posed of various immune cells, including T cells, natural 
killer cells, macrophages, neutrophils, and dendritic cells. 
Immune cells in the TME monitor and prevent cancer cell 
proliferation and growth.19 However, these immune cells 
play different roles in the TME depending on the type of 
cancer cells they act upon.20 For example, T cells directly 
kill tumor cells, signifying that successful T cell infiltra-
tion is associated with better immunotherapy efficacy.21 
Neutrophils and tumor-associated macrophages could 
prevent other immune cell activation and regulate the im-
mune escape of cancer cells, which may also affect the im-
munotherapy efficacy.22,23 Better understanding of TMEs 
may help utilize ICIs in clinical practice.

Glutamyl aminopeptidase, encoded by ENPEP, is a 
membrane protein, which can cut the N-terminal aspartic 
acid of angiotensin II, used to increase blood pressure.24 
In previous studies, ENPEP has been shown to contribute 
to the development of the immune system. ENPEP has 
also been associated with tumorigenesis in some cancers, 
such as breast cancer, leukemia, and renal cancer.25–28 
Recently, ENPEP expression levels have been shown to 
be a prognostic factor in colorectal cancer, linked to the 
increased survival of patients.29 However, the impact of 

ENPEP on the prognosis of ICIs treatment and the associ-
ation between ENPEP expression and TME has not been 
examined.

Here, based on published and supported ICI treatment 
data, we investigate the relationship between ENPEP ex-
pression and the prognosis of ICIs treatment. TCGA da-
tabase will be used to explore the possible mechanism of 
unknown ENPEP effects in the TME.

2   |   METHODS

2.1  |  Public data collection

The RNA-seq data, clinical information, and mutation 
information of 33 cancer types in the TCGA database 
(https://cance​rgeno​me.nih.gov/) were downloaded using 
the R package from TCGAbiolinks (https://bioco​nduct​
or.org/packa​ges/relea​se/bioc/html/TCGAb​iolin​ks.html). 
RNA-seq information with sequencing quality “B,” “C,” 
or “D” were excluded. Considering the limited event cases 
(event rate <5%), PCPG, PRAD, TGCT, and THCA were 
excluded from our study. Types HNSC and CESC were ex-
cluded owing to their special virus infection environment. 
LAML and DLBC types were excluded, as they were not 
solid tumors.

The clinical data and RNA-seq data of two melanoma 
cohorts (Hugo cohort and Liu cohort), one bladder can-
cer cohort (Mariathasan cohort), one GBM cohort (Zhao 
cohort), and one pan-cancer cohort (Pender cohort) were 
collected from published studies.30–34 The mutation data 
and clinical information of another pan-cancer cohort 
(Miao cohort) were extracted from the cbioportal data-
base (http://www.cbiop​ortal.org/). All patients had been 
treated with ICIs (anti-PD-1/PD-L1, anti-CTLA4, or 
anti-PD-1/PD-L1 combined with anti-CTLA4). Response 
Evaluation Criteria in Solid Tumors (RECIST) version 1.1 
was used to evaluate ICIs treatment efficacy. Patients were 
defined by their response to ICIs treatment when they 
achieved complete response (CR), partial response (PR) or 
stable disease (SD) for longer than 6 months. All patients 
were divided into two groups, low and high, by the me-
dian value of their ENPEP expression. The flow diagram 
of this study was shown in Figure 1.

2.2  |  Single sample gene set 
enrichment analysis

The immune infiltration scores of M2 macrophage in 
each sample of TCGA were calculated using Single 
Sample Gene Set Enrichment analysis (ssGSEA) method 
in R package “GSVA” (http://bioco​nduct​or.org/packa​ges/

https://cancergenome.nih.gov/
https://bioconductor.org/packages/release/bioc/html/TCGAbiolinks.html
https://bioconductor.org/packages/release/bioc/html/TCGAbiolinks.html
http://www.cbioportal.org/
http://bioconductor.org/packages/release/bioc/html/GSVA.html
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relea​se/bioc/html/GSVA.html). M2 macrophage signa-
ture were collected from a published study.35 The results 
were considered statistically different when p-values were 
<0.05.

2.3  |  Statistical analysis

OS between different groups was compared by log-rank 
test and the Kaplan–Meier (KM) method. Univariate Cox 
analysis was used to evaluate lower ENPEP expression as 
the risk (hazard ratio [HR] >1) or protective (0 < HR < 1) 
for prognosis in ICIs treatment. Chi-square test was used 
to compare responder numbers between patients harbor-
ing ENPEP mutation and patients without ENPEP mu-
tation. The results achieved statistical difference when 
p < 0.05 in the above analysis. All statistical analyses were 
performed by the R package 4.0.0.

3   |   RESULTS

3.1  |  ENPEP expression is associated 
with clinical efficacy of ICIs treatment in 
the discovery cohort

The discovery cohort consisted of 98 patients with mixed 
tumor types. The main tumor types of the discovery co-
hort were lung cancer (26, 26.5%), BRCA (13, 13.2%), 
and SKCM (11, 11.2%). In the discovery cohort, patients 
with lower ENPEP expression had a higher response to 
ICIs treatment rates (47.2% vs. 36.1%, Figure  2A) when 
compared with patients with higher ENPEP expression. 
Consistent with response rate, the results of univariate Cox 
regression show that higher ENPEP expression was a risk 
factor (HR [95% CI] = 0.61 [0.39–0.96], Figure 2B) for sur-
vival. Patients with lower ENPEP expression experienced 
superior OS (median OS 14.7 vs. 8.8 months, p = 0.032, 
Figure 2B) than patients with higher ENPEP expression. 
These findings indicated that lower ENPEP expression is 
associated with better clinical efficacy of ICIs treatment.

3.2  |  ENPEP expression is associated 
with clinical efficacy of ICI treatment 
in the validation cohorts

In the validation cohorts, higher response rates (Hugo: 
69.2% vs. 33.3%; Liu: 55.0% vs. 50.8%; Mariathasan: 41.6% 
vs. 40.3%; Zhao: 75% vs. 28.6%; Pooled: 47.8% vs. 42.3%, 
Figure 3A) were observed in patients with lower ENPEP ex-
pression. Lower ENPEP expression was protective (Hugo: 
HR [95% CI] = 0.41 [0.11–1.45]; Liu: HR [95% CI] = 0.73 
[0.44–1.20]; Mariathasan: HR [95% CI] = 0.84 [0.65–1.09]; 
Zhao: HR [95% CI]  =  0.20 [0.04–1.01]; Pooled: HR [95% 
CI]  =  0.76 [0.61–0.95]; Figure  3B,C) for patients who re-
ceived ICIs treatments. In the Zhao cohort and the pooled 

F I G U R E  1   Flow chart of the study. ENPEP, glutamyl 
aminopeptidase; ICIs, immune checkpoint inhibitors; OS, overall 
survival; TCGA, The Cancer Genome Atlas

F I G U R E  2   Association between ENPEP expression and ICIs treatment efficacy in discovery cohort. (A) Proportion of responders to ICIs 
treatment in the high ENPEP expression group or low ENPEP expression group, of the pan-cancer cohort. (B) Kaplan-Meier (KM) survival 
estimate of overall survival (OS) comparing the high ENPEP expression group and low ENPEP expression group, in the pan-cancer cohort
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cohort, the OS of patients with lower ENPEP expression 
was significantly longer than the OS of patients with higher 
ENPEP expression (Zhao: Undefined vs. 9.1  months, 
p  =  0.033; pooled: 15.3 vs. 10.1  months, Figure  3G,H). 
Longer OS was also shown in patients with lower ENPEP 
expression in the Hugo cohort, Liu cohort, and Mariathasan 
cohort, but these results were not significant (Hugo: 32.7 vs. 
20.2 months, p = 0.158; Liu: Undefined vs. 20.9 months, 
p  =  0.211; Mariathasan: 9.9 vs. 8.1  months, p  =  0.181; 
Figure 3D–F). To avoid statistical bias caused by limited pa-
tient numbers of Hugo cohort and Zhao cohort, we pooled 
Liu cohort and Mariathasan cohort and performed survival 
analysis (Figure  S1). Consistently, Higher response rate 
and longer OS was found in patients with ENPEP low ex-
pression (45.4% vs. 43.2%, 13.4 vs. 9.8 months, p = 0.062, 
HR [95% CI] = 0.80 [0.64–1.01], Figure S1). These findings 
were consistent with the analysis results of the discovery 
cohort, indicating that lower ENPEP expression is associ-
ated with favorable clinical benefit, through increased re-
sponse to ICIs treatment, across all four datasets.

3.3  |  ENPEP mutation is associated 
with clinical efficacy of ICI treatment in 
pan-cancer cohort

ENPEP mutation could be a feasible cut-off value for ICIs 
in clinical practice. We first investigated the mutation 

rate of ENPEP in 25 cancers in the TCGA databases 
(Figure S2). The ENPEP mutation rate in patients of can-
cer types ACC, BLCA, COAD, ESCA, GBM, LGG, LUAD, 
LUSC, OV, READ, SKCM, STAD, UCEC, UCS was >1% 
(Figure S2). Type SKCM patients have the highest ENPEP 
mutation rate (15.2%; Figure  S2). The top five cancers 
were SKCM (15.2%), UCEC (9.8%), COAD (5.5%), STAD 
(4.3%), and LUSC (4.1%).

We next investigated the effect of ENPEP mutation on 
prognosis of ICIs treatment in a pan-cancer cohort (Miao 
cohort) which was comprised of 249 patients, with more 
than 10 types of tumors. Melanoma (151, 60.6%), NSCLC 
(56, 22.5%), and bladder cancer (27, 10.8%) were the main 
type of tumors in the Miao cohort. 12.4% of patients in 
the Miao cohort harbored ENPEP mutations, and most 
ENPEP mutations were missense mutations (80.6%). 
Patients harboring ENPEP mutations had higher but not 
significant response rates (60.0% vs. 45.5%, p  =  0.245, 
Figure 4A) than wild-type patients. Superior OS (28.1 vs. 
17.8 months, p = 0.017, Figure 4B) was observed in pa-
tients with ENPEP mutation. And ENPEP mutations were 
protective for survival (HR [95% CI]  =  0.46 [0.26–0.93], 
Figure 4B). We also found that melanoma patients with 
ENPEP mutations had longer OS (28.1 vs. 15.5  months; 
Figure  S3) than wild-type melanoma patients; however, 
the result was not significant (p = 0.064). These findings 
indicate the association between ENPEP mutation and 
the better prognosis of ICI treatment.

F I G U R E  3   Association between ENPEP expression and ICIs treatment efficacy in validation cohorts. (A) Proportion of responders in 
high ENPEP expression group or low ENPEP expression group of ICIs treated cohorts. (B) Univariate Cox regression according to ENPEP 
expression median in ICIs cohorts. (C) Percent reduction of hazard ratio (HR) induced by lower ENPEP expression in ICIs cohorts. (D–H) 
Kaplan-Meier (KM) survival curves of overall survival (OS), comparing the high ENPEP expression group and low ENPEP expression group 
in ICIs treated cohorts
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3.4  |  Lower ENPEP expression was not a 
prognostic factor in TCGA

We next investigated the influence of lower ENPEP ex-
pression on prognosis in the TCGA database. No sig-
nificant difference was shown in OS between the lower 
ENPEP expression group and the higher ENPEP expres-
sion group in a pooled cohort (pooled cohort: HR [95% 
CI] = 0.93 [0.85–1.02], p = 0.140, Figure S4), and except 
for LGG, MESO, KIRP, and KIRC, no significant results 
was observed, indicating that lower ENPEP expression 
was not influencing the prognosis of non-ICIs treatment 
for most cancers.

3.5  |  Potential mechanisms of ENPEP 
expression predicting the efficacy of 
ICIs treatment

Next, we examined the association between ENPEP expres-
sion and TMEs. Based on the Whole-exome sequencing 
(WES) data from TCGA database, we found that ENPEP ex-
pression is not correlated with TMB in most cancers (16%, 
Figure 5A). Previous studies have shown that the expres-
sion of ENPEP is regulated by TGF-β, which is an impor-
tant factor for the M2 macrophage inhibition of CD8+ T cell 
activation.36,37 We found ENPEP is correlated with TGF-β 
coding genes TGFB1(80%), TGFB2(64%), TGFB3(88%, 

F I G U R E  4   Association between ENPEP mutation and ICIs treatment efficacy in the Pan-cancer cohort. (A) Proportion of responders in 
ENPEP missense mutation group or ENPEP wild type group of pan-cancer cohort. (B) Kaplan-Meier (KM) survival curves of overall survival 
(OS), comparing the ENPEP missense mutation group and ENPEP wild type group in the pan-cancer cohort
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expression in most cancers. All p values were estimated by the Pearson correlation test
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Figure  3B–D) in most cancers. Consistently, we found 
ENPEP expression is positively correlated with M2 mac-
rophage scores in most cancer (64%, Figure  3E). IL10 is 
another factor secreted by M2 macrophage for CD8+ T cell 
inhibition. The correlation analysis results of IL10 is consist 
of M2 macrophage and TGF-β genes (60%, Figure 3F).

To further investigate the possible effects of ENPEP 
on M2 macrophage, we next investigated the association 
between ENPEP and macrophage chemokines. We found 
there is a correlation between ENPEP and CCL2 (56%, 
Figure  5G), and especially CXCL12 (88%, Figure  5H). 
Our findings suggested that ENPEP is associated with M2 
macrophage infiltration and activation in the TME.

4   |   DISCUSSION

By using collected and supported data, our study has 
shown that patients with ENPEP mutations or lower 
ENPEP expression were more likely to respond favorably 
to checkpoint blockade treatment. ENPEP mutations, and 
therefore lower ENPEP expression, were associated with 
longer OS of ICI-treated patients in pan-cancers. To our 
knowledge, our study is first to investigate the possible 
mechanistic effect of ENPEP on the TME, and the first to 
provide evidence that ENPEP is a predictive biomarker for 
successful ICIs treatment in pan-cancers.

PD-L1 and TMB have been the major biomarkers to dis-
tinguish ICIs treatment responders from non-responders. 
The expression of PD-L1 in tumor cells has been shown 
to be induced by two major methods: genetic alteration 
in tumor cells and IFN-r produced by T cells.38 In the 
TME, IFN-r expression induced by T cells is the major 
factor for tumor cell expressing PD-L1.39,40 Thus, higher 
PD-L1 expression is associated with higher IFN-r level, 
and higher IFN-r level is accompanied by increased T cell 
activation.41,42 High PD-L1 expression in tumor cells usu-
ally indicates strong CD8+ T cell response in the TME.43 
In previous studies, PD-L1 expressed by tumor cells has 
been shown to be associated with better clinical efficacy of 
ICI treatment in different cancers.44,45 However, in recent 
clinical trials, patients with negative PD-L1 immunohisto-
chemistry (IHC) showed a positive response to ICI treat-
ment.46,47 In some cases, no association has been observed 
between PD-L1 expression and ICI clinical efficacy.

Conversely, TMB symbolizes the intrinsic charac-
teristics of tumor cells and is a proxy for immunogenic 
neoantigens.48 In the early stages of cancer, TMB has 
been associated with the positive prognosis of ICIs treat-
ment.11,49,50 However, the calculation of TMB has no 
unified standard, and TMB cannot offer a clear cut-off 
value for ICIs in clinical practice.51 Even in recent stud-
ies, the association between TMB and the clinical benefits 

of ICI treatment is controversial.52 Compared to PD-L1, 
our study found that lower ENPEP expression is associ-
ated with a higher response to treatment rate and better 
clinical prognosis of ICI treatment and that ENPEP ex-
pression is independent of PD-L1 expression (data not 
shown). Compared to TMB, our study found that patients 
with ENPEP mutations experienced longer OS and had 
higher response rates to ICI treatment than patients with-
out ENPEP mutations. ENPEP mutations could provide a 
clear cut-off value for ICIs in clinical practice.

Glutamyl aminopeptidase, the production of ENPEP, 
has been reported that is broadly distributed in tissues.53 
In previous studies, Glutamyl aminopeptidase was de-
scribed BP-1/6C3 antigen, which could be differentiation 
marker on normal or transformed pre-B and immature B 
cells.54 The stromal cell of bone marrow or thymus also 
show strong expression of glutamyl aminopeptidase.55,56 
Thus, there were suggestions that glutamyl aminopepti-
dase may function in early B cell and T cell differentia-
tion.53 However, glutamyl aminopeptidase-deficient mice 
have been proven could generate normal numbers of T 
and B cells, it is possible that other peptidases compen-
sated the function of glutamyl aminopeptidase.54 The 
function of glutamyl aminopeptidase on immune cell is 
still unclear, more molecular evidences are needed.

CD8+ T cells, which can kill tumor cells directly in 
the TME, play a crucial role in the antitumor immune re-
sponse.57 PD-L1 levels have been shown to indirectly re-
flect the intensity of the CD8+ T cell response.58 The tumor 
mutation burden has been shown to be associated with 
antigen presentation, which eventually leads to CD8+ T 
cell activation.48 Our team initially made efforts to inves-
tigate the association between CD8+ T cell and ENPEP. 
However, through examination of literature research or 
data analysis, ENPEP has not shown a direct effect on 
CD8+ T cells activation (data not shown).

On the other hand, our TME analysis results shown the 
TGF-β encoding gene is negatively correlated with ENPEP 
in KIRP, which was inconsistent with other cancers, and 
may be an indication that the special secretion environ-
ment induces different effects.36 More molecular studies 
involving animal models and cell lines are needed. In total, 
we found that ENPEP expression is positively correlated 
with M2 macrophage infiltration and activation, which 
can lead to failed CD8+ T cell activation in the TME. The 
correlation between ENPEP and M2 macrophage may be 
one possible explanation for ENPEP expression's effect on 
the prognosis of ICIs treatment.

In summary, our results indicated that ENPEP expres-
sion and ENPEP mutation is associated with ICI treatment 
efficacy in pan-cancers. Our study provides evidences that 
ENPEP is a new, reliable, and convenient biomarker for 
ICIs in clinical practice.
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