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One problem faced in the design of Augmented Reality (AR) applications is the

interference of virtually displayed objects in the user’s visual field, with the current

attentional focus of the user. Newly generated content can disrupt internal thought

processes. If we can detect such internally-directed attention periods, the interruption

could either be avoided or even used intentionally. In this work, we designed a special

alignment task in AR with two conditions: one with externally-directed attention and one

with internally-directed attention. Apart from the direction of attention, the two tasks were

identical. During the experiment, we performed a 16-channel EEG recording, which was

then used for a binary classification task. Based on selected band power features, we

trained a Linear Discriminant Analysis classifier to predict the label for a 13-s window of

each trial. Parameter selection, as well as the training of the classifier, were done in a

person-dependent manner in a 5-fold cross-validation on the training data. We achieved

an average score of approximately 85.37% accuracy on the test data (± 11.27%, range

= [66.7%, 100%], 6 participants > 90%, 3 participants = 100%). Our results show that

it is possible to discriminate the two states with simple machine learning mechanisms.

The analysis of additionally collected data dispels doubts that we classified the difference

in movement speed or task load. We conclude that a real-time assessment of internal

and external attention in an AR setting in general will be possible.

Keywords: internal attention, external attention, EEG, augmented reality, classification, brain-computer interface

1. INTRODUCTION

Daily life includes many situations where we find ourselves lost in thought or thinking about
something while we were supposed to pay attention to someone or something in our
outside world: a speaker, a teacher, a movie, or a colleague talking to us. At some point,
we may realize that we do not remember anything they said or did the last minutes,
our attention was directed inside ourselves. We suppressed the external influences and our
sensory input to a certain degree, to be able to concentrate on internal processes and
thoughts. “External attention refers to the selection and modulation of sensory information,
as it initially comes into the mind, generally in a modality-specific representation and often
with episodic tags for spatial locations and points in time. (...) Internal attention refers
to the selection and modulation of internally generated information, such as the contents
of working memory, long-term memory, task sets, or response selection” (Chun et al.,
2011). We might consciously start an internally directed attention period because we want
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to think about something, or we do not even realize our
mind has been wandering. Sometimes, we cannot even tell how
long our mind has been fixated on something other than it
was supposed to. This difficulty in reporting one’s direction of
attention in many situations makes it hard to judge, understand,
and scientifically work with one’s attentional state. However, an
estimation of the attentional state of a person might be helpful in
several applications.

With Augmented Reality (AR) becoming more popular,
the industry is facing the challenge of making it as intuitive,
interactive, and unobtrusive as possible, as this would allow
for more application scenarios. One of the problems is the
interference of virtually displayed objects with the current
attentional focus of the user. Instead of being a helpful or
enjoyable addition to the visual field, the projection can be a
distraction. Thus, knowing the attentional state of a person would
greatly improve the applicability of AR devices and even open up
new possible use cases, specifically designed to detect, react to,
and work with this attentional state. It follows that measuring
attention independently and implicitly, without the necessity of
participant intention, is a main goal in our research.

Brain-Computer Interfaces (BCI) offer physiological
information about the user’s mental state to the technical system.
Sensing techniques, such as Electroencephalography (EEG), have
improved drastically over the past decades and make reliable
capturing of brain activation possible. This brain activation has
to be decoded and therefore, “translated” into actual thought
patterns and behavioral correlates before this information can
be used to adapt a system’s state to a user’s state. As an example
scenario, one can imagine a system that monitors the attention
of a person driving a car. Once the BCI detects a period of
internally directed attention, the driver can be reminded to focus
on the road ahead instead.

In this research project, we explored the possibility of
decoding the attentional state of the user during an AR paradigm
from their EEG data. Our goal was to classify the attentional
state regarding internally or externally directed attention through
machine learning algorithms, using automatic, individual feature
selection. Data accumulation was performed in 90-min sessions
in the laboratories of the Cognitive Systems Lab. For this
purpose, we designed an experimental paradigm consisting of
“internal” and “external” trials, which refers to the direction
of the user’s attention. These two conditions are conceptually
very similar to assure that the classified difference regards only
the direction of attention but not merely the task type. The
external tasks were implemented to be displayed in Augmented
Reality (AR). This approach was chosen because it adds another
dimension to otherwise 2-dimensional computer tasks aiming
at improving the similarity to daily, real-world scenarios.
Beyond that, the possible improvement of AR applications
through such attention measurements that was described earlier
motivated this setup.

Based on related work on neurological differences between
the two states, we assume enough difference in the recorded
EEG for a classification algorithm to discriminating them. For
this purpose, we will use a Linear Discriminant Analysis to test
the principle hypothesis that an attentional state classification

differentiating internal and external attention in an AR setting
is possible based on EEG data.

2. RELATED WORK

In this section, we review related work on the classification
of internally- and externally-directed attention. We found no
other work addressing the classification of internal and external
attention in an AR task but solely papers with related concepts.
First, we briefly show that neurophysiological and behavioral
differences have been found that allow for an optimistic
perspective on the success of the attempted classification. Second,
we introduce research that made use of a user’s attentional state
in an AR setting, and finally, we address our previous research
in this field.

2.1. Internally- vs. Externally-Directed
Attention
Several studies deal with correlates of internally- and externally-
directed attention (or certain aspects thereof) in the EEG
signal. Cooper et al. (2003) investigated the well-known effect
of increased power in the alpha power band during times of
“cognitive idling.” The authors presented evidence that this
effect is a frequency marker for active suppression of external
stimulus processing during “internally directed attentional
tasks.” Benedek et al. (2014) showed differences in the frequency
power spectrum in the right parietal region of the brain as
markers to differentiate between internal and external attention.
Braboszcz andDelorme (2011) analyzed spectral and ERP-related
parameters as markers for mind-wandering during an internal
attention task. They reported that the parameters they found
to correlate with self-reported mind-wandering were similar to
parameters correlated with low alertness. Closely related to our
research question is the paper by Putze et al. (2016), where they
show that EEG data can be classified to discriminate between
internal and external attention processes on a single-trial basis
in a computer-based experiment using several different tasks for
each condition.

2.2. Attentional State in AR Settings
Making optimal use of users’ attention has been an important
goal of research on AR interfaces: Bonanni et al. (2005) used
layered interfaces designed according to cuing and search
principles of attention theory to reduce the user’s cognitive load.
Lu et al. (2012) investigate a subtle cuing method to support
visual search in AR settings, which are as effective as explicit
cuingmethods but less distracting. Biocca et al. (2006) introduced
the attention funnel technique as a 3D cursor to guide the user’s
attention toward objects which are completely outside the current
visual field. These studies yield important guidelines for building
attention-driven AR interfaces. However, most of the proposed
AR prototypes do not make use of an online assessment of the
user’s attentional state. Very recently, researchers in academia
and industry showed the feasibility of combining AR and BCI
technology: Faller et al. (2017) used an SSVEP-based BCI as
a silent and hands-free input channel to a head-mounted AR
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device. Similarly, Kishore et al. (2014) compared an SSVEP-
based BCI as an input mechanism to a head-mounted display for
controlling a robot with a gaze-based input mechanism. Mercier-
Ganady et al. (2014), in turn, used an AR device to visualize the
abstract output of a BCI to the user.

3. METHODS

We introduce in section 3.1 a novel spatial perspective alignment
task which is built upon the Lab-Streaming-Layer to leverage
the possibilities of sizeable synchronous data streams in an AR
setting (see section A). The experiment design and technical
design enables us to train and evaluate a Linear Discriminant
Analysis to discriminate internally and externally directed
attention on trigger-bound fixed time windowed data samples
(here: trials). The exact methods used during the recording and
analysis are described in the following.

3.1. Experiment Design
In the work of Putze et al. (2016), a stationary experiment
is presented, which is conducted in a closed laboratory
environment in front of a regular computer monitor with
different tasks for internal and external attention. Hence, the
participants have to sit still in front of the monitor and do not
move much. The stationary setup reduces unwanted influences
but creates a very artificial scenario. Therefore we want to
introduce a task which requires the participant to stand and
to move for both – an internal condition and an external one.
The external condition is specifically designed to run on an AR
capable device to leverage the spatial tracking and awareness
capabilities as well as the possibilities to fully observe the
participant’s movements. We use the Microsoft HoloLens, a pair
of mixed-reality smart glasses that requires externally directed
attention. The internal task is designed in a way which requires
the participant to move and use mental rotation. This section will
explain the task and its implementation in detail.

3.1.1. Perspective Alignment Task
In order to create a more active task compared to Putze et al.
(2016), we developed a spatial perspective alignment task. An
additional benefit of this task is that the internal and external
condition are very closely related and more similar than the tasks
used in the computer-screen based approach. The idea of this task
is to complete an object or constellation of objects by changing
the perspective – like a solar eclipse that is only visible if the earth
is at a specific point on its eclipse or the geometric illusion of
an impossible object that can be created with real objects which
must be looked at from a specific angle. In AR, this corresponds
to tracking a moving object for maintaining the best perspective
during the observation.

Our spatial perspective alignment task consists of two objects:
A tube and a sphere. Both objects are placed ca. 80 cm from
each other away on an axis so that they form a constellation.
Figure 1 visualizes the constellation. When looking at those
objects from the right perspective, the sphere will be seen inside
the hole of the tube – This marks the complete state of the
alignment. To better indicate the alignment progression, we

FIGURE 1 | (A) The first image shows a screenshot from implementation on

the HoloLens. (B) The displayed holographic objects: A red sphere and a

green tube. Both stay on a fixed axis with a fixed distance marked by the blue

line. The pivot of rotation is in the center of the tube. By rotating the object axis

around this pivot, the alignment could be changed and therefore force the

participant to change their head position accordingly. The displayed numbers

are marking the positions to which the red sphere is rotated during the

experiment. They are not displayed during the experiment.

FIGURE 2 | The sphere will change its color if the participant completes the

alignment. From (A–C) the perspective alignment is getting better.

colored the object differently and changed the sphere’s color to
green if it is seen inside the tube. The alignment progression is
displayed in Figure 2.

The main task for the participants is to keep the objects
perspectively aligned with each other the whole time. To achieve
such an alignment, the participants were asked to adjust the
position of their upper body in accordance with the current task.
We rotate the axis of the constellation in a random but fixed
manner. The object movement follows a number grid which
is placed in front of the tube, facing the viewer (displayed in
Figures 1, 3). If the rotation reaches the goal destination based on
a number, it will rotate to the next number. The constant motion
forces the participant to move continuously in order to complete
the alignment. For our experiment, we choose a 5-s duration for
rotating from one number to the next.
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FIGURE 3 | (Left) The start of the sequence. (Right) The constellation of the sphere and the tube is rotating. The sphere appears to be moving toward number 4 first,

then 2 and then 9.

FIGURE 4 | (A) Shows a screenshot from the tutorial. During the internal condition, the red sphere and green tube are moved to the side to distort their orientation

value for the participant. The example constellation and the number-gird are visible to give an idea about their location, speed, and scale of their movement. (B)

Shows the internal condition during the experiment. No helper-objects are displayed—the constellation shown during the tutorial and the number-grid is hidden.

The spatial perspective alignment task seems to fulfill many
criteria for a task which affords continuous externally directed
attention without inducing a high mental load. The participant
has to evaluate the state of the alignment continuously by
processing their visual feedback and adjust their movement
slightly. Since we also aim to produce internally directed
attention and movement of the participant, we separated
the spatial perspective alignment task in two conditions:
One provides direct visual feedback (external), and the other
does not (internal).

• External Condition: By choosing a random number between
1 and 9, whereby the last selected number is not included,
we define the next number on a number grid to which we
rotate the constellation (an exemplary movement of a pre-
selected sequence is shown in Figure 3). This procedure will be
continued until the end of the experiment on the constellation.

• Internal Condition: The internal condition requires the
participants to imagine the sphere and the tube and their
movement while performing the spacial alignment in their
mind. The internal task will induce the same movements of
the participant’s upper body because, in order to fulfill the
alignment, they have to move their upper body and head
despite missing visual feedback. To guide the motion of the
sphere and tub in the participants’ minds, a synthetic voice
will announce three numbers before the internal condition
starts. These numbers correspond to the number grid and
describe the rotation. In Figure 3 an exemplary movement of
the sequence 4, 2, 9 is shown. After the announcement of the
number sequence, the participants have a short memorization
phase before the trial starts, to reduce the memory load

during the task. It is important to state that the internal task
always disrupts the external one and should not provide visual
feedback to the user. During the internal task, the objects
displayed in the external task are still present. In order to
deliver a distraction-free internal task, we distort the visible
(external) constellation by breaking the objects axis and move
the sphere and tube to the side of the field of view. We chose
this approach because we do not remove the visual feedback
completely but only visual clues. An example distortion is
shown in Figure 4.

We mark the start an endings of each condition also by two
distinct sounds. These are as an orientation for the participant,
but not part of the trial. The trial starts afterward.

To give an example of what the participants have to imagine
and in what scale, we first display the two objects and a number
grid (see Figure 4, left image). During the experiment, these
objects will be hidden and used for measuring the misalignment
(see Figure 4, right image). The objects and the number grid are
in the same scale and holographic position in the room for both
the external and the internal condition. Our tutorial consists of
four steps in total: First, we show a short example of the external
task. Secondly, we show the first version of the internal tutorial
described above with all helper-objects visible. It is followed by
the same tutorial with a hidden helper-constellation but a still
visible grid. The last tutorial is a sample trial identical to the
actual experiment.

We decided to run this task by using AR on an AR device like
the HoloLens because it provided us the possibility to precisely
mark the start and the end of a task, to track the movement of the
participant and tomeasure themisalignment for both conditions.
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FIGURE 5 | (A) The participant wears the EEG-headset and the HoloLens.

(B) On the floor, the maximum distance to the holographs is marked, and a

tracking image for placing the holographic experiment in the room is visible in

the front. Written informed consent for the usage of the photos was obtained

from identifiable persons.

It also made it possible to adjust the height of the experiment for
each participant.

3.1.2. Experimental Procedure
TheHoloLens setup and placement of the participant in the room
can be seen in Figure 5. A fixed distance between the subject and
the objects was guaranteed through marks on the ground. All
described tutorial steps could be repeated as often as necessary
until the participant understood the task.

For the main experiment, the subject starts with an internal
task, followed by an external task. Three of these task pairs are
followed by a short break with a fixed length. An experimental
block ends after the fourth break, thus consists of 12 internal and
12 external trials. The participants performed three blocks with
individual breaks in between the blocks. In total, the participants
performed 36 internal and 36 external trials in approximately 50
min (Figure 6).

3.2. Data Collection
Before the experiment, the participants fill out a demographic
and a mind-wandering-related questionnaire. During the main
experimental part, besides the logged interaction and movement
data, we record EEG and eye tracking data. After completion of
the sessions, participants fill out a short questionnaire regarding
their perception of the task (an adapted version of the NASA
Task Load Index: German language and no category weighting).
The total time a participant spent at our lab averaged 2 h with
a recording time of 45–60 min. All recordings took place in
a normal office at the Cognitive Systems Lab with no special
shielding properties, to ensure results that are reproducible in
uncontrolled environments.

3.2.1. Participants
Participants were recruited online in a university-independent
forum. Fifteen healthy participants (mean age 27.4 ± 10.4; three

females) participated in the experiment. All participants had
normal or corrected to normal vision. All participants were
right-handed, and all but three participants had previously used
an Augmented or Virtual Reality Device. We did not restrict
the participation in the experiment except for participants with
neurological disorders. The local ethics committee approved
the study, and written informed consent was obtained from
the participants before the conductance of any measurements.
Technical problems arose during three of the sessions which
led to the complete exclusion of one participant for the further
analysis, and two sessions with reduced trial numbers (54 and 48
instead of 72; marked * in subsequent tables). All the recorded
data was fully anonymized.

3.2.2. EEG
For the EEG recording, we used the g.tec Nautilus mobile 16-
channel EEG system. The recording was performed using the LSL
(LabStreamingLayer) recorder software. The data was recorded
at 500Hz at the following electrode positions: CZ, FP2, F3,
FZ, F4, FT7, C3, FP1, C4, FT8, P3, PZ, P4, PO7, PO8, OZ of
the 10–20 system. Cz was used as a recording reference, with
another reference on the right earlobe of the participant. All the
recorded EEG data was filtered and re-referenced as processing.
Impedances were kept below 20 k�. The setup combined with the
HoloLens can be seen in Figure 5A.

3.2.3. Eye Tracking
Eye gaze was recorded using a binocular, wearable Pupil labs eye
tracker at 120Hz, using the provided recording software. The
eye tracker was fixed to the HoloLens, and distance and angle
were adjusted to the eyes for every participant. The calibration
is displayed on the HoloLens1: The participant has to focus at a
point for 1 s (60 frames), and there are 9 points in total which are
displayed on an ellipse matching the screen size of the HoloLens.
The recordings will be used in further additional classification
approaches. In the context of this paper, eye tracking data will
not be analyzed further.

3.2.4. Behavioral Data
All interaction data (especially head movement and current
position) were recorded during the trial. Performed movement
is evaluated for the accuracy assessment of the internal task.
Also, the orientation of the sphere and the tube were tracked and
their distance in the viewport. The later is used to measure the
success of the alignment in both conditions. In total, we record
the orientation of the ring, and tube for both the internal and
external condition, the orientation of the head of the participant,
and a measure of the alignment of the internal and external ring
and tube during each trial. The streams are described in detail
in section 6.

3.3. Analysis
In this section, we describe how we processed and analyzed the
data collected by the LabStreamingLayer (LSL) to distinguish
internal and external attention in a binary classification task.
The processing scripts were written in Python 3.7 using the

1Pupil Labs provides a library for Unity – https://github.com/pupil-labs/hmd-eyes
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FIGURE 6 | Each trial condition was executed three times before an intermediate break. After four of these trial groups with breaks, a block is finished. The participant

chose the length of the block break. Three blocks were recorded.

MNE toolbox, numpy, matplotlib, scikit-learn, pandas, and
scipy. All analysis steps described were performed offline. The
recorded LSL file was split into EEG and context features after
synchronizing the marker stream with the rest of the data based
on the timestamps, and both data collections were stored in the
MNE data-format. Training and test data were split in a 80/20
manner and only the training data was used for normalization
and hyperparameter optimization. The classifier that was trained
on the training set in a 5-fold cross validation was assessed on the
test set and those accuracies are reported in the results. With the
future goal to later establish a real-time classification of internal
and external attention, the preprocessing and manual evaluation
of each dataset was kept to a minimum.

3.3.1. Alignment and Task Performance
For checking themisalignment, wemake use of the render engine
of Unity and the HoloLens. Since the experiment objects are
virtually rendered objects which are displayed by the HoloLens
close to the eyes of the participant, we can check if the objects
align on the virtual camera in the experiment application. To
do so, we can check the euclidean distance between the tube
and the sphere’s viewport coordinates. The viewport represents
a normalized space in which 3D objects are transformed before
an image can be rasterized by the render engine, as visualized in
Figure 7. Only objects are processed further, which are located in
the view frustum of the virtual camera. The viewport bottom-left
relative from the camera is (0, 0), the top-right is (1, 1) for x and y-
coordinates. For our alignment measurement, we can neglect the
z-coordinates because those store only depth information which
is not needed for the perspective alignment.

3.3.2. EEG Preprocessing
Preliminary to a visual inspection, the EEG data was low-pass
filtered at 50Hz, high-pass filtered at 1Hz, and an additional
notch-filter was applied at 50Hz to exclude all effects of the

FIGURE 7 | The transformation of the Unity camera space to the uniform

Unity-viewport space.

powerline-noise. During the inspection of the data, broken
channels that were noted down during the experimental session
were excluded, and later interpolated (an average of 2 channels
were excluded). Afterward, we re-referenced the data to the
average of all channels. The marker stream was then used to cut
the data into epochs. Tutorial data was not considered and cut-
off. Every epoch is a 13-s window in reference to the marker
indicating the start of an internal or external trial. The epoch
starts 1 s after trial onset (to exclude the effects of auditory cues)
and has a duration of 13 s (to exclude the effect of different
trial lengths in internal and external trials). The epochs are
baseline-corrected based on the first second of each epoch.

A manual artifact removal was considered but with regard
to a future real-time approach dismissed as not suitable for our
purpose. An automatic artifact removal was tested by performing
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FIGURE 8 | During the first pipeline: The feature vector was selected through a hyperparameter optimization in a 5-fold cross-validation on normalized features (16

channel recording → 128 features). See section 3.3.3 for the preceding steps that led to the feature set.

and Independent Component Analysis (ICA) on the data and
rejecting eye movement of muscle related components. The
improvement of the classification accuracy was marginal or not
visible for most subjects. Thus, it was decided to perform no
artifact cleaning on the datasets.

3.3.3. Feature Extraction
We did not initially restrict the number of features but
used statistical feature selection methods later to identify
promising feature sets. Following previously described literature,
we decided to extract EEG-features based on the Power
Spectral Densities (PSD). We computed the power spectra
using the multitaper method for the α (alpha, 8–14 hz),
β (beta, 14–30 hz), θ (theta, 4–8 hz) and γ (gamma, 30–
45 hz) -band and calculated the average and maximum
power for each channel in each frequency band in each
trial. This resulted in a feature vector containing number of
channels x 2 x 4 features. The frequency band ranges were
chosen, based on Abo-Zahhad et al. (2015). All feature names
mentioned in this paper follow the following naming convention:
fmin+channel+[mean,max] with fmin being the lower
bound of the frequency band.

Calculating more frequency bands by splitting the wide β-
band into lower (14–22 hz) and upper (22–30 hz) β-bands or

including the δ-band (1–4 hz) did not improve the preliminary
classification results and was not considered further.

3.3.4. Hyperparameter Optimization
The pipeline that led to the reported results is displayed in
Figure 8. We chose to normalize the feature values (x) by
subtracting the mean (u) and scaling them to unit variance (s)
before determining the number of best features individually for
each participant or training the classifier.

z =
(x− u)

s

We decided to run two versions of the classification pipeline.
The first version included an individual feature selection and
was used to estimate which combination of which features led
to the best classification, and whether a selected feature set
for all participants might improve the average classification
accuracy (Figure 8, 2). The chosen features were also interpreted.
The second pipeline was essentially the same, but without
an automatic feature selection and an optimized shrinkage
instead. The results of the second pipeline are the reported
classification accuracies, whereas the first pipeline was used for
the described analysis of the features and alternative feature
sets for the individual classifiers. Feature selection included a
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hyperparameter optimization concerning score function and the
number of selected features. In a grid search, the scoring was
done by estimating the mutual information between each label
and feature, as well as the ANOVA F-Value. The method, leading
to a feature set that yields a higher accuracy, was selected. These
feature sets were then evaluated in a 5-fold cross-validation by
computing the average score of each fold and choosing the
highest scoring number of features. The possible selection of
features laid within a range of 10–90 with a step size of 10.

In a further step, we evaluated whether the classification
accuracy for a participant with a classification accuracy below
80% would improve with a global feature set that is based on the
features that were chosen during the classification of a participant
with a high accuracy. We tested two different approaches to
evaluate this hypothesis. The feature selection for this feature set
was once based on the number of times a certain feature was
chosen by the better half of the preliminary classification results
and once by the average score the individual feature was assigned
during the feature selection step. However, this global feature set
did not lead to an improvement of the classification accuracies
and will not be considered further.

In a second version of the classification pipeline, the whole
feature set was used but combined with a constrained classifier
(Figure 8, 1). The results of this approach are the reported
accuracies in the results section 4.1.1. We first tried an approach,
where we calculated the shrinkage factor using the Ledoit-
Wolf lemma. This led to a lot worse results than an individual
feature selection. Instead, we included the shrinkage level in the
hyperparameter optimization by performing a grid search for the
best shrinkage factor (0.1 to 0.9, step size = 0.1). A combination
of feature selection and a constrained classifier did no further
improvement to the classification accuracy. Thus, for the final
results, classifier with an individual shrinkage factor was chosen
to be trained on the training data feature set and tested on the
test data.

3.3.5. EEG Classification
Wang et al. (2007) argue that a Linear Discriminant Analysis
(LDA) is very well suited for binary classification tasks. In this
paper, the focus lays on proving a simple but accurate EEG-
data classification for AR rather than optimizing classification
results. Thus, we chose LDA as our classification approach
without further comparisons to other algorithms. The LDA
was performed with shrinkage and with a least-squares solver.
Training was performed on 80% of the trials. The split into
training and test data was stratified and not shuffled. The final
score was calculated on the test set (see Figure 8). The scikit-learn
toolkit was used for feature selection, parameter optimization,
cross-validation, and the classifier.

4. RESULTS

4.1. EEG Classification
The main goal of this research was to classify EEG trial data
based on internal and external attention. This was pursued by the
analysis steps described in section 3.3. Apart from the achieved
classification accuracy, the features chosen by the automatic

TABLE 1 | The classification accuracy for each subject.

Participant EEG-classification

accuracy (%)

Movement-classification

accuracy (%)

1 66.67 49.11

2 66.67 63.57

3* 73.33 89.11◦

4 80 61.07

5 80 86◦

6 80 90.54◦

7* 81.82 74.67

8 86.67 67.5

9 93.33 86.07

10 93.33 90.54

11 93.33 94.46◦

12 100 68.21

13 100 76.61

14 100 82.14

Average 85.37 77.08

Variance 11.27 13.53

Chance 50 50

Sorted by EEG-classification accuracy. Average and variance are computed on unrounded

results (*participants with fewer trials due to technical problems, ◦ better classification

accuracy than for the EEG classification).

feature selection are of importance for the interpretation of
the results.

4.1.1. Classification Accuracy
The main quantitative results of this study are presented in
Table 1. The score was computed for all participants in a balanced
binary classification task with a chance level of 50%. The accuracy
is calculated, based on how many predicted labels were in
accordance with the original label. Overall highest achieved
classification accuracy was 100% for 3 participants, and 6 of 14
participants’ data was classified with an accuracy of more than
90%. All but one participant’s data resulted in a score higher than
70%. The average classification accuracy was 85.37%± 11.27%.

4.1.2. Features
An examination of the selected features from the better scoring
participants (accuracy > 80%), as described in Chapter 3.3.4,
revealed that 53.25% of the features were generated from frontal
channels. Features chosen by less than half of the participants
with the appropriate accuracy were excluded for this analysis.
In comparison, only 7 of the 16 electrodes are placed in frontal
positions. Thus, an equal distribution of selected features would
include 43.75% frontal features, and our analysis shows the
importance of frontal features for attention classification.

Separating the features based on the frequency band they were
derived from yields 18.77% β-band, 29.88% θ-band, 21.83% α-
band, and 31.8% γ -band features as selected features. In the
complete feature set, all frequency bands are equally distributed
(25% of the features were calculated based on each feature band).
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FIGURE 9 | The graphs show the mean alignment for participant 14, 1, and 13. The blue points mark the external condition, red the internal. The error bars denote

the standard deviation (±) for a trial.

FIGURE 10 | 3D plot of the head movement of participant 14, 1, and 13 (from left to right). The blue lines denote the external condition, red the internal. In the

background, one can see the visible constellation (red overlying spheres and green overlying boxes) and hidden constellation (overlying turquoise spheres and purple

overlying boxes).

4.2. Task Performance Analysis
For analyzing the task performance, we looked at the alignment
values and the head movement per participants in order to find a
correlation with the EEG-classification results.

4.2.1. Alignment
For each participant, we calculated for each trial the mean and
standard deviation of the alignment values recorded during the
experiment for both conditions. Figure 9 displays the results
for participants 14, 1 and 13. Then we compared the internal
and external condition per participant with a two-sided t-test
for two independent samples (α = 0.05). For each participant,
the alignment differs significantly (mean comparison: highest
p-value = 0.00015; standard deviation comparison: highest
p-value= 0.0033).

4.2.2. Head Movement
To get a better understanding of what the participant’s
movement, we generated 3D plots for the head movement

for each participant. Figure 10 shows three examples. The
main observation is that most of the participants have a close
alignment with the visible constellation during the external task
whereas they diverge more during the internal condition – their
movement is wider but still shows a similar pattern compared
to the movement of the hidden constellation in case the task
was performed correctly (see participant 13 in Figure 10 as an
example for a not well-performed movement).

Furthermore, we analyzed the speed of the head movement.
For each participant and each trial, we calculated the mean,
the standard deviation, median, minimum, and maximum speed
value. Based on this data, we trained a Linear Discriminant
Analysis model with 5-fold cross-validation to identify whether
we can classify the conditions robustly by just comparing the
speeds of the head movement. In Table 1, we present our
results. These classification accuracies were compared with the
classification accuracy of the EEG data for each participant. The
classification accuracies do not show a measurable correlation
with Pearson’s Correlation r = 0.41 (see Figure 11A).
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FIGURE 11 | (A) The classification accuracies from the movement data correlate weakly with the classification accuracy (Pearson’s r = 0.41, visualized by the red

line). (B) The task load assessment differences between the internal and the external condition correlate negatively with the classification accuracy (Pearson’s

r = −0.4, considered weak, visualized by the red line).

4.3. Questionnaires
To further ensure that the measured and decoded differences
rely solely on internal and external attention, we analyzed
the collected questionnaires in relation to the classification
results. Furthermore, noticeable questionnaire results could
explain outliers.

4.3.1. Task Load Analysis
The NASA Task Load assessment was adapted for our purposes
and did not contain weighted categories. All answers were
weighted equally and translated to a scale from 0 to 100 (100
= high load). Table 2 summarizes the results averaged over
participants. The categories Effort and Physical were not rated
significantly higher concerning task load for the internal or
external task. For all other categories, the internal task load
was rated significantly higher (p < 0.05). Only the difference
in ratings for the Mental category was highly significant with a
higher task load for the internal task (p < 0.001).

To estimate possible interferences with the difficulty
differences of the tasks to classify internal and external attention,
we computed the correlation between the classification accuracy
and the absolute difference in task load rating for each
participant. The overall external rating was subtracted from the
overall internal rating. Concluding, a higher difference score
signifies that the participant perceived the internal task as much
harder while a negative score would imply that the participant
perceived the external task as harder. Since the goal is to compare
task load differences, the absolute difference was taken (For
completeness: Two subjects rated the external task load as
harder). Figure 11B shows the relationship between accuracy
and task load rating difference. We calculated Pearson’s r as a
measure for the correlation between the variables. The resulting
correlation of r = −0.4 is a moderate negative correlation. The
data of participants who rated the task load difference as higher
was decoded worse by our classifier.

4.3.2. Mind Wandering Questionnaire
The answers of themindwandering questionnaire were evaluated
and related to the results of the classification (see section 4.1.1)

TABLE 2 | Results of the NASA Task Load assessment averaged over

participants (⋄ significant, ⋄⋄ highly significant).

Demand External task Internal task p-value

Effort 54.50 68.17 0.055

Frustration 34.17 59.17 0.007⋄

Mental 27.83 68.00 0.00043⋄⋄

Performance 67.50 46.67 0.02⋄

Physical 58.17 54.67 0.5

Temporal 21.17 36.50 0.03⋄

Mean 37.83 52.33 0.0013⋄

Variance 23.57 22.39 not tested

and the Task Load Analysis (see section 4.3.1). However, no
relation or significant differences were found, and thus, the
results will not be reported further.

5. DISCUSSION

In this study, we tested the possibility to classify internal and
external attention in an AR setting with machine learning
techniques. To provide an appropriate paradigm that includes
two different task versions (one for internal and one for external
attention), we implemented a spatial alignment task on the
HoloLens. The two versions of the task were identical, except
for the direction of attention. The visually displayed scene in
the external task had to be imagined for the internal task,
leading to the same movement patterns and cognitive tasks.
The analysis of the movement data showed that the tasks were
performed correctly and understood well by the participants. The
slightly higher misalignment between the target and the object
in the internal task was expected and hard to avoid because of
missing visual feedback. However, the overall performance for
the internal task of every participant was satisfactory, and we
can claim that all participants understood the task and tried
to perform it correctly. The NASA Task Load Index evaluation
stressed that the main task difference was the mental component,
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as desired. The correlation analysis of the task load assessment
and the classification accuracy proved that the classification did
not improve for participants that assigned a much higher load
to internal tasks. In conclusion, the classifier was not trained to
differentiate the trials based on the task load.

The same analysis was performed to exclude the possibility
that we are classifying movement patterns in the EEG data. The
comparison of the classification accuracy based on movement
data and the classification accuracy based on EEG data showed
no correlation between the two classification results. Hence, the
classifier was not trained to differentiate the trials based on the
movement of the participant.

During the internal task, the AR objects were still present, but
not moving. This way we ensured that the classified difference
is not because of the presence of visual AR input or feedback.
However, the imagery component of the internal attention
exercise is exclusive to the internal task and not present in the
external task. One could argue that the classified difference is
“imagery” vs. “no imagery.” There is no task that is defined
as general internal attention but internal attention has many
facets and imagery is one of them that is resent in many tasks
that involve internal attention. Therefor, we generalize here and
future tasks will focus on different facets of attention to prove
our findings.

After excluding task load and movement, we conclude that
our classifier classified internal and external attention variations.
Further arguments for this will be given in the following.

The results of the classification suggest that reliable decoding
of the attentional state in this setting is possible. Without
many optimizations of the classifier or the feature selection, the
achieved classification accuracy was higher than chance level
for all the participants. Half of the classification accuracies were
above 85% with an LDA on almost unprocessed EEG data. The
exclusion and interpolation of a few channels were necessary due
to a broken electrode cap. Additionally, only simple filtering,
baseline corrections, and re-referencing were performed. A
preprocessing step that does not require the visual inspection or
specialized cleaning steps is favored in consideration of a possible
real-time classification.

The substantial differences in classification accuracy between
the subjects could have multiple reasons. As expected, the
internal task was rated with a higher task load and thus, perceived
as more complicated than the external task. Informal feedback
of the participants after the experiment also suggests that the
task was hard to perform. However, as mentioned, the option
of a misunderstood task or bad alignment performance due to
inadequate internal attention or “mind-wandering” and a low
level of concentration has been excluded by the analysis of the
movement and alignment data.We found no correlation between
subjects that had higher misalignment variations in the internal
or external task and the according accuracy of our classifier.

One approach to improve the classification accuracy for the
worst participant was to inspect the EEG data for artifacts
visually. Epochs that included very noisy data were excluded, and
an ICA was performed to identify eyeblink artifacts that were
very present in the signal of all frontal electrodes. These artifacts
were not as severe in any other participants’ data. Supervised data

inspection for artifacts and ICA cleaning resulted in better data
that was classified with an accuracy of 70.3%. In the scope of
this work, such intense manual preprocessing is not desired, and
therefore, these results will not be considered.

Another possible explanation for lower classification
accuracies could be a change over time. This concerns two
modalities: firstly, the participant could experience a training
effect and perform the internal task with ease after several trials,
leading to a decreased need for internal attention. Secondly, the
combination of the HoloLens and the EEG-cap on the head of
the participant was prone for slight movements and changes. As
a result, the data quality often decreased over time, and later trials
had worse data than earlier trials. Our approach to reduce these
effects as much as possible was choosing a stratified 5-fold cross-
validation. Even with this approach, decreasing attention and
increasing signal noise can worsen the classification accuracy.

The literature suggests person-dependent frequency bands
(Newson and Thiagarajan, 2019). The predefined frequency
band boundaries during the feature extraction could favor some
participants. This could be solved with smaller bins to calculate
the PSD on but would result in a broader feature set and longer
classification times. Our attempt to split the β-band did not
lead to an overall improvement of the classification results but
individually chosen, or more fine-grained frequency bins could
improve the classification.

A further reason that we can not exclude in retrospective or
test is BCI illiteracy (Thompson, 2018).

Another result that supports our statements that we classify
the trials based on attention-related differences and that better
data quality would improve the classification accuracy is the
evaluation of the selected features. The analyzed features suggest
that the most critical information for the classification can
be found in frontal electrodes and within the γ and α-
bands. This is in accordance with the literature concerning
attention (Cooper et al., 2003; Braboszcz and Delorme, 2011;
Chun et al., 2011; Benedek et al., 2014). On top of that, the
importance of these electrodes explains the lower classification
accuracy of some participants because those electrodes were
often disturbed by the setup with the HoloLens and one
frontotemporal electrode was broken in many experiments. In
the preprocessing of the data of participant 1 (who had the lowest
classification accuracy), FZ, FP1, and FP2 had to be excluded and
interpolated. Reducing these sources for noise could improve the
classification. For participants for whom the accuracy was high,
the selected features were very similar, whereas the automatic
feature selection of the other participants chose different features.
The recorded data for the better features was probably too noisy,
and they were not chosen.

In the future, the recorded data will be analyzed and classified
with regard to multiple modalities to integrate the eye tracking
data and improve the classification accuracies. Furthermore,
the results will be integrated into a real-time adaptive AR
application and checked in further experiments. Additionally,
more participants could be recorded with additional EOG and
EMG electrodes for an automatic detection of eye and muscle
artifacts. These tests will dispel more doubts about the purposeful
task at hand and its results.
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6. CONCLUSIONS

We showed that the classification of EEG data that was recorded
in an AR paradigm based on internal and external attention is
possible. The novel paradigm invented for this purpose seems to
be very suitable. Even with simple machine learning principles
and basic preprocessing steps, the classifier was able to reliably
predict the attentional state of the participant in the offline
analysis with perfect accuracy in 3 participants. None of our tests
supports the assumption that anything but the actual attentional
state was classified. The differences between the participants
might be reducible. A future real-time system and multi-modal
classifier are to be implemented.
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APPENDIX

Implementation
The spatial perspective alignment task was build with the Unity
engine2 and the HoloToolkit3. For network communication and
recording of all data sources, we used Lab Streaming Layer
(LSL)4. It is the backbone of the experiment architecture, as
visualized in Figure A1. LSL is not supported on the HoloLens
operating system, and therefore we provide a Transmission
Control Protocol (TCP) based Client-Server bridge service which
as capable of passing forward and backward data between LSL
and the HoloLens. To ensure that the time of the HoloLens
is synchronized with the time of the bridge server’s operating
system, we synchronize both systems with a Network Time
Protocol (NTP) service5. Furthermore, we define and record
multiple data streams from LSL. The following list provides
information about their content:

• Control stream:
send control-strings to the HoloLens to control the states of
the experiment.

• Control-return stream:
contains string-answers when a control-command was
received by the HoloLens successfully. The content of an
answer is whether the received control command is valid
or not.

• Marker stream:
Contains short-typed markers. A marker ranges from 0 to 9.
The numbers represent the following meanings – 0, start of

2engine version: 2018.2 https://unity.com
3HoloToolkit 2017.4.3.0 - Refresh https://github.com/Microsoft/

MixedRealityToolkit-Unity/releases/tag/2017.4.3.0-Refresh
4Lab Streaming Layer is a communication tool to create time-synchronous data

streams: https://github.com/sccn/labstreaminglayer
5We choose the public NTP service of https://www.pool.ntp.org/de/

experiment app; 1, beginning of an experiment block; 2, end
of an external trial; 3, start of the announcement of grid-
numbers; 4, end of the announcement of grid-numbers; 5, start
of the internal trial; 6, end of the internal trial; 7, start of the
external trial; 8, end of an experiment block; 9, closing of the
experiment application.

• Head-orientation stream:
Contains the 4 × 4 orientation matrix of the head in
virtual-coordinates as a float 32 array that is generated from
quaternion and three-dimensional position vector in Unity
World-Space.

• Sphere-orientation streams for the hidden and visible sphere:
Same data format as the head-orientation stream.

• Tube-orientation streams for the hidden and visible tube:
Same data format as the head-orientation stream.

• Grid-number streams for the hidden and visible constellation:
this stream contains the grid-number to which the
constellation will rotate. The value type is “short.”

• Visibility streams for the hidden and visible constellation:
We stream the visibility of the constellation, meaning whether
or not the participant sees the objects on the HoloLens
displays. This is required because the HoloLens has a small
field of view. If the sphere and tube are both not visible
simultaneously a “0” is sent, else a “1.” The value type
is “short.”

• Alignment-measure streams for the hidden and visible
constellation:
We send a float32 value that represents how well
the participant aligns the sphere and the tube (see
section 3.3.1 for more details). It is important
to do this for the visible constellation and the
invisible one.

The implementation of the task is open-source and accessible
from https://gitlab.csl.uni-bremen.de/fkroll/ieaExperiment.
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FIGURE A1 | The experiment architecture is based on LSL communication platform. The graphic gives an overview of the different components involved in

time-synchronous data exchange.
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