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Radiative coupling of two quantum 
emitters in arbitrary metallic 
nanostructures
JingFeng Liu1, Gengyan Chen2*, Lingyan Li1, Renming Liu3, Wei Li4, Guanghui Liu2, 
Feng Wu2 & Yongzhu Chen2

We propose a general formalism beyond Weisskopf–Wigner approximation to efficiently calculate 
the coupling matrix element, evolution spectrum and population evolution of two quantum emitters 
in arbitrary metallic nanostructures. We demonstrate this formalism to investigate the radiative 
coupling and decay dynamics of two quantum emitters embedded in the two hot spots of three silver 
nano-spheroids. The vacuum Rabi oscillation in population evolution and the anti-crossing behavior 
in evolution spectrum show strong radiative coupling is realized in this metallic nanostructure despite 
its strong plasmon damping. Our formalism can serve as a flexible and efficient calculation tool to 
investigate the distant coherent interaction in a large variety of metallic nanostructures, and may be 
further developed to handle the cases for multiple quantum emitters and arbitrary dielectric–metallic 
hybrid nanostructures.

The coherent interaction between spatially separated quantum emitters, e.g., atoms, dye molecules and quantum 
dots, determines their decay dynamics and facilitates quantum information processing. In solid-state implemen-
tation, the photon-mediated radiative coupling between quantum emitters is a promising approach due to the low 
decoherence rate, high velocity and matured on-chip photonic technology1. The radiative coupling can be tailored 
by suitably designing the electromagnetic environment of the quantum emitters2. For instance, optical lenses3 
and waveguides4 can collect and transfer the emitted photon from one quantum emitter to another one, while 
optical cavities5 can enhance the photon-mediated interaction, even realize the strong radiative coupling6–11. 
The strong radiative coupling and entanglement of two quantum emitters can occur over longer distance in the 
photonic crystal dimers12–14 and photonic band gap material15,16. Apparently, the crucial requirement for strong 
radiative coupling is a tight confinement of electromagnetic field.

Nevertheless, due to the diffraction limit, the light field in any dielectric nanostructure, e.g., optical cavities5, 
can only be confined down to the light wavelength scale. So the electric field at each quantum emitter and hence 
the radiative coupling between quantum emitters are both limited. To break this limit and further enhance the 
radiative coupling, metallic nanostructures are proposed as an alternative scheme. Metallic nanostructures, e.g., 
plasmonic cavities17, can squeeze light field into extremely small volume beyond diffraction limit and of the 
nanometer scale18, and produce enormously strong electric field (hot spots). By embedding quantum emitters 
separately into these hot spots, strong radiative coupling19–21 and entanglement22 can be realized. Furthermore, 
both the deep subwavelength confinement associated with surface plasmons and the one-dimensional character 
of plasmonic waveguides can be simultaneously exploited to enhance the interaction between distant quantum 
emitters, introducing energy transfer23–25, superradiance23,26 and entanglement27,28. Due to the rapid progress 
in nanofabrication and measurement techniques, various metallic nanostructures are elaborately designed and 
fabricated to realize diverse goal, e.g., a U-shaped gold nanostructure can realize selective excitation and detec-
tion of two coupled quantum emitters from the far field29. In metallic nanostructures, the dominant coupling 
mechanism between quantum emitters is virtual plasmon exchange, rather than direct radiative coupling30,31.

To investigate the plasmon-mediated radiative coupling between quantum emitters in metallic nanostructures, 
various calculation methods are proposed and developed. Nevertheless, most of the present calculation methods 
focus on specific geometries, e.g., plasmonic waveguide26–28,32,33, metallic nanoparticle34–36, spherical core–shell 
nanoparticle37–39, metallic resonator40, nanoparticle cluster19,41.
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In this paper, we propose a general formalism to efficiently simulate the radiative coupling between two quan-
tum emitters in arbitrary metallic nanostructures. More importantly, based on the radiative coupling, we propose 
an approach to calculate the evolution spectrum and population evolution of these two quantum emitters. As 
an illustrating application, we investigate the radiative coupling and decay dynamics of two quantum emitters 
embedded individually in the two nanogaps (hot spots) of three silver nano-spheroids. Due to the enormously 
enhanced electric field in the two hot spots, despite the strong plasmon damping, the strong radiative coupling 
between the two quantum emitters can still be manifested by the vacuum Rabi oscillation in population evolu-
tion and the anti-crossing behavior in evolution spectrum. This formalism may serve as a flexible and efficient 
theoretical tool for the distant coherent interaction between two quantum emitters in a large variety of metallic 
nanostructures, and may be further developed to handle the cases for multiple quantum emitters and arbitrary 
dielectric-metallic hybrid nanostructures.

Results
Theory.  In this section, we deduce a formalism to calculate the temporal evolution of the upper-level-prob-
ability amplitudes of two two-level quantum emitters (denoted as A and B ) inside arbitrary metallic nanostruc-
ture. By adopting the dipole approximation and the rotating-wave approximation, the Hamiltonian of this sys-
tem can be expressed as37,42,43

Here, the first term represents the field energy of the environment in the presence of the metallic nanostruc-
ture.f̂(r,ω) and f̂†(r,ω) are the bosonic fields that represent the elementary (energy) excitations of the electro-
magnetic field both in the environment and the metallic nanostructure44.

The second term in the Hamiltonian represents the energy of the two quantum emitters. ωi and di = did̂i are 
the transition frequency and transition dipole moment with magnitude di and direction d̂i , respectively, between 
the excited state |ei� and the ground state 

∣

∣gi
〉

 of the ith ( i = A,B ) quantum emitter located at ri.
The third term in the Hamiltonian represents the interaction between the quantum emitters and the field 

excitations. σ̂ †
i  and σ̂i are Pauli operators of the ith quantum emitter. The electric field operator is separated into 

two parts as Ê(r) = Ê
(+)(r)+ Ê

(−)(r) , where Ê(+)(r) =
∫ +∞
0

dωÊ(r,ω) and Ê(−)(r) = [Ê(+)(r)]†.Ê(r,ω) is the 
electric field operator in the frequency domain44. The positive frequency part Ê(+)(r) can be expressed as42

Here, εI (r,ω) is the imaginary part of the complex relative permittivity ε(r,ω) of the metallic nanostruc-
ture.G(r, r′,ω) is the classical Green function (tensor), describing the system response at r to a point source at 
r
′ , and satisfying the equation

together with the boundary condition at infinity. δ(r) is the dyadic δ function.
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 , with only 
one excitation at quantum emitter A , B or the bosonic field f̂m(r,ω) ( m denote the x , y or z component), respec-
tively. The system state evolves as

Here, Ca(t) , Cb(t) and Cm(r,ω, t) are the probability amplitudes of |a� , |b� and |m(r,ω)� , respectively.
By substituting Eqs. (1), (2) and (4) into Schrödinger equation i� ∂
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(+)(ri) · di + σ̂iÊ
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We assume that initially there is only one excitation at the two quantum emitters and no excitation at the bosonic 
fields, i.e., the probability amplitudes for the initial state of the system are

We take the Laplace transform (forward and backward Fourier transform) to transform Eqs. (5)–(7) into 
algebraic equations. The forward and backward Fourier transform of any time-dependent variable C(t) , e.g., 
Ca(t) , Cb(t) and Cm(r,ω, t) , can be defined, respectively, as

Here, the complex frequencies �± = �± iη are assumed to contain a real frequency � and an infinitely small 
positive and negative imaginary part ±iη(η → 0+ ), respectively, so that the transform is well-defined45.

As derived in the “Methods” section, the forward and backward Fourier transform of Ca(t) and Cb(t) can be 
calculated as

Here, as derived in the “Methods” section and discussed in detail later, the coupling matrix element is

Here, G/∗ denote G and G∗ , corresponding to W+
ij  and W−

ij  , respectively.
Furthermore, the evolution spectrum of the two quantum emitters can be obtained as

Finally, the temporal evolution of the two quantum emitters can be calculated via their evolution spectrum as

Obviously, the key to investigate the decay dynamics of two quantum emitters in arbitrary metallic nanostruc-
ture is the calculation of the coupling matrix element W±

ij (�) , which can be obtained via Green tensor G(ri , rj ,�) 
according to Eq. (13). G(ri , rj ,�) describes the system response at ri (the ith quantum emitter) to a point source 
at rj (the jth quantum emitter) and characterizes the electromagnetic environment of the two quantum emitters, 
which determines the radiative coupling between them.

For specific metallic nanostructures with simple geometries, e.g., spherical and spheroidal geometries46, 
G(ri , rj ,�) can be obtained analytically. However, for arbitrary metallic nanostructures with arbitrary geometries 
and components, numerical calculations should be adopted to obtain G(ri , rj ,�) . Actually, the Green tensor 
G(ri , rj ,�) and hence the coupling matrix element W±

ij (�) can be obtained by simulating the electric fields 
induced by two point-dipoles, individually.

From Maxwell equations, the electric field induced by an oscillating point-dipole (related to the jth quantum 
emitter) located at rj with unit magnitude, direction d̂j and frequency � is47,48

Specially, the electric field component at location ri and along direction d̂i (related to the ith quantum emitter) is

(8)
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According to the definition of Eq. (13), we can rewrite the coupling matrix element as

Here, E/∗
j  denote Ej and E∗

j  , corresponding to W+
ij  and W−

ij  , respectively. This relationship provides a flexible and 
efficient approach to calculate the coupling matrix element W±

ij (�) , based on the numerical simulation of the 
electric fields Ej(ri ,�) induced by two individual point-dipoles.

Ej(ri ,�) in arbitrary metallic nanostructure can be simulated directly in frequency domain, e.g., by the COM-
SOL Multiphysics. Alternatively, at first, Ej(ri , t) in time domain can be simulated, e.g., via the finite-difference 
time-domain (FDTD) method49, and then Ej(ri ,�) can be obtained by Fourier transform or Padé approximation 
with Baker’s algorithm50.

For i  = j , i.e., W±
AB(�) and W±

BA(�) , W±
ij (�) = �ij(�)∓ i

Ŵij(�)

2
 characterizes the radiative coupling between 

the ith and the jth quantum emitters, mediated by the electromagnetic field (mainly the plasmon) in the metallic 
nanostructures. The real and imaginary part of W±

ij (�) corresponds to the collective level shift �ij(�) and the 
transfer rate Ŵij(�) , respectively26,32,51. W±

ij (�) can be directly calculated from the complex Ej(ri ,�) via Eq. (20). 
Obviously, W−

ij (�) is the complex conjugate of W+
ij (�) . Besides, according to Eqs. (13) and (20), we can separately 

calculate �ij(�) and Ŵij(�) via the real and imaginary part of Ej(ri ,�) , respectively, as

For i = j , i.e., W±
AA(�) and W±

BB(�) , W±
ii (�) = �ii(�)∓ i Ŵii(�)

2
 characterizes the local coupling between the 

ith quantum emitter and the electromagnetic field (mainly the plasmon) in the metallic nanostructure. The real 
and imaginary part of W±

ii (�) corresponds to the level shift �ii(�) and the local coupling strength Ŵii(�) of the 

ith quantum emitter, respectively. Unfortunately, W±
ii (�) can’t be directly calculated via Eq. (20). Instead, at first, 

its imaginary part can be calculated via Ŵii(�) = 2d2i
�
d̂i · Im[Ei(ri ,�)] , then its real part can be calculated via the 

principal value integral as �ii(�) = 1
2π

P
∫ +∞
0

dωŴii(ω)
�−ω

52,53. Besides, W−
ii (�) is the complex conjugate of W+

ii (�).

With the calculated W±
AB(�) , W±

BA(�) , W±
AA(�) and W±

BB(�) , via Eqs. (11) and (12), we can successively obtain 
the evolution spectrum of (14) and (15) and the temporal evolution of Eqs. (16) and (17).

In plasmonic systems, the dominant mechanism is surface plasmon exchange, i.e., excitation of a virtual sur-
face plasmon in the metallic nanostructure by an excited quantum emitter followed by its absorption by the other 
quantum emitter, rather than direct radiative coupling31. The simulated electric field Ej(ri ,�) corresponds to the 
excitation and absorption of a virtual surface plasmon. Actually, all system responses including the dominating 
surface plasmon and other minor electromagnetic responses are totally incorporated in the simulated electric 
field Ej(ri ,�) . So this formalism is accurate in calculating the radiative coupling between two quantum emitters.

This formalism is flexible and efficient. It can simulate the radiative coupling and decay dynamics of two 
quantum emitters at any location, along any polarization direction, with any transition frequency, inside arbitrary 
metallic nanostructure including, but not limited to, plasmonic cavity and plasmonic waveguide. Besides, only 
the electric fields at the locations of the two quantum emitters need to be simulated, rather than those of the 
whole space. This saves massive computational time and memory.

Simulation.  To demonstrate and verify this formalism, we apply it to investigate the radiative coupling and 
decay dynamics of two quantum emitters in the metallic nanostructure composed of three silver nano-spheroids 
optimized in Ref.20. As shown in Fig. 1, three identical silver nano-spheroids are lined along their elongated 
axis (along x direction) with axis length a = 13.3 nm . The other two orthogonal axes (along y and z directions) 
have the same axis length b = 8 nm . The gap widths between any two-neighboring nano-spheroids along the 
x direction is w = 2 nm . The center of the middle nano-spheroid locates at the origin of the coordinate sys-
tem. The three nano-spheroids are embedded inside lossless host medium of dielectric constant εh = 2.2 . Here 
the refractive index parameters of Ag are obtained by interpolation from the original experimental data in the 
literature54. At the resonant wavelength �r = 525.6 nm (resonant frequency ��r = 2.3589 eV ) of this metallic 
nanostructure, the electric field are strongly confined and enhanced inside the two gaps, forming two hot spots 
of electric field, as shown in Fig. 1.

To achieve strong radiative coupling, according to Eq. (20), the two quantum emitters should be individually 
positioned at the hot spots of electric field. In this three nano-spheroid structure, a natural choice for the locations 
of the two quantum emitters is the two gap centers, w/2 away from the neighboring nano-spheroids. we take the 
transition dipole moment of the two quantum emitters as dA = dB = 4.167× 10−29 Cm , corresponding to the 
lifetimes in the homogeneous host medium is τA = τB = 2 ns . The transition dipole moment of the two quantum 
emitters are both polarized along x direction to obtain the strongest radiative coupling.

(19)d̂i · Ej(ri ,�) = �2

ε0c2
d̂i · G(ri , rj ,�) · d̂j .

(20)W±
ij (�) = −didj

�
d̂i · E/∗

j (ri ,�).

(21)�ij(�) = −didj

�
d̂i · Re[Ej(ri ,�)],

(22)Ŵij(�) = 2didj

�
d̂i · Im[Ej(ri ,�)].
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Based on the electric fields induced by two individual dipole (with unit magnitude, at the locations and 
along the polarizations of the two quantum emitters, with different frequency), via Eq. (20) and principal value 
integral, we calculate the coupling matrix element W±

ij (�) between quantum emitter A and B , as shown in 
Fig. 2. For any i and j , W−

ij (�) is the complex conjugate of W+
ij (�) . Furthermore, since the three nano-spheroid 

structure is symmetrical and the two quantum emitters have the same transition dipole moments, we can obtain 
W±

AA(�) = W±
BB(�) and W±

AB(�) = W±
BA(�).

For the imaginary parts related to the local coupling strength ŴAA(�) in Fig. 2a and to the transfer rate 
ŴAB(�) in Fig. 2b, there are both two resonant peaks (dips) at 525.6 nm and 477.45 nm . For resonant wavelength 
of 525.6 nm and 477.45 nm , the electric field distribution is symmetric and antisymmetric about the x = 0 plane, 
respectively. We focus on the symmetric mode of resonant wavelength �r = 525.6 nm , referred to as cavity mode, 
as shown in Fig. 1. The linewidth for its resonant peak is 10.22 nm (cavity leakage �κ = 45.9meV).

In this paper, we focus on the ideal case that the two quantum emitters have the same transition wavelength 
�A = �B . Besides, we assume that at initial time t = 0 , quantum emitter A is in excited state, quantum emitter B 
is in ground state, and there is no excitation at the bosonic fields, i.e., the initial state of the system is Ca(0) = 1 , 
Cb(0) = 0 , Cm(r,ω, 0) = 0.

At first, we consider the resonance case that the two quantum emitters are both resonant with the three 
nano-spheroid structure, i.e., �A = �B = �r = 525.6 nm . By adopting Eqs. (11), (12), (14) and (15), we calculate 
the evolution spectrum of the two quantum emitters, as shown in Fig. 3a. Since Ca(0) and Cb(0) are both real, 
we conclude from Eqs. (11) and (12) that c+a (�+) and c+b (�

+) are complex conjugate of c−a (�−) and c−b (�
−) , 

respectively. In this case, according to Eqs. (14) and (15), the evolution spectrum of the two quantum emitters 
ca(�) and cb(�) are both real.

Figure 1.   The three nano-spheroid structure and its cavity mode ( x component of electric field on z = 0 plane) 
with resonant wavelength �r = 525.6 nm . The three white ellipses denote the three silver nano-spheroids. The 
two green dots denote the locations of quantum emitter A and B.

Figure 2.   The real and imaginary parts of the coupling matrix element (a) W−
AA

(�) = �AA(�)+ i
ŴAA(�)

2
 and 

(b) W−
AB

(�) = �AB(�)+ i
ŴAB(�)

2
 for different frequency � (wavelength �).
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As shown in Fig. 3a, there are three peaks (dips) in the evolution spectrum ca(�) and cb(�) , respectively. The 
central peak (dip) at wavelength 528.5 nm (near �A = �B = 525.6 nm ) is the dark mode, i.e., the antisymmetric 
state of the two quantum emitters. The central peak is relatively narrow since the linewidths of the two quantum 
emitters are negligible. In contrast, the two side peaks (corresponding to the upper and lower polaritons) at 
508.95 nm and 543.35 nm , with splitting of 34.4 nm ( 154meV ), are the bright modes composed of the symmet-
ric state of the two quantum emitters and the cavity mode. The linewidths of the two side peaks are relatively 
large due to the large linewidth of the cavity mode. The large splitting between the two side peaks results from 
the strong radiative coupling between the two quantum emitters, mediated by the plasmon of this three nano-
spheroids structure with extremely strong electric field in the hot spots.

The strong radiative coupling is most apparent in time domain. Based on the evolution spectrum ca(�) and 
cb(�) , via Eqs. (16) and (17), we further obtain the time-dependent probabilities of excitation, i.e., the popula-
tions of quantum emitter A and B as Pa(t) = |Ca(t)|2 and Pb(t) = |Cb(t)|2 . As shown in Fig. 3b, initially, quan-
tum emitter A is in excited state and quantum emitter B is in ground state. For t > 0 , due to the strong radiative 
coupling between the two quantum emitters mediated by the plasmon (cavity mode), the populations of the 
two quantum emitters both oscillate at the frequency of �g = 80.2 meV , about half of the splitting ( 154 meV ) 
between the two side peaks in Fig. 3a. The excitation energy is coherently transferred between the two quantum 
emitters. Meanwhile, due to the cavity leakage �κ = 45.9 meV , the amplitudes of the two oscillating populations 
damp quickly to zero in picosecond scale. The excitation energy finally dissipates mainly due to the ohmic loss 
of the metallic nanostructure. This pronounced population oscillation is a clear signature of strong radiative 
coupling, which occurs in a regime where the radiative coupling g is stronger than the plasmon damping κ.

Figure 3.   Decay dynamics of the two quantum emitters for resonance case �A = �B = �r = 525.6 nm . (a) 
Evolution spectrum ca(�) and cb(�) . (b) Population Pa(t) and Pb(t).

Figure 4.   Evolution spectrum (a) ca(�) and (b) |cb(�)| for off-resonance case �A = �B �= �r . The dotted white 
line denotes constant �r = 525.6 nm . The dotted green line denotes varying �A(= �B).
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Now we turn to investigate the off-resonance case by simultaneously tune the transition wavelength of the 
two quantum emitters (keeping �A = �B and �r = 525.6 nm ), and calculate the evolution spectrum ca(�) and 
cb(�) for different emitter-cavity detuning �A − �r.

As shown in Fig. 4, for positively large emitter-cavity detuning �A − �r , there are three peaks in both ca(�) 
and cb(�) . The central peak at �A is dark mode, i.e., the antisymmetric state of the two quantum emitters. The 
side peak approaching �A can be mainly attributed to the quantum emitter. The other side peak approaching 
�r can be mainly attributed to the cavity mode. The attribution of the three peaks can also be verified by their 
linewidths comparing with those of the quantum emitters and cavity mode.

As emitter-cavity detuning �A − �r decreases, the two side peaks gradually repel each other and can both be 
attributed to the two quantum emitters and the cavity mode. This behavior is quite similar to the strong coupling 
system composed of a single quantum emitter and metallic nanostructure55.

For zero emitter-cavity detuning, i.e., �A = �B = �r = 525.6 nm , the two side peaks forms two polaritonic 
states, which is the case of Fig. 3a.

For negatively large emitter-cavity detuning �A − �r , the evolution spectrum ca(�) and cb(�) are both inter-
fered by the other resonant peak at 477.45 nm , i.e., the antisymmetric mode in Fig. 2. It leads to an extra minor 
anti-crossing behavior.

Discussion
In this paper, we have proposed a general formalism to calculate the plasmon-mediated radiative coupling 
between two quantum emitters in arbitrary metallic nanostructure. The coupling matrix element W±

ij (�) can 
be flexibly and efficiently calculated by simulating the electric fields Ej(ri ,�) induced by two point-dipoles, 
individually. Based on the coupling matrix element W±

ij (�) , the evolution spectrum and population evolution 
of the two quantum emitters can be obtained.

We have demonstrated this formalism to investigate the radiative coupling and decay dynamics of two quan-
tum emitters located in the two hot spots of three silver nano-spheroids. The vacuum Rabi oscillation in popu-
lation evolution and the anti-crossing behavior in evolution spectrum are clearly observed for both quantum 
emitters. Obviously, despite the strong plasmon damping, the strong radiative coupling between the two quantum 
emitters can still be realized in this metallic nanostructure, due to the enormously enhanced electric field in the 
two hot spots.

This formalism can serve as a flexible and efficient calculation tool to investigate the distant coherent inter-
action between two quantum emitters in a large variety of metallic nanostructures including, but not limited 
to, plasmonic cavities and plasmonic waveguides. Besides, it can be further developed to simulate the cases for 
multiple quantum emitters, which is essential for multiqubit manipulation. It can also be further developed to 
simulate the case for other nanostructures with arbitrary geometries and components, e.g., the hybrid nanostruc-
tures composed of both dielectric and metallic components56, where the strong radiative coupling and long-time 
coherence might be simultaneously realized for quantum information processing.

Methods
Derivation of Eqs. (11) and (12).  According to the definition of Eq. (9), the forward Fourier transform 
of Ċ(t) is

Performing forward Fourier transform to Eqs. (5)–(7), and regarding the initial condition of Eq. (8), we can 
obtain

Substituting Eq. (26) into Eq. (24) and Eq. (25), respectively, we can obtain

Here, we adopt the relationship44

(23)
∫ +∞

0

Ċ(t)ei�
+tdt = −C(0)− i�+c+(�+).

(24)

−Ca(0)−i(�+−ωA)c
+
a (�

+) = −
∫

d3r

∫ +∞

0

dω

√

1

�πε0

ω2

c2

√

εI (r,ω)
∑

m,n

dAnGnm(rA, r,ω)c
+
m(r,ω,�

+),

(25)

−Cb(0)−i(�+−ωB)c
+
b (�

+) = −
∫

d3r

∫ +∞

0

dω

√

1

�πε0

ω2

c2

√

εI (r,ω)
∑

m,n

dBnGnm(rB, r,ω)c
+
m(r,ω,�

+),

(26)c+m(r,ω,�
+) =

√

1
�πε0

ω2

c2

√
εI (r,ω)

∑

n
[dAnG∗

nm(rA, r,ω)c
+
a (�

+)+ dBnG
∗
nm(rB, r,ω)c

+
b (�

+)]

−i(�+ − ω)
.

(27)c+a (�
+) = iCa(0)+W+

AB(�)c+b (�
+)

�+ − ωA −W+
AA(�)

,

(28)c+b (�
+) = iCb(0)+W+

BA(�)c+a (�
+)

�+ − ωB −W+
BB(�)

,
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and define W+
ij (�) = �i

∣

∣W+(�)
∣

∣ j
〉

=
∫ +∞
0

dω ω2

(�+iη−ω)πε0�c2
di · Im[G(ri , rj ,ω)] · dj as coupling matrix ele-

ment between state |i� and state 
∣

∣j
〉

 . If i = j , it means local coupling. If i  = j , it means radiative coupling. The 
detailed derivation of the results can be found from Eq. (30).

Combining Eqs. (27) and (28), we can obtain c+a (�+) and c+b (�
+) in Eqs. (11) and (12). Similarly, by per-

forming backward Fourier transform to Eqs. (5)–(7), we can obtain c−a (�−) and c−b (�
−) in Eqs. (11) and (12).

Coupling matrix element.  The coupling matrix element can be derived as

Here, P denotes the principal value integral, and we adopt the following definitions26,51

�ij(�) can also be expressed as32

Regarding Eq. (33), Eq. (30) can be further expressed as

Here, G/∗ denote G and G∗ , corresponding to W+
ij  and W−

ij  , respectively. Combining Eqs. (30) and (34), we can 
derive Eq. (13).
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(29)
ω2

c2

∑

m

∫

d3sεI (s,ω)Gnm(r, s,ω)G
∗
lm(r

′, s,ω) = Im[Gnl(r, r
′,ω)],

(30)

∫ +∞

0

dω
ω2

(�± iη − ω)πε0�c2
di · Im[G(ri , rj ,ω)] · dj

= P

∫ +∞

0

dω
1

�− ω

ω2

πε0�c2
di · Im[G(ri , rj ,ω)] · dj

∓ i

∫ +∞

0

dω
ω2

ε0�c2
di · Im[G(ri , rj ,ω)] · djδ(�− ω)

= 1

2π
P

∫ +∞

0

dω
Ŵij(ω)

�− ω
∓ i

�2

ε0�c2
di · Im[G(ri , rj ,�)] · dj

= �ij(�)∓ i
Ŵij(�)

2

= W±
ij (�).

(31)Ŵij(�) = 2�2

ε0�c2
di · Im[G(ri , rj ,�)] · dj ,

(32)�ij(�) = 1

2π
P

∫ +∞

0

dω
Ŵij(ω)

�− ω
.

(33)
�ij(�) = P

∫ +∞

0

dω
1

�− ω

ω2

πε0�c2
di · Im[G(ri , rj ,ω)] · dj

= − �2

ε0�c2
di · Re[G(ri , rj ,�)] · dj .

(34)

W±
ij (�) = − �2

ε0�c2
di · Re[G(ri , rj ,�)] · dj

∓ i
�2

ε0�c2
di · Im[G(ri , rj ,�)] · dj

= − �2

ε0�c2
di · G/∗(ri , rj ,�) · dj .
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