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ABSTRACT Identifying genetic basis of domestication and improvement in livestock contributes to our
understanding of the role of artificial selection in shaping the genome. Here we used whole-genome
sequencing and the genotyping by sequencing approach to detect artificial selection signatures and
identify the associated SNPs of two economic traits in Duroc pigs. A total of 38 candidate selection regions
were detected by combining the fixation index and the Composite Likelihood Ratio methods. Further genome-
wide association study revealed seven associated SNPs that were related with intramuscular fat content and
feed conversion ratio traits, respectively. Enrichment analysis suggested that the artificial selection regions
harbored genes, such as MSTN, SOD2, MC5R and CD83, which are responsible for economic traits including
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lean muscle mass, fertility and immunization. Overall, this study found a series of candidate genes putatively
associated with the breeding improvement of Duroc pigs and the polygenic basis of adaptive evolution, which
can provide important references and fundamental information for future breeding programs.

INTRODUCTION

Duroc, an older breed of domestic pig, was developed in America and
formed the basis for many mixed-breed commercial boars after a long
period of artificial selection. It is predominantly used as the terminal sires
in pig industry, and is well known for its superior performance in
growth, feed conversion efficiency, carcass and meat quality traits
(Briggs and Briggs 1969). The artificial selection affecting these
economic traits has left detectable selection signatures within the
genome of modern Duroc pigs (Edea et al. 2017). Although the
identification of selection signatures has been studied for decades
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on the basis of microsatellite and SNP arrays, there is now unprec-
edented opportunity for progress on fine mapping with the advent of
large genome sequencing data sets on pig variation (Abbott 2012;
Ai et al. 2015; Sabeti et al. 2002).

In general, most of the economic traits in commercial animals are
quantitative and controlled by many genes with small effects (Khatkar
et al. 2004). This quantitative genetics view is supported by most of the
recent gene mapping researches, including the identification of selec-
tion signatures and genome-wide association studies (GWAS) (Eusebi
et al. 2017; Ma et al. 2018; Pritchard et al. 2010; Ros-Freixedes et al.
2014). Therefore, genomic selection has become the main method in
genetic improvement in important economic traits (Hayes et al. 2009).
However, for traits such as meat quality and feed efficiency that are
difficult and expensive to measurement, genomic selection is still lim-
ited by the sample size of the reference population. So, based on gene
mapping, genetic improvement through marker-assisted selection is
still an important alternative to improve these traits. Simultaneously,
the development of genome selection methods, combined with the
information of GWASs, will help further improve the accuracy of
genetic evaluation (Zhang et al. 2014).

To address the growing demand for high quality pork and minimize
pig breeding costs, the understanding of genomic architecture
underlying pork quality and feed efficiency is valued by animal scientists
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and breeders. Intramuscular fat (IMF) content is one of the most
important factors affecting pork quality. Based on marker-assisted
selection, there is increasing interest in mapping some of the causal
genes of IMF for its genetic improvement (Ros-Freixedes et al. 2014).
Feed conversion ratio (FCR) is an important indicator for feed effi-
ciency and is usually included in the selection index for genetic im-
provement in pig breeding (Do et al. 2014). Although a series of QTL
associated with interesting economic traits were reported based on
traditional QTL mapping, it is still scarce to investigate the genetic
basis of IMF and FCR using genome-wide association study in pigs
(Do et al. 2014; Hu et al. 2016; Ros-Freixedes et al. 2014; Sato et al.
2016).

In this study, we used paired-end Illumina sequencing to resequence
the genomes of four purebred Durocs and used the genotyping by
sequencing approach to characterize the genomes of 282 individuals
from the same population. To identify the signatures of artificial
selection, sequences from 23 purebred Durocs, 21 Asian wild boars
(AWB), and 25 European wild boars (EWB) were downloaded from
the most advanced publically available database. Two different statis-
ticses, the Composite of Likelihood Ratio (CLR) and the fixation index
(Fst), were applied to detect selection signatures. In addition, we also
carried out GWAS to identify the key genes related with IMF and FCR
that were changed during the breeding improvement of Durocs. We
found strong signatures of selection left in Durocs during breed for-
mation exemplified by several striking selective sweeps overlapping
with some major QTLs. The results would provide useful informa-
tion for those who are interested in further understanding the genetic
basis of important commercial traits, and facilitate future breeding of
Durocs to improve these traits through genomic selection.

MATERIAL AND METHODS

Ethics statement

All research involving animals was conducted under protocols (No. 5
proclaim of the Standing Committee of Hubei People’s Congress) ap-
proved by the Standing Committee of Hubei People’s Congress and the
ethics committee of Huazhong Agricultural University in P. R. China.
In addition, all experiments were performed in accordance with ap-
proved relevant guidelines and regulations.

Animals, genome sequencing, quality checking

and filtering

In this study, genomic DNA was extracted from ear tissues of each of
286 purebred Duroc pigs using a standard phenol-chloroform method.
Among them, four individuals were selected to sequence the whole
genomes. Paired-end sequencing libraries with an insert size around
350-bp were constructed for each sample. 2x150-bp paired-end
sequencing was performed on an Illumina HiSeq X-ten platform at
the BGI-Huada Genomics Institute in Shenzhen. The rest of individuals
were genotyped by sequencing (GBS) on an Illumina HiSeq 2000 plat-
form in Buckler Lab for Maize Genetics and Diversity at Cornell
University (Elshire et al. 2011). In addition, we also downloaded the
whole genome sequence data of 69 individuals from the EMBL-EBI
database (https://www.ebi.ac.uk/), including 23 Duroc pigs, 21 Asian
wild boars and 25 European wild boars (Supplementary Table S1).
Quality control of sequence data applied the following criteria: reads
with (i) > 10 bp aligned to the adapter with up to 10% mismatches,
(ii) up to 10% unidentified nucleotides (N), (iii) > 50% bases having a
phred quality less than 5 were removed, and (iv) Duplicate reads
generated by PCR amplification in the library construction process
were also removed.
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Read alignment and SNP calling

Clean reads passing quality control filter were aligned to the Sus scrofa
reference genome (Sscrofall.l) using the Burrows-Wheeler Aligner
(BWA) software (Li and Durbin 2009). The reference genome sequence
was indexed and the command ‘mem -t 8" was used to find the suffix
array (SA) coordinates of good hits for each individual read. SAMtools
was then used to convert the SA coordinates into the best alignments in
BAM format (Li et al. 2009). After alignment, ‘CreateSequenceDictionary’,
‘SortSam’ and ‘MarkDuplicates’ of Picard were separately used to
indexing, sorting and removing potential PCR duplications (Li et al.
2009). The BAM files were indexed by Samtools. The ‘HaplotypeCaller,
‘SelectVariants’ and ‘VariantFiltration’ of GATK with default parame-
ters and SAMtools ‘mpileup’ module with the parameters as -q 1 -ugf
were used to call SNPs. Finally, the GATK ‘VariantFiltration’ module
was used to exclude SNP calling errors in according to the following
criteria (Mckenna et al. 2010). For GBS individuals, joint genotyping
was performed by the GATK ‘GenotypeGVCFs” module.

High quality SNPs with (i) coverage depth = 4, (ii) RMS mapping
quality = 20, (iii) the distance of adjacent SNPs = 5 bp, (iv) the
missing ratio of samples within each population < 50%, and (v)
the minor allele frequency (MAF) = 0.01 were kept for further
analysis. The SNPs that were used for GWAS need further apply
quality control of Hardy-Weinberg equilibrium (P < 10e-6). To
decrease the influence from genotype imputation, only SNPs with
the missing ratio of samples within each population < 20% were
used to detect selection signatures. Beagle software was used to im-
pute the missing genotypes and infer haplotypes with default settings
(Browning and Browning 2016).

SNP annotation

We functionally annotated Single nucleotide variants (SN'Vs) with the
gene-based annotation modules of ANNOVAR (Wang et al. 2010).
Using ENSEMBL genes, we investigated where the SN'Vs are located
in the regions of gene components.

Linkage disequilibrium

We calculated the correlation coefficient (1?) for every pair of SNPs to
measure the LD level in Duroc pigs and two wild boar populations
using PLINK (Purcell et al. 2007). To visualize the LD decay in this
analysis, the 72 values for 1000-bp distance bins were averaged and the
corresponding figure was drawn by R script.

Identification of artificial selection signatures

Identification of selection signatures is an important field of pop-
ulation genetics. To detect the selection signals accurately and
objectively, a larger sample size is able to better reflect genomic
patterns shaped by selection in the particular population. Therefore,
all 27 whole-genome sequencing individuals were taken together to
detect positive selection signatures referring to the result of principal
components analysis (Supplementary Fig. S1). To identify artificial
selection signatures, AWB and EWB were defined as the reference
population, respectively.

In this analysis, two methods were employed to search for the
evidence of artificial selection in two steps. The first step is positive
selection detection, which was performed using the composite likelihood
ratio (CLR) (Nielsen et al. 2005). The CLR method calculates the likeli-
hood ratio of selection signals by comparing the spatial distribution of
allele frequencies in an observed window to the frequency spectrum of
the whole genome. SweepFinder was employed to calculate the CLR
with a grid size of 25 kb resulting in a total of 90,588 CLR scores across
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the genome. In the second step, we identified the underlying artificial
selection signals from the above detected positive selection signals by
calculating the Fgr statistic for pairwise sites between the observed
populations and the reference population (Weir and Cockerham
1984). The unbiased Fgr estimate proposed by Weir and Cockerham
was used to measure the population differentiation, with values ranging
from 0 (no differentiation) to 1 (complete differentiation). To produce
comparable CLR and Fgr test results, single site scores for Fgp were
averaged in non-overlapping windows of 25 kb resulting in a total of
90,322 and 90,411 Fgr scores across the genome when AWB and EWB
were defined as the reference population, respectively. The empirical
P-values were generated by genome wide ranking of Fsr and CLR
values (Qanbari ef al. 2014; Simianer et al. 2014). Finally, the windows
that the scores of the statistics fell into the 98 percentile were consid-
ered significant in CLR and Fgr methods, respectively. Note that the
artificial selection signatures in this study were defined in the genomic
region in which both CLR statistical value and the Fgr statistical value
were greater than the cut-off value at the genome level.

Genome-wide Association studies

In this analysis, all 282 castrated Duroc boars were treated similarly. All
individuals were in good health and had the same body weight at the
beginning of the experiment. The feed conversion ratio was calculated
during the growth period from 30Kg to 100Kg, and at the end of the
measurement, the intramuscular fat of each pig was determined by
B ultrasound (Supplementary Table S2).

After quality control assessment, autosomes of 282 individuals
genotyped by sequencing were used in two association studies for
IMF and FCR traits, respectively. GEMMA was used to fit the model
y=u+Ss+Xb+Wa+e, where y is the phenotypes vector, u is the inter-
cept, S is a design matrix of the fixed effects, s is the batches effect, b is
the SNP effect, X is a design matrix for allele dosages for the imputed
SNPs, W is an incidence matrix linking « to y, & is the additive genetic
effect ~ N (0, G62,), where 62, is the additive genetic variance and G is
the realized genomic relationship matrix that was estimated using ge-
notype information, and e is the random residual term. To avoid double
fitting of SNP effects efficiently, the test SNP and the other SNPs in
the same chromosome were removed in constructing the G matrix
each time based on the standardized relatedness matrix in GEMMA
(Zhou and Stephens 2012).

Since Bonferroni correction is overly conservative especially when
genetic data has high linkage disequilibrium, it may cause false negative
results (Duggal ef al. 2008). Therefore, a less conservative significance
threshold of 1.03 x 105 (0.05/4,853) based on the SimpleM method
was used to account for multiple tests in this analysis. A total of 4,853
independent tests were identified here that was in turn inferred by the
number of principal components accounting for a 99% of the variance
of the SNP matrix (Gao et al. 2008).

Enrichment analysis for artificial selection signatures
Enrichment analysis was carried out for exploring the potential
biological functions of genes located in putative artificial selection
regions. It is involved all the selected genes in the 200 kb window
around the significant signatures, which was determined by the linkage
disequilibrium decay (Supplementary Fig. S2). Genes located in puta-
tively selected regions were identified using the BioMart program (http://
www.biomart.org/, Kasprzyk 2011), and then an enrichment analysis,
which included the terms cellular component (CC), molecular function
(MEF), biological process (BP), and pathway analysis was performed for
the identified genes using DAVID 6.7 (http://david.abcc.nciferf.gov/)
(Huang et al. 2009).
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Data availability

The Ilumina sequence reads are available in the NCBI Sequence Read
Archive under the accession SRP158574. Supplemental files, the GBS
data and phenotype data can be downloaded from Figshare (https://
figshare.com/s/e45cc6d717c¢d498d5013). Supplemental material avail-
able at Figshare: https://doi.org/10.25387/g3.7077125.

RESULTS AND DISCUSSION

Genome resequencing and genetic variation

After quality control, a total of 127.98 Gb of sequence data were
generated on the basis of our four Duroc pigs, with the average
sequencing depth of approximately 13-fold and the average genome
coverage of 99.03%. As shown in Table 1, we identified 9,245,511 SNPs
with an average density of 3.76 SNPs/kb. Then, we compared these
SNPs that we found with those from the SNPs database that was built
using 23 downloaded Duroc pigs. About 88% of the variants (8,205,625
SNPs) in our SNP data set were found in the SNPs database, whereas
more than 11% (1,039,886 SNPs) of the variants that we identified were
absent from the SNPs database (Supplementary Fig. S3). These novel
SNPs substantially expand the database of Duroc genetic variants.
Therefore, combining all 27 Duroc individuals together not only
increased the sample size, but also significantly increased the SNPs
density of the genome. The previous study indicates that a high marker
density has positive effects on the identification of selection signatures
(Ma et al. 2015).

Combined, a total of 14,827,549 SNPs with an average density of
6.03 SNPs/kb were detected using 27 sequencing Duroc individuals.
Among them, 8,863,149 were located in intergenic regions, 5,496,375
were in intronic regions and 111,759 were in exonic regions. Similarly,
4549 GbD of sequence data were generated by GBS, with the population
sequencing depth of approximately 17-fold and about 0.56% of the bases
in the reference genome being covered by at least one reads. A total of
651,425 SNPs were identified in the 282 pig genomes, including
144 intergenic SNPs, 192 intronic SNPs and 16,332 exonic SNPs
(Table 1). The SNPs identified by GBS were not evenly distributed
across the genome, with an average density of 0.27 SNPs/kb (Supple-
mentary Fig. S4). Similar genome annotation information of EWB
and AWB herein is illustrated in Supplementary Table S3.

Genome-wide artificial selection signatures
To detect positive selection, the CLR scores were calculated using an
identical grid size across the genome. We focused the analyses on
windows for which the scores of the statistics fell in the top 27 percen-
tile. As shown in Supplementary Fig. S5, the threshold value is almost
greater than the largest CLR scores in the wild populations. In general,
we expected a limited amount of artificial selection for commercial traits
occurred in the wild populations. Out of 90,588 sliding windows, 1,811
windows were identified as the potential selection signatures in the
Duroc population. Then, the windows within a 200kb fragment around
the potential selection signatures are merged and the genomic regions
were defined as candidate selection regions (CSRs). Correspondingly,
a total of 70 fragments, spanning lengths of 81.40 Mb and covering
3.3% of the genome, were identified as CRSs in Duroc pigs (Figure 1A).
To further identify the artificial selection signatures, Fgr statistics
were used to detect the differentiation between Duroc and wild pigs.
We calculated Fgr per site and averaged them in non-overlapping 25 kb
windows across the genome. The windows that the scores of the sta-
tistics fell in the top 2°¢ percentile were considered as significant. Out of
90,322 sliding windows, 1,806 windows were identified as the potential
selection signatures and fall into 758 CRSs when AWB was treated
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Table 1 Summary and annotation of SNPs in Duroc pigs

Category WGS GBS
Sample size 27 4 23 282
Average depth (X) 12.10 12.79 11.98 16.92"
Average genome coverage (%) 96.56 99.03 96.13 0.56
Average Mapping rate (%) 99.67 99.66 99.67 95.95
High-quality base (Gb) 817.35 127.98 689.37 45.49
Q20 (%) 97.36 95.23 97.73 98.13
Q30 (%) 91.18 89.67 91.44 91.91
Number of total SNP 14,827,549 9,245,511 13,787,663 651,425
Upstream 92,785 56,487 85,634 4,094
UTR5 28,436 18,070 26,101 1,917
Exonic Stopgain 545 265 504 215
Stoploss 117 65 114 27
Synonymous 66,285 41,379 61,367 5,663
Nonsynonymous 44,660 26,352 41,243 10,212
Unknown 152 33 144 215
Splicing 614 397 565 254
Intronic 5,496,375 3,459,359 5,108,598 192
UTR3 133,194 82,605 124,775 281,638
UTR5/UTR3 702 454 679 8,489
Downstream 98,207 59,700 91,145 53
Upstream/downstream 2,328 1,455 2,164 4,852
Intergenic 8,863,149 5,498,890 8,244,630 144

Tthe population sequencing depth.

as reference population. Similarly, Out of 90,411 sliding windows,
1,804 windows were identified as the potential selection signatures
and fall into 684 CRSs when EWB was treated as reference population
(Figure 1B).

In this analysis, the overlapping candidate selection regions detected
by CLR and Fgr were defined as candidate artificial selection regions

(CASR). Collectively, a total of 38 CASRs, spanning lengths of
40.48 Mb and covering 1.62% of the genome, were identified in
Duroc pigs through compared with the wild populations (Figure 1C,
Supplementary Table S4). In general, the adaptive evolution of im-
portant traits, due to human-driven or natural select, would leave a
number of selection signatures in genomic regions, where should
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plots.

harbor the corresponding causal genes. Therefore, the candidate se-
lection regions should be major enriched in genic regions. To test this
hypothesis, we identified a total of 246,868 SNPs in the 38 candidate
artificial selection regions, of which 143,978 (57.918%) were inter-
genic, 97,287 (39.136%) were intronic and 1,924 (0.78%) were exonic.
Comparing the distribution of SNPs between candidate artificial se-
lection regions and the whole genome, it suggested that there was no
predictable pattern in where those selection regions were located
(Supplementary Table. S5). This seems to indicate that selection not
only plays a role in the gene regions, but also in other regulatory
elements of the genome.

Candidate selection regions harboring loci associated
with two economic traits

Genome-wide association studies have already been proven effective to
reveal the underlying genetics of economic traits (Meyer et al. 2016;
Visscher et al. 2017). If the underlying genetic basis of those domesti-
cation traits has been improved by recent artificial selection, the geno-
mic regions that harbored the QTNs revealed through GWAS should
overlap with the candidate selection regions. In this analysis, we per-
formed mixed-model association analysis using GBS data of 35,303
high-quality markers. Although the small sample size limited our
power, we identified seven associated loci with a less conservative sig-
nificance threshold (—logl0(p-value) =4.98), including four SNPs for
IMF trait and three SNP for FCR trait (Figure 2). Comparing seven
associated loci with the candidate selection region, we found that a
series of selection signatures were located around the associated loci
for both traits (Supplementary Table S6).

Because of concerns that the sample size for GWAS is too small to
make meaningful scientific conclusion, we investigated the results of
GWAS for IMF and FCR traits using a random sampling of 250 indi-
viduals, and the process is repeated 10 times. Among them, the similar
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results of GWAS for IMF and FCR traits have been replicated with
smaller sample size, respectively (Supplementary Fig. S6, S7). In addi-
tion, we further check genotype-class frequencies and phenotypic means
for seven significant SNPs. As shown in Supplementary Table S7, we
can clearly observe the trend of phenotypic changes with three geno-
types. The results suggested that the SNPs passing the less conservative
significance threshold are still promising in this study.

For FCR trait, an associated SNP was close to the 16.375-16.425 Mb
selection region on SSC9 and the QTL of ‘time spent feeding’ was
reported to be overlapping with this region. For IMF trait, 4 associated
SNPs were found close to the 7.1-9.0 Mb selection regions on SSCI.
After scanning the pig QTLdb (https://www.animalgenome.org), we
found that these four SNPs were also overlapping with ‘the drip loss’
and ‘the stearic acid content’, respectively (Hu et al. 2016).

We highlighted the 7.00-10.00 Mb regions around the most signif-
icant SNP on SSC1 (Figure 3), where a series of CLR and Fgr scores
exceeded the significance threshold and several harboring genes, such
as IGF2R, TMEM181, SOD2 and TAGAP, were responsible for sex
determination, growth, muscle and bone development (Supplementary
Table. S8). Among them, one possible positional candidate gene, in-
sulin like growth factor 2 receptor (IGF2R), serves IGF2 turnover in IGF
signal mediated process (Ludwig et al. 1996) and IGF2 is known as a
major gene that influences the meat quality of pigs (Clark et al. 2014).

Go terms, pathways and candidate genes for

artificial selection

To further investigate the genetic basis of improved economic traits, a
total of 371 genes overlapping with all 38 candidate artificial selection
regions in Duroc pigs were found and the corresponding orthologous
genes from human were used to perform an enrichment analysis by
DAVID 6.7 (https://david.ncifcrf.gov/) (Huang et al. 2009). The results
indicated that genes related with a number of terms previously
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Figure 3 Comparison of GWAS and candidate artificial selection regions (CASR) on SSC1 in Duroc. (A) The top Manhattan plot shows GWAS
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found in Supplementary Table S8.

implicated in breed improvement were present within or close to these
sweep regions.

Among them, a set of genes overlapping artificial selection regions
were enriched for the ability of immunity, which mainly included
‘G0O:0042267~natural killer cell mediated cytotoxicity’ (6 genes),
‘G0:0019882~antigen processing and presentation’ (6 genes) and
‘hsa04650:Natural killer cell mediated cytotoxicity’ (6 genes)
(Supplementary Table S9). Additionally, we also found one signifi-
cant candidate artificial selection regions that overlapped with CD83
gene, which contributes to T lymphocyte proliferation (Pinho et al.
2014) (Table 2). Due to the high density and selection intensity of

3622 | Y.Maetal

rearing animals in the breeding farm, the artificial selection effect is
undoubted to play an indispensable role on selecting innate immunity
genes indirectly. Six genes with strong selection signatures are signif-
icantly enriched in ‘GO:0043651~linoleic acid metabolic process’ and
the LPIN2 gene that plays a significant role in fat deposition was
found to fall into the 102-104.275 Mb artificial selection regions on
SSC6 in Duroc, suggesting that these genes may have been selected
during the breeding of lean pigs (Table S2, S9).

In addition to those significant Go and Pathway terms, a set of
artificial selection signatures with extreme P-value coincide with a
cluster of genes involved in meat quality, growth, fertility and so

-=.G3:Genes| Genomes | Genetics



Table 2 Some candidate genes overlap with the potential regions of artificial selection in Duroc pigs

Chr. Pos. (Mb)? P-value. (method)? Gene Gene function
1 7679352..7691724 0.01;0.001(AWBY); 0.007(EWB) SOD2 Fertility (Kwiatkowska et al. 2017)
2 51102757..51128346 0.048;0.008(EWB) WNT9A Chondrogenesis (Spater et al. 2006)
2 88122788..88255282 0.005;<0.001(AWB) HOMER1 Muscle development (Hao et al. 2017)
2 88021572..88098522 0.007;<0.001(AWB) JMY Development of porcine embryos (Lin et al. 2015)
2 88391280..88507344 0.004;<0.001(AWB) CMYA5 Carcass trait and meat quality (Xu et al. 2011)
6 96322276..96323795 0.003 MC5R Back fat thickness, lipid metabolism, exocrine function,
proinflammatory activity (Switonski et al. 2013)
6 103997590..104055816  0.009;0.007(AWB) NDC80 Fertility (Wei et al. 2014)
6 103578544..103728152  0.008;0.007(AWB) LPIN2 Back-fat thickness (He et al. 2009)
7 10359211..10387002 0.017;0.005(AWB); 0.006(EWB) CD83 Enhances T lymphocyte proliferation (Pinho et al. 2014)
7 75161831..75168634 0.027;0.001(AWB); 0.004(EWB) FITM1 Fat-deposition-related traits (li et al. 2010)
7 75241058..75255701 0.027;0.001(AWB); 0.004(EWB) DHRS4 Meat quality (Hwang et al. 2017)
9 35187561..35200085 0.032;<0.001(AWB);0.006(EWB)  CASP1 Fertility (Ashworth et al. 2010)
12 50454063..50491164 0.036;0.007(AWB) SPNS2 Hearing (Chen et al. 2014)
15 94623526..94628440 0.046, 0.009(EWB) MSTN Lean muscle mass (Baati et al. 2017)

TThis column presents the position of candidate genes which overlap with or close to the potential regions of artificial selection.

This column presents the genome-wide P-values of sweep statistics.

on (Table 2). An interesting selection signature was located on SSC15
(104.325-104.8 Mb) and close to the MSTN gene, which was associated
with lean muscle mass and played an important role in the process of
muscle development (Baati et al. 2017). As a commercial pig breed of
economic importance, leanness has consistently been considered as an
objective trait of Durocs breeding. Correspondingly, growth rates and
meat quality would also be considered and designed in the breeding
program. In this study, WNT9A gene associated with chondrogenesis
and CMYAS5 gene associated with carcass length and meat quality were
overlapping with the strong selection signatures. MC5R gene, an estab-
lished sweep in previous studies, was found close to the 97.625-98.725
Mb regions on SSC6, which was not only associated with back fat
thickness but also played an important role in proinflammatory activity
(Switonski et al. 2013). The HOMERI gene that is overlapped with the
86.55-92.75 Mb artificial selection regions on SSC2 is associated with
muscle differentiation and calcium homeostasis (Hao et al. 2017). Note
that a series of genes, including SOD2, JMY, NDC80 and CASP1, over-
lapping with artificial selection regions in this analysis were associated
with the reproductive traits. In comparing with its wild ancestors, litter
size, fetal weight and the other fertility traits would change for adapting
human-driven selection. These results indicated that the improvement
of fertility and other complex traits may due to the polygenic basis,
rather than be caused by only a few critical loci.

CONCLUSIONS

In summary, this study detected signatures of artificial selection and
identified a number of loci associated with some important economic
traits, like IMF and FCR, which provided an important resource in future
Durocs breeding programs. SNP annotation implied that there was no
predictable distribution in where those artificial selection regions were
located in genome. Enrichment analyses suggested that the polygenic
basis may be a reasonable explanation for the phenomenon, that many
different genes associated with the economic traits have often been
selected during the improvement and breed formation. The application
of combining sweep analysis and genome-wide association analysis are
effective in mapping commercial important genes, especially to the data
with small sample size caused by the expensive measurement traits.
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