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Abstract

Quality control, global biases, normalization, and analysis methods for RNA-Seq data are

quite different than those for microarray-based studies. The assumption of normality is rea-

sonable for microarray based gene expression data; however, RNA-Seq data tend to follow

an over-dispersed Poisson or negative binomial distribution. Little research has been done

to assess how data transformations impact Gaussian model-based clustering with respect

to clustering performance and accuracy in estimating the correct number of clusters in RNA-

Seq data. In this article, we investigate Gaussian model-based clustering performance and

accuracy in estimating the correct number of clusters by applying four data transformations

(i.e., naïve, logarithmic, Blom, and variance stabilizing transformation) to simulated RNA-

Seq data. To do so, an extensive simulation study was carried out in which the scenarios

varied in terms of: how genes were selected to be included in the clustering analyses, size

of the clusters, and number of clusters. Following the application of the different transforma-

tions to the simulated data, Gaussian model-based clustering was carried out. To assess

clustering performance for each of the data transformations, the adjusted rand index, clus-

tering error rate, and concordance index were utilized. As expected, our results showed that

clustering performance was gained in scenarios where data transformations were applied to

make the data appear “more” Gaussian in distribution.

Introduction

The analysis of RNA-Seq data comes with some different and additional challenges, as com-

pared to microarray based data. In contrast to microarray based mRNA data, in which relative

mRNA is measured for pre-defined probe sets using fluorescence, RNA-Seq experiments mea-

sure the mRNA gene expression levels from the total number of reads that map to the exonic

regions of the genome. Thus, the quality control measures, global biases, normalization tech-

niques, and analysis methods vary between the two mRNA data types. While statistical analysis

methods are capable of handling microarray and RNA-Seq data similarly, analysis methods

used for microarray based mRNA studies cannot be implemented in the same fashion to
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sequence based mRNA studies due to unique data properties. In particular, microarray mRNA

data can be assumed to follow a continuous distribution (e.g., Normal/Gaussian distributions),

whereas, sequencing based mRNA data follow a discrete distribution (e.g., over-dispersed

Poisson/Negative Binomial distribution).

A common goal of RNA-Seq studies is to determine subtypes or clusters of individuals

based on their transcriptomic profiles. Cluster analysis has the ability to show genes with com-

mon roles and functions in the cellular process cluster together, determine prognostic clusters

and clusters based on some marker of health status, and identify subtypes of invasive cancers

[1–6]. The challenge for clustering analysis lies in utilization of the most appropriate clustering

method, and in turn coming up with both the “correct” number of clusters and assignment of

samples to clusters [7]. One particular type of clustering method used often is model-based

clustering, which models the data as coming from a distribution that is mixture of two or more

components. Often, model based clustering uses a mixture of Gaussian distributions, as imple-

mented in the R package mclust (https://cran.r-project.org/web/packages/mclust/index.html)

[8, 9].

Over the past two decades, several researchers have assessed clustering methods for mRNA

data generated by microarray [1–3, 10–14]. However, little research has been done to assess

how cluster methods perform in the analysis of RNA-Seq data and if transformation of the

data can improve the performance. RNA-Seq data have three problematic properties when it

comes to statistical analysis, including clustering analysis: (1) a skewed distribution, (2) vari-

ability among the read counts for individual genes, and (3) likelihood of extreme values [15].

The skewness of the distribution can be addressed by using a data transformation. Application

of data transformations to meet assumptions and make analysis methodologies more efficient

are very popular, and have been used in RNA-Seq studies. Current literature contains three

closely related studies that have looked at performance of clustering methods for sequence

data: the first one investigated clustering of sequencing data using a Poisson log-linear model

[16]; the second looked at consistency of results from differential expression and clustering

analyses between the two technologies for assessing mRNA (microarray and sequencing)

using a variety of statistical methods [17]; and the last study provided a model-based clustering

framework for determining groups or sets of differentially expressed genes using RNA-Seq

data [18]. In this paper, we set out to evaluate how the commonly used Gaussian model-based

clustering method performs when applied to RNA-Seq data after a variety of data transforma-

tions were applied, with the ultimate goal of clustering subjects/individuals in to distinct

molecular subgroups.

Materials and methods

Mayo Clinic ovarian cancer RNA-Seq study

Motivation for this study came from an ongoing ovarian cancer RNA-Seq gene expression

study which seeks to examine relationships between the different invasive ovarian cancer his-

tologies and variation in the transcriptome [19]. Additional information on ovarian cancer

cases included in this study and the experimental methods can be found in the manuscript by

Earp et al. [19]. Fresh frozen tumors were obtained from women with ovarian cancer seen at

the Mayo Clinic in Rochester, MN. RNA-Seq was performed in four batches, with only batch 1

data used in this study. Briefly, for batch 1, 1000ng of RNA was processed using Illumina’s

TruSeq Stranded Total RNA Library Prep Kit with sequencing completed at BGI Americas

with paired end (PE) 100-nucleotide (nt) reads. Primary analysis and de-multiplexing was per-

formed using Illumina’s CASAVA software, followed by alignment using TopHat2 [20] and

abundance estimation at the gene level using RSEM [21]. In order to investigate potential data

Model-based clustering of RNA-Seq data
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transformations that improve clustering performance, “real-life” data parameters were

acquired from the 55 high-grade serous histology tumor samples in batch 1 which were

selected due to their commonness, aggressive nature, and uncertainty surrounding the number

of potential subtypes present within this histology—ranging from two to five subtypes [4–6,

22, 23]. Additionally, we applied the model-based clustering to the RNA-Seq data collected on

the 55 serous histology tumor samples following various transformations of the data. Data

used in the clustering can be found in S1 Table (data on the top 100 MAD genes) and S2 Table

(data on randomly selected 100 genes).

Simulation study

To address the aims of this study, an extensive simulation study focused on sample-based clus-

tering was conducted, as outlined in Fig 1. The factors varied in the simulation study included:

strategy for how genes were selected to be included in the clustering analyses (top 100 genes

according to their median absolute deviation (MAD), or random sample of a 100 genes); size

of the clusters (equal cluster sizes or extremely unequal cluster sizes); and number of clusters

K = 1 (i.e., no clustering), 2, and 3 clusters. The simulated datasets can be organized into four

parent categories reflecting gene selection and size of clusters: top 100 MAD genes with equal

cluster sizes (TE); random 100 genes with equal cluster sizes (RE); top 100 MAD genes with

unequal cluster sizes (TX); and random 100 genes with unequal cluster sizes (RX). For parent

categories with equal cluster sizes, clusters had 28 and 27 samples for K = 2 clusters, and 18

samples for two clusters with one cluster containing 19 samples for K = 3 clusters. Conversely,

Fig 1. Simulation schematic. Negative binomial (NB) parameters were obtained from 100 top genes and 100 randomly selected genes

based upon Median Absolute Deviation (MAD) of expression values taken from ovarian cancer RNA-Seq tumors (N = 55 patients). Data

were then simulated to reflect varying cluster sizes, equal and unequal, for K = 1 (i.e., no clusters), 2, and 3 clusters using the NB

parameters. One hundred datasets were simulated for four parent dataset categories which reflected gene selection and cluster size (1)

Top 100 genes with equal cluster sizes (TE); 2) Top 100 genes with unequal cluster sizes (TX); 3) Random 100 genes with equal cluster

Sizes (RE); and 4) Random 100 genes with unequal cluster sizes (RX)). Data transformations and model-based clustering were applied to

all datasets and evaluated according to normality measures and clustering evaluation metrics.

https://doi.org/10.1371/journal.pone.0191758.g001
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unequal cluster scenarios had 5 samples in cluster one (c1) and 50 samples in cluster two (c2) in

K = 2 clusters; along with, 5, 17, and 33 samples for c1, c2, and c3 (i.e., cluster three), corre-

spondingly in K = 3 clusters.

One hundred datasets were simulated for each of the four parent categories prior, followed

by applying one of 4 transformations. The four data transformations utilized were: naïve (no

transformation); logarithmic base 2 (Log); Blom [24]; and variance stabilizing transformation

(VST) [25]. These transformed datasets were then evaluated for normality by looking at mea-

sures of skewness and kurtosis. Next, Gaussian model-based clustering (MC) using mclust [8]

was carried out on all simulated datasets and assessed for clustering performance through use

of the adjusted Rand Index (ARI) [26], Clustering Error Rate (CER) [16], and Concordance

Index (CI or C-Index) [27] (Fig 1). All analysis for this study were conducted in R statistical

software [28].

Before assessing our data transformations and model-based clustering performance, great

consideration was given to the way in which the data are simulated to ensure that the simu-

lated data would be similar to what would be found in a real RNA-Seq experiment. Often

researchers have simulated RNA-Seq count data from a negative binomial distribution. The

negative binomial distribution allows for two distributional parameters to be controlled—the

mean and shape—allowing researchers to model the over-dispersion which typically exists in

sequencing data. In this study we simulated Negative Binomial data using parameter estimates

based on RNA-Seq data from an ovarian cancer study in the hope that our simulated data will

better resemble that of “real-life”.

Feature selection. The ovarian cancer data set contains gene abundance estimates for

G = 63,152 Ensembl gene IDs on N = 55 serous tumor participants. Let X
�

be the G by N matrix

where x
�

gi is the expression level count for the gth gene (g = 1,. . ., G) and the ith sample

(i = 1,. . ., N). As clustering if often done on a subset of the genes, we looked at two methods

for determining the genes to be included in the clustering: 1) selecting 100 of the top most vari-

able genes (most common practice in selecting genes for clustering), and 2) selecting a random

sample of 100 genes. The top 100 most variable genes were selected by calculating each gene’s

median absolute deviation (MAD) resulting in a reduced matrix of 100 genes measured on the

N samples, denoted by XT. Similarly, a dataset that contains 100 randomly selected genes,

where prior to obtaining a random sample of 100 genes, we filtered out the lower 50% MAD

genes (i.e., removed the non-expressed genes). Then, from the remaining genes we randomly

selected 100 genes and stored in a matrix denoted XR.

Maximum likelihood estimators for the negative binomial simulation parameters.

Vector Generalized Linear Models (VGLMs) are an inclusive class of models of various multi-

variate response types that are highly generalizable [29, 30]. VGLMs are models of the form

f ðyjx;BÞ ¼ hðy; Z1; . . . ; ZM;φÞ

for some known function h(�), where B = (β1β2 . . . βM) is p x M, φ is an optional scaling param-

eter, and Zj ¼ β0jx ¼ bðjÞ1x1 þ . . .þ bðjÞgxg is the jth linear predictor [29]. Once the form of the

model is established, the log-likelihood function can be obtained and Maximum Likelihood

Estimates (MLEs) can be found for the parameters in the parent distribution through Itera-

tively Reweighted Least Squares (IRLS) using either the Newton-Raphson or Fisher-scoring

algorithm[29, 31]. To obtain data that reflect that of “real-life”, we utilized VGLMs to obtain

MLEs from fitted negative binomial models for each gene using VGLMs using the R package

VGAM. The subsequent MLEs were used in the simulation of the RNA-Seq data where simu-

lated data for gene g and sample i was simulated from xgi � NBðm̂g ; k̂gÞ, where m̂g is the MLE of

the mean and k̂g is the MLE for the dispersion parameter.

Model-based clustering of RNA-Seq data
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In order to simulate data that that contained “clusters”, we incorporated effect size shifts to

m̂g and k̂g to a proportion of genes which would represent genes that were up-expressed in this

cluster group. Fig 2 shows comparison of one simulated dataset to the real RNA-Seq data on

the ovarian cancer tumors (represented in black). The data points depicted in red represent

the data simulated for a scenario in which the 100 most variable genes based on MAD were

simulated, while the points in blue represent data simulated for the scenario involving 100 ran-

domly selected genes. To achieve clustering of samples, we set 10% of the genes in any dataset

to be up-expressed for K = 2. Likewise, for K = 3 a step progression in the percentage of genes

that were up-expressed was implemented—10% for c2 and 20% for c3. For consistency, the

10% of up-expressed genes in c2 remained the same in the simulations for K = 2 and K = 3.

Based on an empirical study, the effect size shifts for the mean and dispersion parameters were

set to Dm̂1
¼ expð3:375Þ;Dm̂2

¼ expð5:5Þ;Dk̂1
¼ 1:01, and Dk̂2

¼ 1:03.

Model-based clustering and performance evaluation metrics

In model-based clustering (MC) the data is assumed to be from some finite mixture of proba-

bility distributions (i.e., a mixture of Gaussian models). Moreover, the likelihood of the mix-

ture model can be written as Lðy1; . . . ; yK jXÞ ¼
QN

i¼1

PK
c¼1

tc fcðxijycÞ, where K is the number of

clusters or components in the data, xi are the independent multivariate observations, fc is the

Fig 2. Comparison of raw serous expression counts verses simulated data. Log-transformed mean and log-

transformed variances are plotted for comparison of raw serous expression count data and simulated data scenarios for

a single dataset. Data points depicted in red are representative of data simulated using Negative Binomial (NB)

parameters from the top 100 genes; and similarly in blue, simulated data from 100 randomly selected genes based upon

Median Absolute Deviation (MAD) of expression values taken from ovarian cancer RNA-Seq samples (N = 55

tumors).

https://doi.org/10.1371/journal.pone.0191758.g002
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density of some multivariate normal distribution distributional model with mean of μc and

covariance matrix ∑c, θc are the parameters for the cth component which can be thought of as

the kth cluster, and τc is the probability that an observation belongs to the cth component; τc
has two restrictions: τc� 0 and

PK
c¼1

tc ¼ 1. Utilizing the mclust package in R, we are seam-

lessly able to implement this model-based clustering approach as proposed by Farley and Raf-

tery in 2002 [8, 32]. As we wanted to optimize clustering performance in every method that we

used in the simulation, we used the mclustBIC() function, which determines the optimal value

for the number of clusters K.

To summarize and compare the performance of model-based clustering for each of the data

transformations, the following three evaluation criteria were used: Adjusted Rand Index (ARI)

[26], Classification Error Rate (CER) [16], and the Concordance Index (CI or C-Index) [27].

The ARI ranges in value between 0 and 1 and is computed as a measure of cluster similarity

[17, 26]. Values near 0 represent a lack of samples clustering to their “true” cluster; whereas, 1

indicates that samples cluster perfectly. The CER is similar to the ARI; however, it is essentially

the complementary calculation without the adjustment. Additionally, the CER is can be com-

puted as 1 minus the Rand index[33]. Lastly, the CI the probability that Sample j will cluster to

c1 if the sample was initially from c1. A CI value equal to 0.5 means that the probability of pre-

dicting the correct cluster assignment is no better than that of random chance or that there is

no predictive ability. Values of CI that are closer to 1 indicate high predictive ability for objects

to be clustered perfectly [27].

Results

Normality assessment of data transformations

To compare the data transformations, measures of skewness and kurtosis were evaluated. All

data transformation which numerically changed the data (i.e., Blom, Log, and VST) had skew-

ness values more similar to that of a Gaussian distribution as compared to the naïve transfor-

mation (Table 1). However, the kurtosis values corresponding to the more normal skewness

values were platykurtic (kurtosis value< 3). Skewness values closest to 0 for the RE and RX

parent scenarios came from the Blom transformation and for the TE and TX scenarios from

the VST transformation. Values for both skewness and kurtosis remained the same when

K = 1 across all transformations and parent scenarios, implying that method of data selection

did not play a role in determining normality. For simulated clusters of K = 2 or K = 3, it is

likely that the combination of varied cluster sizes and the effect shifts implemented in the NB

distribution to form clusters played a role in the differences in normality between parent

categories.

Evaluation of model-based clustering by data transformation

Clustering method performance was measured for all 96 simulation scenarios. However, the

assessment of K = 1 scenarios are not presented in either of the summary tables as there were

not multiple clusters to compare sample assignments. For K = 2 and K = 3 all data transforma-

tions, with the exception of the naïve transformation, had performance values that were better

than random chance with mean CI values are greater than 0.5 (Fig 3). When looking at the

ARI and CER it is apparent that differences do exists between pairings of data transformation

and type of clustering method used. Notably, model-based clustering did not perform well in

regards to selecting the correct clustering assignment when the Blom transformation is used

with data that are highly variable prior to the transformation, that is for those data that repre-

sent the top 100 MAD genes (TE and TX) for K = 3. The best overall performance was

Model-based clustering of RNA-Seq data
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observed when the log transformation was applied to datasets simulated with K = 3. Further-

more, in general the parent dataset category does not appear to have an effect on performance,

with the exception of the Blom transformation applied to TE and TX parent categories. The

Blom, Log, and VST transformations have similar results across the evaluation metrics for data

that were simulated from the selected random 100 MAD genes.

Clustering of ovarian cancer study

Model-based clustering was also applied to the raw and data transformed RNA-Seq data from

the 55 serous histology tumor samples. Model-based clustering was conducted using unsuper-

vised clustering under the assumption that the “true” number of clusters were unknown in

mclust[8]. Similarly to the simulation study, only the top 100 MAD genes were utilized during

clustering. In this exploration, the Blom, Log, and VST transformations detected fewer clusters

in comparison to data where no transformation was applied (Fig 4). Each data transformations

identified different numbers of clusters ranging from 1, or no clusters, to 5 clusters.

Discussion

For RNA-Seq data there have been few studies that have examined the clustering performance

of model-based clustering in combination with data transformations. Hence, there is little

guidance for researchers as to which data transformations should be used for RNA-Seq data

when conducting model-based clustering, which tend to be based on Gaussian framework.

Table 1. Mean skewness and kurtosis for simulated data scenarios.

Transformation No. Clusters Parent Category

TE RE TX RX

Sk Kt Sk Kt Sk Kt Sk Kt

Naïve K = 1 1.40

(0.005)

2.45

(0.029)

1.48

(0.006)

2.78

(0.035)

1.40

(0.005)

2.45

(0.029)

1.48

(0.006)

2.78

(0.035)

K = 2 1.46

(0.006)

2.67

(0.035)

1.52

(0.005)

2.88

(0.031)

1.40

(0.006)

2.43

(0.033)

1.47

(0.006)

2.75

(0.032)

K = 3 1.70

(0.005)

3.98

(0.026)

1.60

(0.005)

3.15

(0.031)

1.47

(0.005)

2.57

(0.027)

1.56

(0.005)

2.94

(0.029)

Blom K = 1 -0.29 (0.002) -0.43

(0.005)

-0.37

(0.003)

0.16

(0.011)

-0.29

(0.002)

-0.43

(0.005)

-0.37

(0.003)

0.16

(0.011)

K = 2 -0.31

(0.002)

-0.46

(0.005)

-0.34

(0.003)

0.13

(0.011)

-0.47

(0.002)

-0.17

(0.006)

-0.52

(0.004)

0.56

(0.013)

K = 3 -0.31

(0.003)

-0.28

(0.004)

-0.29

(0.004)

0.24

(0.011)

-0.52

(0.003)

0.31

(0.007)

-0.39

(0.004)

0.55

(0.013)

Log K = 1 -0.77

(0.004)

0.75

(0.014)

-0.43

(0.003)

0.01

(0.010)

-0.77

(0.004)

0.75

(0.014)

-0.43

(0.003)

0.01

(0.010)

K = 2 -0.71

(0.004)

0.60

(0.015)

-0.38

(0.003)

-0.13

(0.009)

-0.80

(0.004)

0.77

(0.016)

-0.51

(0.003)

0.14

(0.010)

K = 3 -0.67

(0.004)

0.42

(0.013)

-0.40

(0.003)

-0.18

(0.008)

-0.80

(0.004)

0.70

(0.013)

-0.49

(0.003)

-0.002

(0.009)

VST K = 1 -0.18

(0.037)

-0.37

(0.121)

-0.50

(0.007)

0.19

(0.014)

-0.18

(0.037)

-0.37

(0.121)

-0.50

(0.007)

0.19

(0.014)

K = 2 -0.58

(0.063)

0.62

(0.233)

-0.52

(0.007)

0.10

(0.013)

-0.72

(0.071)

1.22

(0.300)

-0.61

(0.006)

0.34

(0.014)

K = 3 -0.48

(0.047)

0.04

(0.164)

-0.57

(0.005)

0.20

(0.013)

-0.56

(0.036)

0.23

(0.114)

-0.71

(0.004)

0.42

(0.012)

Sk, mean (standard error) skewness; Kt, mean (standard error) kurtosis

https://doi.org/10.1371/journal.pone.0191758.t001
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Although clustering analyses are exploratory in nature, they can provide valuable information

regarding the relationship between genes or samples. In order to provide this information, it is

important to have accurate and efficient statistical methods. In light of the minimal informa-

tion and studies currently available, we conducted and compared the results of an extensive

Fig 3. Comparison of model-based clustering evaluation criteria. Mean Adjusted Rand Index (ARI), Clustering Error Rate (CER),

and Concordance Index (CI) are plotted for each of the four parent dataset categories for K = 2 clusters (in coral) and K = 3 clusters

(in teal).

https://doi.org/10.1371/journal.pone.0191758.g003

Model-based clustering of RNA-Seq data
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simulation study to assess clustering method performance when data selection, data transfor-

mations, number of simulated clusters, and cluster sizes were varied. A strength of our study,

over previously published studies, is the care at which the data was simulated using parameter

estimates from a RNA-Seq study on ovarian cancer patients seen at the Mayo Clinic. Addition-

ally, to combat biasing our performance results, datasets were simulated to represent four par-

ent categories that considered the way in which the data were selected and the size of the

clusters.

In terms of skewness, we determined that all transformations assessed made the data “more

normal”. Specifically, the Blom transformation on average obtained the most normal data

according to the mean skewness values (Table 1). The data transformations; however, did not

provide any benefit in handling tail behavior as denoted by mean kurtosis values. In general,

model-based clustering produced higher quality of clusters with more accuracy similar to find-

ings in previous studies [7, 16, 34]. Since the primary model used in model-based cluster

(mclust) is the Gaussian mixture model, it is reasonable that transforming data to look more

normal would be highly beneficial concerning performance. Our results highly favor the use of

the Log, base 2, transformation when it comes to conducting model-based clustering analysis

of RNA-Seq data. VST also proved to be more favorable than the Blom and naïve data

transformations.

This study has provided evidence that there is room to advance model-based clustering to

utilize a mixture of discrete distributions, preferably a mixture of negative binomial distribu-

tions to capture the over-dispersion that is present in RNA-Seq data. In doing so, there would

be no need for the additional step of transforming the data before conducting clustering analy-

sis. Additionally, this study could be expanded, as only a subset of data transformations were

assessed. It is highly likely that there is not one best data transformation. This also applies to

expanding the simulation study to include other clustering methods, beyond model-based

clustering, to determine how data transformations impact clustering performance. Specifically,

it may be beneficial to explore nonparametric cluster methods to avoid being tied to model-

based assumptions. Furthermore, this study serves to show that sample-based clustering has

the ability to identify potential subtypes, and it aligns with other findings in current literature

where varying numbers of subtype have been observed [4–6].

Fig 4. Model-based clustering assignments of 55 serous histology tumors. Model-based clustering was carried out on the

raw serous ovarian data following data transformation. Clustering assignments for each of the tumor samples are denoted

using the various colors. The width of a specific cluster assignment’s color in a given transformation is representative of the

amount of samples clustering together.

https://doi.org/10.1371/journal.pone.0191758.g004
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In conclusion, we found that RNA-Seq data requires caution when conducting clustering

analyses. This is supported by our efforts to improve the performance of clustering methods

through data transformations and common methods used to determine the number of clusters

in a dataset. Additionally, the simulation study has revealed some of the challenges and diffi-

culties that still remain for completing clustering analysis in RNA-Seq data particularly in

meeting the assumption of normality.
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