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During the past decade, the study of the mechanisms and functional implications of adult neurogenesis has significantly progressed.
Many studies focus on the factors that regulate proliferation and fate determination of adult neural stem/progenitor cells, including
addictive drugs such as opioid. Here, we review the most recent works on opiate drugs’ effect on different developmental stages of
adult hippocampal neurogenesis, as well as the possible underlying mechanisms. We conclude that opiate drugs in general cause
a loss of newly born neural progenitors in the subgranular zone of dentate gyrus, by either modulating proliferation or interfering
with differentiation and maturation. We also discuss the consequent impact of regulation of adult neurogenesis in animal’s opioid
addiction behavior. We further look into the future directions in studying the convergence between the adult neurogenesis field
and opioid addiction field, since the adult-born granular cells were shown to play a role in neuroplasticity and may help to reduce

the vulnerability to drug craving and relapse.

1. Introduction

During the past two decades, it has been well established that
new neurons were born continuously throughout life in the
brains of many species, including human [1, 2]. In normal
conditions, adult neurogenesis appears to be restricted in two
discrete brain regions: the subventricular zone (SVZ) of the
lateral ventricle [3] and the subgranular zone (SGZ) of the
hippocampal dentate gyrus (DG) [4]. Since then, substantial
research has been made to study the intrinsic and extrinsic
factors that regulate adult hippocampal neurogenesis, for
newborn neurons in the SGZ could contribute to specific
hippocampal functions such as spatial learning, pattern
discrimination, and mood regulation [5, 6]. Several classes of
neural stimulants have been shown to alter adult neurogene-
sis, including addictive drugs such as methamphetamine [7],
cocaine [8], and opioid [9].

Opiate drugs are powerful analgesics which are also
among most commonly abused addictive drugs. They can
cause long-lasting changes in the brain, which influence
many different forms of neural plasticity, such as the stability
of dendritic spines [10] and long-term potentiation [11].
Adult hippocampal neurogenesis is also among forms of

neural plasticity mechanism regulated by opiates. However,
the effects of opiate on hippocampal neural progenitors are
controversial in many cases and are largely dependent on
the manner in which the drug was administered [12]. Also,
since adult neurogenesis is a long and continuous progress
which consists of a series of developmental events, opiate
drugs could exert their action on multiple types and stages
of the neural stem/progenitor cells (NSPCs).

The proliferation, differentiation, and maturation of
adult-born granular cells (GCs) are controlled by a series of
genetically programmed fate choices [13], and NSPCs in adult
hippocampus could be divided into several types according
to their different developmental stages. For instance, radial-
glia-like stem cells, which express glial fibrillary acidic protein
(GFAP) and nestin and have several other astrocytic features,
are defined as Type-1 cells [14]. Type-2 cells are oval-shaped,
highly proliferative cells with short processes which express
nestin but not GFAP [15]. Type-3 cells are neuroblasts which
express doublecortin (DCX) and polysialylated form of the
neural cell adhesion molecule (PSA-NCAM) [16]. Different
opiate drugs may target any of these cell types mentioned
above, either directly or indirectly. Here, we summarize
the most recent works correlated with opiates’ effect on
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TaBLE 1: Effects of drugs on different stages of adult neurogenesis.
Drugs Species Administration paradigm Effects References
Proliferation ~ Neural differentiation  Survival

Morphine Rat Acute injection — — [9]
Morphine Rat Pellet implantation l l [9]
Heroin Rat Self-administration 1 l [9]
B-Endorphin Rat In vitro, chronic T [17]

# naloxone Rat In vitro, chronic l T [18]

# naltrindole Rat In vitro, chronic l [18]

# naltrexone Rat Acute injection 1 [19]
Morphine Mouse Pellet implantation l [20]
Morphine Rat Multiple injections l [21]
Morphine Mouse Pellet implantation l l [12, 22, 23]
Morphine Mouse Multiple injections — [12]
Met-enkephalin ~ Zebra finch In vitro, chronic 1 [24]

# naloxone Zebra finch In vitro, chronic ) [24]

In vivo, chronic

Heroin Rat Extinction of self-administration T [25]
Buprenorphine Mouse Multiple injections l T [26]
Methadone Rat Multiple injections — — — [27]
Morphine Mouse Multiple injections — l (28]
Fentanyl Mouse Multiple injections T — (28]
Morphine Mouse In vitro, chronic 1 l [29]
Morphine Mouse Multiple injections l [30]

T, upregulation; |, downregulation; —, no significant differences; #, opioid receptor antagonist.

regulating proliferation, differentiation, or survival of adult-
born hippocampal GCs (Table 1).

2. Opioid Modulates Adult Neural
Progenitors Proliferation

The most traditional and commonly used method to detect
the proliferating cells in adult brain is by using exogenous
markers of DNA synthesis, such as thymidine analog bro-
modeoxyuridine (BrdU), to label and track the birth of
new born cells [31, 32]. The first report connecting opioid
and adult neurogenesis was in 2000. Eisch et al. showed
that chronic morphine, administered via subcutaneous pellet,
decreased the number of proliferating cells labeled with BrdU
in the SGZ in rodents; similar effect was also observed in rats
after chronic self-administration of heroin [9]. Since then,
evidences were accumulated from both sides to established
opiate’s negative impact on proliferation of adult-born GCs
(Table 1). For instance, proliferating cells in SGZ marked by
two endogenous cell cycle markers, proliferating cell nuclear
antigen (PCNA) and phosphorylated histone H3 (pHisH3),
are largely reduced by chronic morphine, and triple labeling
for BrdU, PCNA, and pHisH3 revealed that morphine-treated
mice have a shorter Gap2/mitosis (G(2)/M) phase [20].
Rats injected with morphine sulfate (20 mg/kg) daily for
1 week were shown to have a strong reduction of cellular
proliferation marked by fewer cells immunoreactive (IR)
for PSA-NCAM, a cell surface protein that is transiently
expressed by newly generated neurons during development.

Such reduction was followed by a rebound increase after
l-week withdrawal and a return to normal after 2-week
withdrawal [21]. It was demonstrated that morphine pellet
implantation for 24-96 hours decreased the proliferating
cells labeled by BrdU and cycle marker Ki67 in DG [22].
Other opiate analgesics like buprenorphine, administered via
subcutaneous injections (0.05mg/kg) over a 3-day period
in mice, also decreased the number of actively proliferating
5-iodo-2-deoxyuridine (IdU) labeled cells [26], while no
such effect was observed with synthetic opiate methadone
[27]. Meanwhile, knock-out of mu-opioid receptor, on the
contrary, was shown to enhance ischemia-induced gener-
ation of immature hippocampal neurons [33]. Following
extinction from heroin-seeking behavior, the formation of
immature neurons in the DG was increased, represented
by DCX-IR cells [25]. In addition, there are also reports
which suggest that chronic morphine treatment influences
neurogenic microenvironment in DG by regulating certain
growth factors, such as increasing the pro-proliferative factor
and vascular endothelial growth factor (VEGF) [34].
However, opiate’s effect on adult neurogenesis seems to be
dependent on the paradigm of the experiment design, such as
test in vitro or in vivo, and drug administration paradigm. In
isolated rat hippocampal neural progenitor cells, incubation
with S-endorphin for 48 h increased the total DNA content
and the number of cells expressed of PCNA and pHisH3.
This proliferative effect was antagonized by naloxone [17].
The same group also reported that mu- and delta-opioid
receptor (MOR and DOR) antagonists decrease proliferation
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of cultured neural progenitor cells [18]. Similarly, a longer
acting opioid antagonist naltrexone was shown to decrease
cellular proliferation in the adult rat hippocampus [19]. These
results are conflicting with more recent observations, which
showed cultured mouse hippocampal neural progenitor cells
treated with morphine for 24h demonstrated decreased
BrdU expression in a dose dependent manner [29]. This
discrepancy in morphines effect on neural proliferation
remains within in vivo experiments, in which implantation
of morphine pellets resulted in negative effect on adult neuro-
genesis [9, 22], while intraperitoneally injection of escalating
dose of morphine failed to show any significant influence
[12]. Such inconsistency of morphines effect may be due
to difference in blood levels of morphine; when implanted
with morphine pellet, the drug level in blood is relevantly
stable and caused decrease in number of proliferating cells,
whereas the injection paradigms that produced transient
spikes in drug blood levels fail to produce significant effect on
hippocampal neural proliferation [12]. Nevertheless, studies
in our lab support the assumption that opiate negatively
regulated neural proliferation, for morphine daily injection
in a condition place preferences (CPP) paradigm, decreased
the number of neural progenitors in DG labeled by DCX and
other neurogenesis markers in mice [28]. Further research
in this model revealed that such reduction may be due to
morphine’s effect in modulating neural progenitors’ differ-
entiation, rather than regulating proliferation, which will be
discussed in detail in the following section.

3. Opioid Modulates Adult Neural Progenitors
Differentiation and Maturation

The radial-glia-like neural stem cells in SGZ went through
asymmetric cell division and gave rise to different types of
progeny, including progenitors retained self-renew capability,
neuroblasts, astrocytes, and oligodendrocytes [35, 36]. A
growing body of literature indicated that opiate drugs not
only influence hippocampal GCs’ proliferation, but also inter-
fered with differentiation and future development process. In
adult rat hippocampus, repeated morphine treatment altered
the GABAergic phenotype of adult hippocampal GCs by
significantly increasing the mRNA transcription of glutamate
decarboxylase-67, a GABA synthesizing enzyme [21]. By
examining the costaining of BrdU and cell cycle marker
ki67 in mouse SGZ, it was found that morphine treatment
increases the percent of BrdU-IR cells that were type 2b and
decreased the percent of BrdU-IR cells that were immature
neurons [22]. Analysis of the double-labeled cells in cul-
tured mouse hippocampal progenitors treated with morphine
showed a decrease in cells costained for BrdU with nestin
and an increase in cells costained with BrdU and neuron-
specific class III beta-tubulin (TUJ1) compared to cells treated
with saline [29]. Incubation of adult hippocampal progenitors
with endogenous opioid peptide beta-endorphin resulted in
a threefold increase in oligodendrogenesis but no significant
change in astrogliogenesis [37]. Although having some dis-
cordance in conclusions, these observations indicated that
opioid could play a role in regulating adult hippocampal
neural differentiation and maturation.

Recent study in our lab interpreted in detail that mor-
phine exposure affects hippocampal neurogenesis by modu-
lating cell-lineage in isolated hippocampal progenitor cells.
In cultured NSPCs, morphine treatment activates MOR
and downstream signaling pathways, including extracellular
signal-regulated kinase (ERK) activation [38]. Phosphory-
lated ERK in cytosol is capable of phosphorylating TAR RNA-
binding protein (TRBP), a cofactor of Dicer, and the Dicer
activity enhancement promotes the maturation of miR-181a.
This drives downregulation of Prospero homeobox protein
1 (Proxl) and an upregulation of Notchl expression, while
the Notchl signaling plays an important role in regulating
cell fate of the adult-born hippocampal GCs [39, 40]. Thus,
morphine favors the progenitor cells differentiation into
glia instead of neuron by regulating Prox1/Notchl activities
via its control of miR-181a level [41]. Another opiate drug
fentanyl did not show such effect, since fentanyl activated
ERK via a -arrestin-dependent pathway, and the activated
ERK translocates to the nucleus [42].

Furthermore, the activity of a transcriptional factor,
neurogenic differentiation 1 (NeuroD1), was also shown to
be regulated by morphine treatment [43]. NeuroD1 is a basic
helix-loop-helix transcription factor that is expressed during
glutamatergic neurogenesis in the developing cerebellum and
in the adult hippocampal DG [13, 44]. It was shown to be
involved in the differentiation of the progenitor cells and
migration of immature neurons in the dentate gyrus [45].
Several in vivo studies support the fact that NeuroD1 has an
important role in neuronal fate determination during both
embryonic and adult neurogenesis [46, 47] and is essential
for the survival and maturation of adult-born neurons [48].
Thus, by negatively regulating NeuroD1 activity, morphine
impaired the differentiation of newborn GCs, leading to a
reduction in neuroblasts and immature neurons expressing
DCX and TUJL

4. Opioid Modulates Adult Neural Progenitors
Survival and Apoptosis

After being generated by neural stem cells in the DG of
hippocampus, a large portion of these progenitors die within
a few days following their birth [49]. It is reasonable to assume
that the neural precursors which fail to differentiate into
functional immature neurons would go through apoptosis.
The massive cell death of adult-born granular neurons may
serve as a natural selective mechanism since it has been
demonstrated that cell survival and death are both important
during learning and memory [50]. Whether opiates interfere
with this process remains to be demonstrated.

Chronic morphine and heroin treatment was shown to
decrease GCs survival in vivo, by largely decreasing the
number of 4-week-old BrdU-labeled cells in the granule layer
of the DG in drug-group rats compared to control rats [9].
However, direct evidence of opiate drugs inducing apoptosis
of adult hippocampal progenitors is deficient and inconsis-
tent. Chronic morphine transiently increases cell death in
the SGZ of mice, for the activated caspase-3 cell counts were
increased after 24 but not 96 h [22]. Morphine exposure in
cultured NSPCs led to a significant increase in caspase-3
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activity in the nestin and GFAP positive cells, but not in
TUJ1 positive neurons [29, 51]. Knock-out of mu-opioid
receptor, in the contrary, was shown to enhance adult-born
hippocampal GCs’ survival, suggesting endogenous opioid
has a negative effect on adult hippocampal neurogenesis
[52]. However, minimal buprenorphine treatment was shown
to increase the survival of newly born cells in mice DG
of hippocampus [26]. In other cases, opioid drugs such
as morphine were not associated with hippocampal neural
apoptosis [53].

Overall, we summarize that the effects of opioid on
NSPCs may vary among different drugs and experimental
methods, and one opioid receptor agonist may act on multiple
stages of NSPCs, including proliferation, differentiation, and
survival (Figure 1).

5. Adult Neurogenesis Regulation Correlates
with Opioid Addiction

During development, newborn neurons in the adult SGZ
migrate into the granule cell layer of the dentate gyrus
and integrate into existing hippocampal circuit [54, 55].
The immature neurons have higher input resistance, more
depolarized resting membrane potentials, and small, broad
action potentials compared to mature neurons [56], so they
were more flexible in transition of neural plasticity and
may have substantial roles in hippocampus function during
learning and memory [57, 58]. Since hippocampus has been
implicated in drug reward and relapse [59, 60], recent studies
suggested that adult neurogenesis in DG of hippocampus
also has substantial roles in opiate drug addiction cycle.
For instance, suppression of adult neurogenesis by long-
term stress had significant positive relationships with rat-
ings of craving for heroin [61]. Some positive regulators
of hippocampal neurogenesis like environment enrichment
and voluntary exercise, on the contrary, prevent the devel-
opment of morphine induced CPP [62, 63], decreased the
rewarding effect of heroin [64], and maintained heroin self-
administration [65]. These results suggest a negative cor-
relation between opiate drug addiction and level of adult
hippocampal neurogenesis.

6. Conclusion and Prospects

So far, accumulating evidences have demonstrated that mul-
tiple opiate drugs interfered with proliferation, differenti-
ation, maturation, and survival of developing adult-born
hippocampal neural precursors. These studies represent that
most of the opiates have an adverse effect on adult hippocam-
pal neurogenesis, by decreasing the total number of prolifer-
ating cells and cells survival in the SGZ of DG area, but there
are also some exemptions. For neural differentiation, opiate
such as morphine is likely to impede early progenitors which
differentiate into neuroblasts but favor the differentiation into
glia.

The detailed mechanism of such regulation on hip-
pocampal neurogenesis of opiates remains to be clarified.
There are assumptions of opiate directly acting on neural
progenitors with MOR and DOR on the cell surface [17, 18]
and also evidences that opiate modulates the neurogenic
microenvironment of the DG, to indirectly influence the
cell proliferation by growth factors in the hippocampus [23].
An alternative explanation is that progenitors of certain
stage (3-7 days after birth) start to form dendrites, which
receive neurotransmitters from intermediate neurons [66].
It has been reported that immature neurons (14-28-day
postmitotic) are not inhibited but excited by GABAergic
activity [54]. Also, exposure to novel environments increases
GABAergic tone in the DG and facilitates the generation of
LTP [58]. Thus, a possible mechanism for regulation of adult
hippocampal neurogenesis is that early neural progenitors
need exciting signals from existing circuit for future differ-
entiation and maturation, and opioid agonists interfere with
this process by decreasing GABA release in the interneuron
[67, 68]. It is intriguing to further investigate these possible
mechanisms and to determine whether morphine exhibits its
effect directly or indirectly on neural progenitors in the SGZ
of hippocampus.

Current studies also indicate that opiates’ rewarding
effect and drug associate memory are related with the
manipulation of adult hippocampal neurogenesis. When
hippocampal neurogenesis is enhanced by physical excise or
environment enrichment, the animals show a lower response
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to drug craving and reward [62-65]. When overexpressing
NeuroDl in dentate gyrus to induce neural differentiation, the
animal shows much longer memory of their drug experience,
represented by condition place preference (CPP) extinction
time; when knocking down NeuroD with RNA interference
method it has an opposite effect [28]. These results suggest
that the progenitors at certain stage of development may serve
as key players during memory formation of drug experience
associated with environmental cues. In summary, current
studies suggest that opiates are involved in the proliferation
and fate determination of adult-born GCs in the SGZ of
hippocampus, and the manipulation of adult hippocampal
neurogenesis in return influences rewarding effect and drug-
experience memory that associate with the opioid addition.
These studies provide a creative aspect to examine the subject
of adult neurogenesis’ contribution to opioid addiction.
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