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Abstract: Rhus chinensis Mill. fruits are a kind of widely distributed edible seasoning, which have
been documented to possess a variety of biological activities. However, its inhibitory effect on
osteoclast formation has not been determined. The objective of this study was to evaluate the
effect of the fruits on osteoclast differentiation of RAW264.7 cells, induced by receptor activator
of nuclear factor-κB ligand (RANKL) and to illuminate the potential mechanisms using network
pharmacology and western blots. Results showed that the extract containing two organic acids and
twelve phenolic substances could effectively inhibit osteoclast differentiation in RANKL-induced
RAW264.7 cells. Network pharmacology examination and western blot investigation showed that
the concentrate essentially decreased the expression levels of osteoclast-specific proteins, chiefly
through nuclear factor kappa-B, protein kinase B, and mitogen-activated protein kinase signaling
pathways, particularly protein kinase B α and mitogen-activated protein kinase 1 targets. Moreover,
the extract likewise directly down regulated the expression of cellular oncogene Fos and nuclear
factor of activated T-cells cytoplasmic 1 proteins. Citric acid, quercetin, myricetin-3-O-galactoside,
and quercetin-3-O-rhamnoside were considered as the predominant bioactive ingredients. Results of
this work may provide a scientific basis for the development and utilization of R. chinensis fruits as a
natural edible material to prevent and/or alleviate osteoporosis-related diseases.

Keywords: Chinese sumac; osteoclast; osteoporosis; network pharmacology; phenolic compounds

1. Introduction

Human bones are constantly modified, and the dynamic balance of osteoblasts and
osteoclasts is an important factor to maintain human bone health [1]. However, when this
homeostasis becomes imbalanced, it can induce the growth of bone-solubilizing diseases,
such as osteoporosis (OP) [2,3], osteosclerosis [4], etc. The main manifestations of OP are
exacerbation of bone organization microarchitecture, reduction of bone density and an
increase in susceptibility to fragile fractures [5]. OP can be mainly divided into primary
OP and secondary OP, and the underlying pathogenesis is that bone loss is faster than
bone formation [6–8]. With the development of medical technology and the standard
of living, the average life expectancy of people is increasing which is accelerating the
aging of society, resulting in a higher prevalence of OP [9]. The excessive activation of
osteoclasts assumes a critical part in the pathology of OP [10]. Therefore, the inhibition
of osteoclast differentiation has been considered as a potential therapy for the treatment
and/or prevention of OP with few side effects.

Osteoclasts are a kind of novel multinucleated cell with bone resorbing capacity that
originates from the bone marrow monocyte-macrophage lineage [11]. A major cascade
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of signals regulating osteoclast maturation and activation is the receptor activator of nu-
clear factor-κB (RANK)/receptor activator of nuclear factor-κB ligand (RANKL) pathway.
RANKL facilitates osteoclast activation by combination with RANK on the cell membrane
of osteoclast lineage cells [12]. After activation, the expression of many key transcription
activators and enzymes increases, which in turn promote transdifferentiation, multipli-
cation, and multi-nucleation of the osteoclast [4]. RANKL recruits tumor necrosis factor
receptor-associated factor 6 (TRAF6) to activate a series of downstream cascades, including
NF-κB, Akt, and MAPKs signaling pathways, and then further activates nuclear factor of
activated T-cells cytoplasmic 1 (NFATc1) and cellular oncogene Fos (c-Fos), which are the
final step for osteoclast formation [13]. Currently, the representative drugs for OP treatment
are bisphosphonates and estrogens [14], but these substances inevitably cause varying
degrees of side effects and complications in humans, such as osteonecrosis of the jaw and
unrepresentative femur fractures [15]. Therefore, it is essential to develop some alternative
dietary therapy with fewer side effects to prevent and/or improve OP.

Polyphenols are abundant in common edible fruits, vegetables and herbs. They have
good antioxidant and anti-inflammatory activities and can maintain the health of the
body [16]. At present, many studies have found that plant polyphenols have inhibitory
effects on the formation of osteoclasts [17,18]. The study by Thomas et al. [17] showed
that TRAP activity, an indicator of osteoclast differentiation, exhibited a downward trend
with treatment using tart cherry polyphenols; moreover, result also showed that high
doses of tart cherry polyphenols (300 µg/mL) could reduce the production of inflam-
matory markers, including nitric oxide content, cyclooxygenase 2, in RANKL-induced
RAW264.7 cells, thereby reducing the differentiation and resorption activity of osteoclasts.
Aronia melanocarpa ‘Viking’ (AM) was rich in phenolic compounds, and the study of Ghosh
et al. [18], showed that the water and alcohol extracts of AM could inhibit the excessive
accumulation of ROS, and the expression of osteoclast-related genes, including integrin β3,
TRAP, cathepsin K and calcitonin receptor; in addition, both extracts inhibited osteoclasto-
genesis by acting on the MAPKs pathway and blocking the signaling of c-Fos and NFATc1.
Rhus chinensis pertains to the genus Rhus of the Anacardiaceae family, and is extensively
distributed in Asia, including China, and Japan [19]. The fruits are commonly used as
a kind of appetizer, beverage or natural vinegar by local people [19]. In addition, the
fruits are recorded as a traditional herb with a wide range of bioactivities, which can be
used to preclude and/or cure some diseases such as jaundice, alcoholism, hepatitis, and
inflammatory diseases [20,21]. Rhus chinensis Mill. fruits have high nutritional value and
are rich in a variety of polyphenols, polyunsaturated fatty acids and other phytochemi-
cals [19]. For example, quercetin, myricetin-3-O-galactoside, and quercetin-3-O-rhamnoside
are polyphenols that are abundant in R. chinensis fruits [21,22]. Some studies have reported
that quercetin has related activities such as inhibiting osteoclastogenesis [23,24]. Kim
et al. [23], found that quercetin could play an immunomodulatory role in interleukin-17
(IL-17) produced osteoclastogenesis. The results of Guo et al. [24], showed that quercetin
could inhibit lipopolysaccharide-induced osteoclast bone resorption. Based on the above
related findings, we speculated that R. chinensis fruits may have a bioactivity that inhibits
the differentiation and formation of osteoclasts. However, no study has been carried out to
investigate the preventive effects and the underlying mechanisms involved in the differen-
tiation and formation of osteoclasts. The aim of this work was to investigate the preventive
effects and potential mechanisms of the ethanolic extract from R. chinensis fruits against the
differentiation and formation of osteoclasts by using network pharmacology and validation
of results using cellular experiments (Figure 1).
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Figure 1. Workflow of the research. OP, osteoporosis; MTT, 3(4,5-Dimethylthiazol-2-yl)-2,5-diphe-
nyltetrazolium bromide; TRAP, tartrate-resistant acid phosphatase; RANKL, nuclear factor-κB 
ligand; NF-κB, nuclear factor kappa-B; c-Fos, cellular oncogene Fos; NFATc1, nuclear factor of 
activated T-cells cytoplasmic 1. 

2. Materials and Methods 
2.1. Reagents and Chemicals 

RANKL was obtained from R&D Systems (Minneapolis, MN, USA). BCA protein as-
say kit, 3(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and tartrate-
resistant acid phosphatase (TRAP) activity kits were supplied by Beyotime Biotechnology 
(Shanghai, China). Penicillin, streptomycin, Dulbecco’s modified Eagle’s medium 
(DMEM) and fetal bovine serum (FBS) were purchased from Gibco-Invitrogen (Karlsruhe, 
Baden-Württemberg, Germany). Cell lysis buffer with inhibitors of protease and phos-
phatase were provided by Nanjing Jiancheng Bioengineering Institute (Nanjing, Jiangsu, 
China). Antibodies used in the current work, including NF-κB, p-IκBα, IκBα, p-JNK 
(phospho-JNK1-T183/Y185 + JNK2-T183/Y185 + JNK3-T221/Y223), JNK, p-ERK (phospho-
ERK1-T202/Y204 + ERK2-T185/Y187), ERK, p38, p-p38 (phospho-p38 MAPK-T180/Y182 
Rabbit pAb), Akt, p-Akt (Ser 473) and β-Actin were supplied by Wuhan Abclonal, China, 
and p-NF-κB, c-Fos, and NFATc1 were obtained from Affinity (Carlsbad, CA, USA). 

Figure 1. Workflow of the research. OP, osteoporosis; MTT, 3(4,5-Dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide; TRAP, tartrate-resistant acid phosphatase; RANKL, nuclear factor-κB
ligand; NF-κB, nuclear factor kappa-B; c-Fos, cellular oncogene Fos; NFATc1, nuclear factor of
activated T-cells cytoplasmic 1.

2. Materials and Methods
2.1. Reagents and Chemicals

RANKL was obtained from R&D Systems (Minneapolis, MN, USA). BCA protein
assay kit, 3(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and tartrate-
resistant acid phosphatase (TRAP) activity kits were supplied by Beyotime Biotechnology
(Shanghai, China). Penicillin, streptomycin, Dulbecco’s modified Eagle’s medium (DMEM)
and fetal bovine serum (FBS) were purchased from Gibco-Invitrogen (Karlsruhe, Baden-
Württemberg, Germany). Cell lysis buffer with inhibitors of protease and phosphatase were
provided by Nanjing Jiancheng Bioengineering Institute (Nanjing, China). Antibodies used
in the current work, including NF-κB, p-IκBα, IκBα, p-JNK (phospho-JNK1-T183/Y185 +
JNK2-T183/Y185 + JNK3-T221/Y223), JNK, p-ERK (phospho-ERK1-T202/Y204 + ERK2-
T185/Y187), ERK, p38, p-p38 (phospho-p38 MAPK-T180/Y182 Rabbit pAb), Akt, p-Akt
(Ser 473) and β-Actin were supplied by Wuhan Abclonal, China, and p-NF-κB, c-Fos, and
NFATc1 were obtained from Affinity (Carlsbad, CA, USA).
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2.2. Sample Preparation

R. chinensis fruits were collected by Kunming Plant Classification Biotechnology Co.,
Ltd. (Kunming, China) from Tengchong County, Yunnan Province, in November 2019. All
fruit materials were washed with tap water to remove impurities, dried naturally, and
stored at −20 ◦C. The fruit was then freeze–dried, crushed to pass through a 40 mesh
sieve. The 80% ethanolic extract was prepared in accordance with a former report [22] and
the extract concentrated by a Heidolph Hei-VAP rotary evaporator (Hei-VAP Advantage,
Heidolph, Germany) and freeze-dried.

2.3. Characterization of Phytochemical Composition with UHPLC-ESI-HRMS/MS

Phytochemical components in the extract were characterized by using the Ultimate
3000 UHPLC System of Thermo Fisher coupled with a Thermo Fisher Scientific Q-Exactive
Orbitrap mass (Bremen, Germany). Phytochemical substances of the ethanolic extract from
the fruits were first separated with a Zorbax SB-C18 column (Agilent, 2.1 × 100 mm, 1.7 µm).
The injection volume and flow rate were 3 µL and 0.2 mL/min. The column temperature
was set at 35 ◦C. Ultrapure water acidified by 0.1% formic acid (phase A) and acetonitrile
(phase B) were applied as mobile phases. The following program was used as gradient
elution conditions: 0–2 min, 5% B; 2–10 min, 5–15% B; 10–25 min, 15–30% B; 25–30 min,
30–50% B; 30–32 min, 50–5% B. The mass spectrum conditions were set according to our
previous study [25]. The compounds were preliminarily or positively characterized by
comparing the mass data of the compounds with the data in the corresponding standards,
databases (mass bank) or references. Identified compounds were (semi-) quantified in
accordance with the curved line of corresponding standards (or at least similar aglycones).

2.4. Network Pharmacology Analysis

For revealing the many potential substances in R. chinensis fruits against OP and their
mechanism in inhibiting osteoclast differentiation, network pharmacology was applied in
the present work. First, the standard structures of the detected components in R. chinen-
sis fruits were obtained from PubChem (https://pubchem.ncbi.nlm.nih.gov, accessed on
28 July 2021). Then the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP,
http://tcmspw.com/tcmsp.php, accessed on 28 July 2021) [26], Swiss Target Prediction (http:
//www.swisstargetprediction.cn, accessed on 28 July 2021) [27] and PharmMapper (http:
//www.lilab-ecust.cn/pharmmapper/, accessed on 28 July 2021) [28] were applied to search
and screen the related targets of the bioactive substances. Keyword “osteoporosis”, was used
in DrugBank (https://go.drugbank.com, accessed on 28 July 2021) [29], GeneCards (https:
//genecards.weizmann.ac.il/v3/, accessed on 28 July 2021) [30] and TherapeuticTargetDatabase
(TTD, http://db.idrblab.net/ttd/, accessed on 28 July 2021) [31] to gather disease targets.
UniProtKB (https://www.uniprot.org/, accessed on 29 July 2021) [32] was applied to ob-
tain the name of the standard target with “Homo sapiens” as the selected organism. The
Venn online platform (http://bioinformatics.psb.ugent.be/webtools/Venn/, accessed on
29 July 2021) was applied to intersect the active ingredient targets and disease targets
retrieved from the above mentioned database. Then, the common target of active ingre-
dients and diseases were obtained, which was the target of prevention and treatment of
osteoporosis by the ethanolic extract of R. chinensis. fruits. Cytoscape 3.8.2 software was
applied to establish the active ingredient–target network, signal pathway–target network
or protein–protein interaction (PPI) network. KEGG and GO enrichment analyses were
performed by Metascape (https://metascape.org/gp/index.html#/main/step1, accessed
on 30 July 2021). Histograms were plotted by http://www.bioinformatics.com.cn (accessed
on 30 July 2021).

2.5. Cell Culture and Cytotoxicity Test

RAW264.7 cells obtained from the Kunming cell bank of the Chinese Academy of
Sciences (Kunming, China) were incubated in DMEM medium with 10% FBS. The culture
temperature was 37 ◦C and the CO2 concentration was 5%. The MTT method was used to

https://pubchem.ncbi.nlm.nih.gov
http://tcmspw.com/tcmsp.php
http://www.swisstargetprediction.cn
http://www.swisstargetprediction.cn
http://www.lilab-ecust.cn/pharmmapper/
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evaluate the cytotoxicity of the ethanolic extract at 50 µg/mL or 100 µg/mL with RAW264.7
cells as previously reported [25]. Results showed that both concentrations of the ethanolic
extract exhibited no cellular toxicity to RAW264.7 cells.

2.6. TRAP Staining

RAW264.7 cells seeded in 96-well plates were set up in accordance with the above
concentrations in the following groups: Group K (Control group), Group M (50 ng/mL
RANKL), Group RL (50 ng/mL RANKL and 50 µg/mL of extract), and group RH (50 ng/mL
RANKL and 100 µg/mL of extract). The solution was changed every other day. After
incubation for 5 days, the cells were stained according to the instructions of the TRAP
staining kit.

2.7. TRAP Viability Examination

RAW264.7 cells seeded into 6-well plates were cultured according to the above method.
After being cultured for five days, TRAP activity of each well was detected according to
the kit instructions for TRAP viability.

2.8. Analysis by Western Blots

RAW264.7 cells seeded into 6-well plates were cultured according to the above method.
The solution was replaced every other day for five days. All cells were homogenized in
cell lysis buffer with a scientz-IID ultrasonic cell crusher (Ningbo Scientz Biotech Co.,
Ltd., Ningbo, China). Western blot analyses were carried out according to the previously
reported method [19].

2.9. Statistical Analysis

All data are expressed as average ± standard deviation (S.D.). The data were evaluated
with one-way ANOVA, and the significance (p < 0.05) was tested by Tukey’s test. TRAP
staining was performed by Media Cybernetics Inc. (Rockville, MD, USA) using the software
image-Pro Plus 6.0. Origin 8.5 software was used for data analyses in the current work.

3. Results
3.1. Phytochemical Composition Analysis

The mass spectra in negative ion mode of the 80% ethanolic extract are shown in
Figure 2. Related mass data (e.g., m/z, molecular formula, ion fragments) are presented in
Table 1 for the identification of these substances. When comparing the mass data of the
ethanolic extract to the mass data obtained from the literature, phytochemical standards or
mass bank, 14 substances were identified, two of which were organic acids and 12 were
phenols. Among those 12 phenolic compounds, five substances belonged to gallic acid
and its derivatives (compounds 3–7) and the remaining seven compounds were flavonoids
and its derivatives (compounds 8, 9, 10, 11, 12, 13 and 14). Table 1 summarizes the
quantitative and semi-quantitative results of 14 phytochemical compounds. The malic acid
(144,519.79 ± 21,651.25 µg/g) and citric acid (135,452.78 ± 16,530.37 µg/g) comprised the
most content, both of which are organic acids. The phenolic compound with the highest
content was gallic acid (3791.02 ± 490.83 µg/g), followed by quercetin-3-O-rhamnoside
(quercitrin, 3592.77 ± 463.06 µg/g) and myricetin-3-O-rhamnoside (525.43 ± 64.31 µg/g),
indicating that those three substances were the principal phenolic compounds of the
ethanolic extract of R. chinensis fruits.
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Figure 2. Mass chromatograms of the ethanolic extract from R. chinensis fruits in negative mode.
Peaks 1–14 refer to the corresponding compounds in Table 1.

3.2. Network Pharmacology Analysis

A total of 354 potential targets of the identified substances in the ethanolic extract R.
chinensis fruits were predicted by using TCMSP, Swiss Target Prediction, and PharmMapper
databases. After searching from DrugBank, GeneCards, and TTD databases, 1299 targets
related to OP were identified. By comparing potential targets of the identified substances
with OP-related targets, 94 intersection targets were determined as the possible targets of
the ethanolic extract towards OP (Figure 3a). A compound–target network was established
to identify the correlation between the identified compounds and their potential targets
(Figure 3b). Citric acid, quercetin, myricetin-3-O-galactoside and quercetin-3-O-rhamnoside
were the four compounds most associated with OP-related targets (44, 39, 33 and 33 OP-
related targets, respectively). Meanwhile, citric acid and quercetin-3-O-rhamnoside were
the predominant phytochemicals in the extract (Figure 2 and Table 1). However, malic
acid and gallic acid were also the most abundant compounds contained in the extract, but
these two substances were associated with fewer OP-related targets (5 and 10 OP-related
targets, respectively).



Nutrients 2022, 14, 1020 7 of 19

Table 1. Chemical composition identified in R. chinensis Mill. fruits by UHPLC-ESI-HRMS/MS.

Peak
No.

RT
(Min) Compounds [M − H]−

(m/z)
Molecular
Formula MS/MS Fragment Ions Dry Extract (µg/g) Reference

1 1.37 Malic acid 133.0130 C4H6O5 115.1210(100) 144,519.80 ± 21,651.25 Standard
2 1.80 Citric acid 191.0189 C6H8O7 87.0075(100), 57.0332(91), 111.0075(48) 135,452.78 ± 16,530.37 Standard
3 2.58 Gallic acid 169.0133 C7H6O5 69.0331(100), 124.0152(55), 125.0232(33) 3791.02 ± 490.83 Standard
4 9.55 Digallic acid 321.0252 C14H10O9 125.0232(100), 169.0133(23) 148.89 ± 20.36 [33]
5 9.81 Trigalloyl glucose isomer I 635.0894 C27H24O18 169.0134(100), 483.0779(16), 635.0867(2) 108.30 ± 13.08 [34]
6 10.17 Trigalloyl glucose isomer II 635.0895 C27H24O18 169.0133(100), 483.0778(9), 635.0895(4) 167.08 ± 22.72 [34]
7 11.30 Trigalloyl glucose isomer III 635.0893 C27H24O18 169.0134(100), 483.0783(15), 635.0930(4) 326.75 ± 40.48 [34]
8 14.11 Myricetin-3-O-galactoside 479.0838 C21H20O13 316.0224(100), 317.0271(26) 61.27 ± 6.97 Mass bank
9 16.10 Myricetin-3-O-rhamnoside 463.0886 C21H20O12 316.0225(100), 317.0276(24) 525.43 ± 64.31 Standard

10 17.07 Luteolin-7-O-glucoside 447.0933 C21H20O11 285.0402(100), 284.0327(53) 81.57 ± 10.60 Standard
11 17.90 Quercetin-3-O-arabinoside 433.0775 C20H18O11 300.0275(100), 301.0331(17) 50.69 ± 7.59 [33]
12 18.92 Quercetin-3-O-rhamnoside 447.0931 C21H20O11 300.0276(100), 301.0341(54), 151.0029(23) 3592.77 ± 463.06 Standard
13 21.37 Kaempferol-3-O-hexoside 431.0984 C21H22O10 284.0326(96), 285.0397(68) 177.93 ± 21.13 [34]
14 24.91 Quercetin 301.0354 C15H10O7 151.0026(100) 173.38 ± 24.54 Standard

RT: retention time; the results were expressed as µg/g of dry extract. All the values are expressed as mean ± SD (n = 3). Malic acid standard was used for quantifying compounds 1;
Citric acid standard was used for quantifying compounds 2; gallic acid standard was used for quantifying compounds 3, 4, 5, 6, 7; myricetin-3-O-rhamnoside standard was used for
quantifying compounds 8, 9; luteolin-7-O-glucoside standard was used for quantifying compound 10; quercetin-3-O-rhamnoside standard was used for quantifying compounds 11 and
12; kaempferol standard was used for quantifying compound 13; quercetin standard was used for quantifying compound 14.
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Figure 3. Screening of intersecting targets and construction of network diagrams of chemical compo-
nents and targets. (a) A Venn diagram showing the intersections of identified targets of identified
compounds and osteoporosis; (b) The identified compounds–osteoporosis target network. The
color and size of each icon reflects the node degree for the common targets. The active ingredi-
ents include: Malic acid (525, Peak 1), Citric acid (311, Peak 2), Gallic acid (370, Peak 3), Digallic
acid (341, Peak 4), 1,2,3-tri-O-galloyl-d-glucose (13270010, Peak 5 or 6 or 7), 1,2,6-trigalloyl-beta-
d-glucose (124156722, Peak 5 or 6 or 7), 1,2,6-Trigalloyl-glucose (440308, Peak 5 or 6 or 7), 1,3,6-
tri-O-galloylglucose (250395, Peak 5 or 6 or 7), 1,4,6-Trigalloylglucose (129650490, Peak 5 or 6 or
7), 2,3,6-trigalloyl-d-glucose (129819625, Peak 5 or 6 or 7), Trigalloylglucose (90116889, Peak 5 or 6
or 7), Myricetin-3-O-galactoside (5491408, Peak 8), Myricetin-3-O-rhamnoside (56843093, Peak 9),
Luteolin-7-O-glucoside (5280637, Peak 10), Quercetin-3-O-arabinoside (12309865, Peak 11), Quercetin-
3-O-rhamnoside (5280459, Peak 12), Kaempferol-3-O-hexoside (5462193, Peak 13), Quercetin (5280343,
Peak 14).
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The 94 intersection targets were further analyzed by Bisogenet to construct a PPI net-
work, and the results are shown in Figure 4. Altogether 77 important nodes were identified
in the PPI network. The top 20 enriched GO terms in each category are shown in Figure 5.
The screened targets mainly involved biological processes, including “proliferation of mus-
cle cell (GO:0033002)”, “regulation of proliferation of smooth muscle cell (GO:0048660)” and
“proliferation of smooth muscle cell (GO:0048659)”. While “vesicle lumen (GO:0031983)”,
“cytoplasmic vesicle lumen (GO:0060205)” and “secretory granule lumen (GO:0034774)”
ranked the highest in the molecular function category, “activity of ligand-activated tran-
scription factor (GO:0098531)”, “nuclear receptor activity (GO:0004879)”, and “activity
of transmembrane receptor protein kinase (GO:0019199)” were the main cellular com-
ponent categories. The crucial signaling pathways involved were further illuminated
by enrichment analysis of KEGG pathway (Figure 6). The top three KEGG pathways
(Figure 6a) were the PI3K-Akt (hsa04151), AGE-RAGE (hsa04933), and MAPKs (hsa04010)
signaling pathways. In accordance with the number of targets found in each signaling
pathway, Cytoscape (3.8.2) software was applied to establish a target–signal pathway
network. The target–pathway network consisted of 60 nodes and 158 edges (Figure 6b).
The results showed that Mitogen-activated protein kinase 1 (MAPK1) and RAC-alpha
serine/threonine-protein kinase (AKT1) were the two most critical targets, which involved
14 and 13 pathways, respectively. Combined with PPI and enrichment analysis of KEGG
pathways and the target–signaling pathway network, AKT1 and MAPK1 are relatively key
targets. They are associated with more pathways (Figure 6b) and interact closely with other
targets (Figure 4). Among all phytochemical components, quercetin-3-O-rhamnoside and
quercetin-3-O-arabinoside inhibited both targets. Citric acid, quercetin, and 1,2,6-trigalloyl-
beta-d-glucose inhibited AKT1, while myricetin-3-O-galactoside inhibited MAPK1.
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3.3. Inhibition of Osteoclast Differentiation

After five days of RANKL induction, the cells were incubated with or without ethanolic
extract and stained with a TRAP staining kit, and the relative area of TRAP-positive cells
was quantified with image pro plus software. At the same time, a TRAP activity kit was
used to determine the TRAP activity of cells. As shown in Figure 7a, RAW264.7 cells
in the M group differentiated into a large number of TRAP-positive osteoclasts. After
adding 50 µg/mL (the RL group) and 100 µg/mL (the RH group) ethanolic extracts, the
formation of TRAP-positive osteoclasts was clearly inhibited. As shown in Figure 7b, when
compared to the M group, the TRAP-positive osteoclasts in the RL and RH groups had
evidently declined (p < 0.05), remarkably in the RH group, in which the TRAP-positive
osteoclasts were similar to those in the K group (p > 0.05). It can be seen from the results
of the TRAP activity (Figure 7c) that the TRAP activity of the M group increased when
compared with that of the K group (p < 0.05), while the TRAP activities of the RL and RH
groups were remarkably lower than the M group (p < 0.05), and no difference in TRAP
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activity between the RH and K groups was observed (p > 0.05), which were consistent with
the staining results.
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Figure 7. Effects of the ethanolic extract from R. chinensis fruits on RANKL-induced osteoclastogenesis
in RAW264.7 cells. (a) TRAP staining; (b) Relative area of TRAP-positive signal, normalized with the
K group; (c) Quantitative results of TRAP activity. All the values are expressed as mean ± SD (n = 3).
Groups with different letters are significantly different (p < 0.05). The TRAP positive cells after TRAP
staining were quantified using Image-Pro Plus software. The quantitative result is expressed in terms
of density mean (density mean = density sum/area sum) and the TRAP positive cells were quantified
by normalizing with group K. K, the Control group; M, 50 ng/mL RANKL; RL, 50 ng/mL RANKL
and 50 µg/mL of ethanolic extract; RH, 50 ng/mL RANKL and 100 µg/mL of ethanolic extract; TRAP,
tartrate-resistant acid phosphatase; RANKL, receptor activator of nuclear factor-κB ligand.

3.4. Ethanolic Extract Inhibits Osteoclastogenesis through MAPKs, NF-κB and Akt
Signaling Pathways

Western blot assays of several signaling pathways were used to further confirm the
possible mechanisms of R. chinensis fruits on RANKL-induced osteoclastogenesis, and
the results are presented in Figure 8. After induction by RANKL for 5 days, the levels of
some key proteins (p-NF-κB, NF-κB, p-IκBα, IκBα, p-ERK, ERK, p-JNK, JNK p-p38, p38,
p-Akt, Akt) in cells were determined. The expression of p-NF-κB/NF-κB, p-IκBα/IκBα,
p-ERK/ERK, p-JNK/JNK, p-p38/p38 and p-Akt/Akt in the M group were significantly
higher than their counterparts in the K group (p < 0.05). The expression of almost all
proteins in the RL group and RH group were obviously less than that of the relevant protein
in the M group (p < 0.05), except for p-p38/p38 in the RL group (Figure 8b,d).

3.5. Inhibition of c-Fos and NFATc1 Expression by Ethanolic Extract

As shown in Figure 9, the expressions of both c-Fos and NFATc1 in group M were
significantly higher than that of the corresponding protein in Group K (p < 0.05). However,
the expression levels of c-Fos and NFATc1 (Figure 9b,c) in the RL group and RH group were
significantly less when compared to the corresponding protein in the M group (p < 0.05).
According to these results, we can calculate that the ethanolic extract of the fruits could
efficiently suppress NFATc1 and c-Fos protein expression during the RANKL induction
period, indicating that NFATc1 and c-Fos may also be one of its potential targets for
inhibiting osteoclastogenesis.
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Figure 8. Effects of the ethanolic extract from R. chinensis fruits on RANKL-induced osteoclastoge-
nesis to NF-κB, Akt, and MAPKs signaling pathways in RAW264.7 cells. (a) Western blot analysis
of p-NF-κB/NF-κB and p-IκBα/IκBα proteins; (b) the relative expression of p-NF-κB/NF-κB and
p-IκBα/IκBα proteins was quantified by normalization with group K and β-actin according to
grayscale; (c) Western blot analysis of p-ERK/ERK, p-JNK/JNK, p-p38/p38 and p-Akt/ Akt pro-
teins; (d) the relative expression of p-ERK/ERK, p-JNK/JNK, p-p38/p38 and p-Akt/Akt proteins
was quantified by normalization with group K and β-actin according to grayscale. All the values
are expressed as mean ± SD (n = 3). Groups with different letters mean significantly different
(p < 0.05). K, the Control group; M, 50 ng/mL RANKL; RL, 50 ng/mL RANKL and 50 µg/mL of
ethanolic extract; RH, 50 ng/mL RANKL and 100 µg/mL of ethanolic extract; RANKL, receptor
activator of nuclear factor-κB ligand; p-NF-κB/NF-κB, phosphorylated-nuclear factor κB/nuclear
factor κB; p-IκBα/ IκBα, phosphorylated-inhibitor α of nuclear factor κB/ inhibitor α of nuclear
factor κB; p-ERK/ERK, phosphorylated-extracellular regulated protein kinases/extracellular regu-
lated protein kinases; p-JNK/JNK, phosphorylated-Jun N-terminal kinase /Jun N-terminal kinase;
p-P38/P38, phosphorylated-P38 mitogen-activated protein kinase/P38 mitogen-activated protein
kinase; p-Akt/Akt, phosphorylated-protein kinase B/protein kinase B.
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nesis on c-Fos and NFATc1 proteins in RAW264.7 cells. (a) Western blot analysis of c-Fos and NFATc1
proteins; (b) the relative expression of c-Fos and NFATc1 proteins was quantified by normalization
with group K and β-actin according to grayscale. All the values are expressed as mean ± SD (n = 3).
Groups with different letters are significantly different (p < 0.05). K, the Control group; M, 50 ng/mL
RANKL; RL, 50 ng/mL RANKL and 50 µg/mL of ethanolic extract; RH, 50 ng/mL RANKL and
100 µg/mL of ethanolic extract; RANKL, receptor activator of nuclear factor-κB ligand; NFATc1,
nuclear factor of activated T-cells cytoplasmic 1.

4. Discussion

In this study, 14 components were detected in the ethanolic extract of R. chinensis fruits,
including 2 kinds of organic acids and 12 kinds of polyphenols. Network pharmacology
analysis showed that citric acid, quercetin, myricetin-3-O-galactoside, and quercetin-3-O-
rhamnoside may be the main potential bioactive components of R. chinensis fruits that
inhibit osteoclastogenesis, and the main potential targets are AKT1 and MAPK1, and the
main potential pathways are PI3K-Akt, AGE-RAGE and MAPKs signaling pathways. Cell
experiments and western blotting further verified that the ethanolic extract of the fruits
could effectively inhibit the differentiation and formation of osteoclasts, which maybe by
regulating the NF-κB, Akt, and MAPKs signaling pathways, as well as downregulating the
expression levels of c-Fos and NFATc1 proteins.

Overexpression of osteoclasts can cause progressive bone loss, which in turn leads to
osteoporosis, and may even lead to bone fragility and fractures, which endanger human
health [35]. Therefore, it is very important to explore effective natural products to inhibit
osteoclastogenesis. Many studies have shown that polyphenols may have an advantageous
effect on bone metabolism [36,37]. Foods rich in vegetables, fruits and whole grains were
correlated with a lower danger of falls and fractures and an increase in bone density [38].
However, the differentiation of osteoclasts is influenced by multiple signaling pathways,
in a complex process [39]. In order to further screen the anti-osteoporosis active compo-
nents in R. chinensis fruits, as well as the main action pathways and related targets, the
method of network pharmacology was used. Network pharmacology can predict active
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ingredients that are highly related to osteoporosis targets. At the same time, network
pharmacology can also predict the potential main targets and pathways of these active
ingredients. Generally, the network pharmacology results showed that R. chinensis fruits
may inhibit osteoclastogenesis by inhibiting AKT1 and MAPK1 involved in the PI3K-Akt
and MAPKs signaling pathways, respectively (Figures 4 and 6). Citric acid, quercetin,
myricetin-3-O-galactoside, and quercetin-3-O-rhamnoside were thought to be the dominant
active ingredients for the anti-OP effect of R. chinensis fruits (Figure 3). Choi et al. [40],
reported that quercetin-3-O-rhamnoside reversed oxidative stress-induced osteoblast dys-
function. The concentration of citric acid in bone is roughly 50-fold higher than that in
most soft tissues, suggesting that citric acid plays a major role in the textural properties or
features of bone, and serum citric acid level may be a marker of bone loss related diseases;
serum citric acid level in OP in animals was significantly lower [13]. In addition, Kim
et al. [23], reported that quercetin inhibited osteoclastogenesis, reduced RANKL levels,
and decreased RANKL and IL-17-induced differentiation of monocytes to osteoclasts in
multiple ways, and could be potentially used as an alternative therapeutic agent in reg-
ulating bone destruction and inflammation in rheumatoid arthritis. In addition, those
pathways, such as PI3K-Akt, AGE-RAGE, MAPKs, NF-κB and thyroid hormone signaling
pathways have been confirmed to be associated with the prevention and/or treatment of
OP [4,41,42]. Protein NF-κB (NF-κB) is known to be associated with several metastatic
bone diseases [43], and osteoclast formation [44]. Osteoclast differentiation requires RANK
ligands to bind to receptors and subsequently activate multiple intracellular pathways,
including AKT/PI3K, MAPK, and NF-κB, which in turn leads to osteoclast formation [45].
Besides the NF-κB and MAPKs signaling pathways, activation of the PI3K/Akt pathway
also plays a key role in the formation of osteoclasts [46]. The PI3K/Akt signaling pathway
activated by RANKL has been proved to play a crucial role in regulating osteoclast survival
and differentiation [47]. According to the findings of network pharmacological analysis
and previous literature, the effect of R. chinensis fruits on suppressing RANKL-induced
osteoclastogenesis may involve PI3K-Akt, MAPK, and NF-κB signaling pathways.

TRAP is an iron-binding protein that can induce osteoclast differentiation, and high
expression levels of TRAP are commonly observed during osteoclast differentiation [48]. It
was also found that TRAP could affect the functional activity of osteoclasts by modulating
bone matrix absorption and collagen conversion [49]. TRAP is reported to be involved in
the migration of osteoclasts to bone adsorption sites, which is the main cause of OP [50].
Therefore, the highly expressed TRAP in osteoclasts is generally used as a phenotypic
marker of osteoclasts [51]. Therefore, the ethanolic extract of R. chinensis fruits could
effectively suppress the differentiation of osteoclasts (Figure 7). Previously, polyphenols
have also been reported to reduce TRAP activity in RANKL-induced RAW264.7 cells. For
example, Suh et al. [52], showed that xanthohumol significantly inhibited TRAP activity in
RANKL-stimulated RAW264.7 cells, and Lee et al. [53], reported that the extract of Ramalina
litoralis, rich in phenolic compounds, significantly reduced the mRNA expression of TRAP.

As shown in Figure 8, the ethanolic extract of the fruits inhibited RANKL-stimulated
osteoclast formation by inhibiting MAPKs, NF-κB, and Akt signaling pathways, which is
consistent with the above prediction results of network pharmacology analysis. MAPKs
and NF-κB signaling pathways play a crucial role in the differentiation and formation of
osteoclasts, and the MAPKs cascade is activated by phosphorylating p38, ERK1/2, and
JNK [54,55]. Those signals interact with NFATc1, the main regulator of osteoclast differ-
entiation, to induce nuclear transfer, and thereby promote osteoclastogenesis [56]. Many
previous studies have also reported that many natural products inhibit osteoclastogenesis
and prevent OP by inhibiting MAPKs and NF-κB signaling pathways. For example, in the
study of Hou et al. [57], the expressed levels of NF-κB was significantly reduced in OP
rats after being treated with ferulic acid, and ferulic acid showed a good ability to prevent
OP in neonatal rats. Choi et al. [5] reported that Platycodin D inhibited osteoclast differ-
entiation by inhibiting NF-κB and ERK/p38 MAPK signaling pathways. Ang et al. [58],
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also found that naringin could suppress NF-κB activation and ERK phosphorylation in
RANKL-stimulated cells.

In addition, protein c-Fos is intimately related to the occurrence and growth of os-
teosarcoma, and in the process of osteoclast division, c-Fos is an important adjusting factor
of RANKL downstream, which promotes osteoclast shaping mainly by activating the down-
stream factor NFATc1 [59]. Madhuri et al. [60], also reported that 100 µM of ferulic acid
markedly inhibited the expressions of c-Fos and NFATc1 genes induced by RANKL and
M-CSF. In addition, it is reported that Tatarinan O, a substance obtained from the Acorus
tatarinowii Schott roots, could effectively attenuate osteoclastogenesis from RANKL-induced
BMMs via lowering the expressed levels of c-Fos and NFATc1 [61]. R. chinensis fruits could
effectively inhibit the expression of NFATc1 and c-Fos proteins during the RANKL-induced
period. This indicated that the R. chinensis fruits have a good inhibitory activity on the
differentiation and formation of osteoclasts. In the future, its function in healthcare of
diseases related to osteoclast differentiation can be studied to explore its further utilization.

5. Conclusions

Results of the current work showed that R. chinensis fruits have a preventive effect on
the formation of osteoclasts in RAW264.7 cells induced by RANKL, which may involve
multiple targets and multiple pathways. Among the 14 identified compounds, citric acid,
quercetin, myricetin-3-O-galactoside, and quercetin-3-O-rhamnoside may be the main
active components that inhibit osteoclastogenesis. R. chinensis fruits significantly inhibited
osteoclast formation via adjusting the NF-κB, Akt, and MAPKs signaling pathways, and
by downregulating the expressed levels of c-Fos and NFATc1 proteins. In addition, the
main potential targets of R. chinensis fruits that inhibit osteoclastogenesis are AKT1 and
MAPK1, and the main potential signaling pathways may be AGE-RAGE and PI3K-Akt
signaling pathways. This study may supply a basis for further use of R. chinensis fruits as
a functional food and/or an alternative method for the prevention and improvement of
osteoporosis and related diseases.
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