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Complex energies of the coherent 
longitudinal optical 
phonon–plasmon coupled mode 
according to dynamic mode 
decomposition analysis
Itsushi Sakata1, Takuya Sakata2, Kohji Mizoguchi2, Satoshi Tanaka2, Goro Oohata2, 
Ichiro Akai3, Yasuhiko Igarashi4,5, Yoshihiro Nagano6 & Masato Okada1,6*

In a dissipative quantum system, we report the dynamic mode decomposition (DMD) analysis of 
damped oscillation signals. We used a reflection-type pump-probe method to observe time-domain 
signals, including the coupled modes of long-lived longitudinal optical phonons and quickly damped 
plasmons (LOPC) at various pump powers. The Fourier transformed spectra of the observed damped 
oscillation signals show broad and asymmetric modes, making it difficult to evaluate their frequencies 
and damping rates. We then used DMD to analyze the damped oscillation signals by precisely 
determining their frequencies and damping rates. We successfully identified the LOPC modes. The 
obtained frequencies and damping rates were shown to depend on the pump power, which implies 
photoexcited carrier density. We compared the pump-power dependence of the frequencies and 
damping rates of the LOPC modes with the carrier density dependence of the complex eigen-energies 
of the coupled modes by using the non-Hermitian phenomenological effective Hamiltonian. Good 
agreement was obtained between the observed and calculated dependences, demonstrating that 
DMD is an effective alternative to Fourier analysis which often fails to estimate effective damping 
rates.

In recent years, non-Hermitian Hamiltonians have been used to study dissipative effects in various quantum 
phenomena1–7, which these phenomena are characterized by exponential damping because they break time 
symmetry8. The time symmetry breaking seems to contradict the principle of microscopic mechanics, which 
states that the time evolution of physical systems is time-reversible assuming that it is unitary. Therefore, a 
fundamental challenge has been to find a consistent interpretation of irreversible phenomena within a unified 
theoretical framework9–11. A Hamiltonian in a Hilbert space cannot be the time evolution generator of a system 
representing dissipation. Instead, non-Hermitian effective Hamiltonians have been derived to describe open 
quantum systems with dissipation, including the environment12–16.

Time symmetry has been observed to break in mesoscopic quantum systems and optical systems17–24. In par-
ticular, the Fano resonance has attracted for breaking time symmetry. The Fano resonance is typically interpreted 
as quantum interference25. On the other hand, because it inevitably involves dissipation, the Fano resonance has 
been reinterpreted in terms of a non-Hermitian Hamiltonian26,27. Motivated by these observations, we focused 
on the coherent longitudinal optical phonon–plasmon coupled mode, an open quantum system with dissipation 
similar to Fano resonance28,29. This is called the longitudinal optical phonon-plasmon coupled (LOPC) mode, 
which can be experimentally observed as a coherent phonon with the pump-probe method. In the LOPC mode, 
the observed signal shows damped oscillations resulting from dissipation.
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In the experiment, we observe a 1D time-series signal, which is usually subjected to Fourier analysis. The 
Fourier transformed spectra of observed damped oscillation signals also show broadened and asymmetric modes, 
making it difficult to evaluate their frequencies and damping rates. However, plane wave expansion cannot repre-
sent exponential damping, so the Fourier transform is not suitable for exponential damping analysis because it is 
a plane wave expansion. In contrast, dynamic mode decomposition (DMD) is directly applicable to exponential 
damping analysis.

In this study, we propose a method of analysis using dynamic mode decomposition (DMD) to estimate the 
damping rate for exponential damping. DMD has previously been applied to extracting modes with decay and 
growth from time-series data30–32. Schmid et al.33 proposed applying DMD to hydrodynamics. DMD has a wide 
range of applicability in fields such as neuroscience and nonlinear systems34,35. In recent years, DMD has been 
applied to coherent phonon spectroscopy36,37. Thus, DMD is widely used for the analysis of complex time series 
that include damping. Because it represents data as a sum of vibration components with damping oscillations, 
it can be regarded as a natural extension of the Fourier transform. Thus, DMD is a suitable method for damped 
vibration analysis.

We present a framework for estimating the damping rate of the LOPC mode, for which previous studies 
only provided a heuristic method38,39. Thanks to the ability of DMD to estimate the dumping rate of the LOPC 
modes, we found that coherent phonon measurements of LOPC are consistent with the results calculated from 
the complex eigenvalues of the phenomenological non-Hermitian effective Hamiltonian. The results suggest that 
the LOPC coupling state can be interpreted by a non-Hermitian effective Hamiltonian.

Results
Here, we present the results of coherent phonon signal analysis of the LOPC mode using DMD. The LOPC mode 
can be divided into an upper branch (UB) and lower branch (LB) for non-Hermitian effective Hamiltonians. 
The two modes show damped oscillations originating from dissipation, so the peaks of the Fourier spectrum 
are broadened. The peaks in the UB are difficult to find because of their weak intensity. By using DMD, we 
can precisely estimate the frequency and damping rate, and we can compare the estimated mode profiles with 
the phenomenological non-Hermitian effective Hamiltonian. By comparing the frequency and damping rate 
estimated by DMD against the carrier density, we obtain an antisymmetric relationship for each eigenstate. 
This relationship is the same as the variation in the energy eigenvalue of the phenomenological non-Hermitian 
effective Hamiltonian for the carrier density and follows the results estimated by DMD.

Effective Hamiltonian and coherent phonon.  In this section, we describe the Hamiltonian and expo-
nential damping forms of the LOPC mode. Figure 1 shows the semi-classical representation of the coupling 
between fast-relaxing plasmons and slow-relaxing LO photon as two coupled transient states in which the 
energy widths are related to the damping rates. Yokota40 previously proposed a transient oscillation model of the 
interaction between a photo-excited non-equilibrium plasma and GaAs lattice for representing the LOPC mode 
at the femtosecond timescale. This model uses the classical simultaneous equations of motion without relaxation 
to represent the frequencies of the LOPC modes as follows:

where νpl, νLO, and νTO are the plasma frequency, LO phonon frequency and transverse optical (TO) phonon 
frequency, respectively. ν+ and ν− are the UB and LB frequencies, respectively, of the LOPC mode. Many papers 
have discussed the relationship between the dispersion relation according to the classical equations of motion 
with relaxation and the results obtained by Raman spectroscopy and the pump-probe method41–43. In recent 
years, there has been a growing momentum to understand the dispersion relation from a microscopic perspec-
tive by using Hamiltonians.

In this study, we analyze the LOPC modes using a non-Hermitian effective Hamiltonian that can express the 
effects of damping, rather than classical models. Figure 1 shows a phenomenological non-Hermitian effective 
Hamiltonian for expressing the coupling between LO phonons with a small damping rate and plasmons with 
a large damping rate. Hereafter, we refer to the phenomenological non-Hermitian effective Hamiltonian as a 
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Figure 1.   Energy diagrams of interactions between discrete levels with relaxation.
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“phenomenological effective Hamiltonian”. Singwi and Tosi44 formulated the Hamiltonian for coupled plasmons 
and phonons:

where νpl and νLO are the frequencies of the plasmons and LO phonons, respectively; a† and a are the creation-
annihilation operators related to the plasmons; b† and b are the creation-annihilation operators related to the 
LO phonons; h is planck constant; and C is the coupling constant. To consider relaxation and dissipation in 
the phenomenological effective Hamiltonian. We can introduce an imaginary part for the frequencies of the 
phonons and plasmons:

where, ν̂pl, ν̂LO and ν̂TO are the complex frequencies of the plasmon, LO phonon and TO phonon, respectively. 
Each complex frequency is expressed in terms of the vibration frequency component of the real part ( νpl, νLO 
and νTO ) and the damping component of the imaginary part ( γpl, γLO and γTO ). Many researchers have reported 
that the relaxation processes of the plasmon are due to electron-electron scattering, electron-phonon scattering, 
Landau damping and so on45–47. We assumed that the imaginary part of the complex frequency of the plasmon 
(i.e., the damping rate of the plasmon) depends on carrier density npl46:

where γpl0 is the density-independent term and c is the proportionality coefficient. This equation means that the 
damping rate of plasmon is proportional to the one-third power of the carrier density. The effective Hamiltonian 
H with the complex frequencies of Eqs. (4)–(6) obtains two LOPC eigenmodes with complex eigenfrequencies, 
zn = νn − iγn , where the real and imaginary parts denote the renormalized frequency shifts and decay rates of 
the eigenmodes, respectively48. The LB and UB are identified by the lower and upper real values, respectively, of 
the complex eigenfrequencies.

Next, we show that the LOPC mode described by the phenomenological effective Hamiltonian can be 
observed as a signal of damped oscillations. The pump-probe method can be used to observe damping modes 
due to LOPC modes reflecting the material’s polarization. When the central wavelength of the pulse laser is 
tuned to the band edge of n-GaAs, the Franz–Keldysh effect leads to modulation of the optical interband transi-
tion with a nonlinear dependence on the macroscopic electric field associated with coherent phonons49. In the 
pump-probe method, the probe pulse can be used to observe the time variation of the polarization caused by the 
LOPC mode induced by the pump pulse. According to previous studies50–52, the observed change in reflectivity 
can be written as the following χ3 process;

P is the polarization caused by the pump light: �P ∝
∑

n P0n exp(−iznt) , where, χ3 is the third-order non-
linear susceptibility and zn is the eigenvalue from the phenomenological effective Hamiltonian. Epr is the electric 
field of the probe light and Epu is the electric field of the pump light. This represents the observation of changes 
due to the interaction between phonons and polarization in the material. The observed signal is the sum of the 
damped oscillations because zn is complex

where a and b are amplitudes.

Measurements and fourier analysis.  As an experiment to measure the LOPC mode in n-type GaAs 
semiconductors, reflection-type pump-probe measurements were performed at room temperature. We used a 
pulsed laser with central energy of about 1.59 eV and a pulse width of about 80 fs. The amount of doping in the 
semiconductor sample ( ndope ) was 3× 1017cm−3 . The carrier density npl related to the plasma frequency ( νpl ) in 
the sample depended on the amount of doping ( ndope ) and the excited carrier density ( nexc)53 as Drude model54:
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where e is elementary charge; me is mass of the electron; ǫ0 is vacuum permittivity; and ǫr is relative permittivity. 
We measured the dependence on the carrier density νpl of the LOPC mode at different pump-power densities. 
The samples were at various pump-power densities and extracted only the vibrational components were extracted 
from the changes in reflectivity over time that were obtained by the reflection-type pump-probe measurements.

Here, we point out the problems with applying Fourier analysis to coherent phonon measurement data. The 
comparison of the measurement data with the phenomenological effective Hamiltonian required detecting the 
UB and LB of the LOPC mode and estimating the frequency and damping rate from the measurement signal. 
Coherent phonon measurement data are obtained as damped oscillations. Figure 2a shows the observed pump-
probe signal of GaAs semiconductors for different carrier densities. Each representative signal is color-coded. 
Figure 2b shows the Fourier spectrum of the observed signals. Applying Fourier analysis to the LOPC mode has 
two problems; it is difficult to estimate the damping rate from Fourier spectrum55, and mode extraction is difficult 
especially for the UB. Figure 2a shows that the measurement signal is a superposition of damped oscillations, 
and the peak of the Fourier spectrum is broadened. The spectrum in Fig. 2b shows that the peak structure itself 
may be undetectable for a UB with small mode amplitudes because of the broadening and asymmetry of the 
peaks caused by exponential damping. Thus, Fourier analysis is not suitable for analyzing measurement data of 
non-Hermitian phenomena with dissipation.

Results of DMD and comparison with model.  We applied DMD to analyzing damping oscillation sig-
nals as an alternative to Fourier analysis. As an example, Fig. 3 shows the results for nexe = 5.72× 1017 cm−3 . 
First, we confirmed that DMD could extract UB modes. Next, we applied DMD to estimating the dumping rate. 
We then compared the frequency estimation results with those from Fourier analysis. Figure 3a compares the 
amplitudes of the DMD modes for each mode for the frequency with the Fourier spectrum. The DMD frequen-
cies are plotted as a bar graph because DMD decomposed the signal into discrete modes. The UB, LB, and LO 
modes are color-coded as blue, red, and green, respectively. The other modes are color-coded as black. To clarify 
the results, only representative modes with large amplitudes are shown. The LB mode had a strong DMD peak 
at 8.68 THz. The LO mode also had a DMD peak at 8.68 THz, which was consistent with the Fourier spectrum. 
Two modes with larger amplitudes were identified at higher frequencies than the LO mode. The high-frequency 
mode of 10.22 THz was designated as the UB because it was considered a branch of the LOPC and higher than 
the reference frecuency of 8.7 THz for the LO mode. The DMD successfully extracted the UB peak, which was 
undetected by the Fourier analysis. Thus, these results suggest that DMD can extract modes that may be missing 
in Fourier spectra.
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Figure 2.   (a) Oscillatory components observed in the time reflectance variation of n-type GaAs 
semiconductors at each carrier density ( nexe ). The horizontal axis shows the time of measurement, and the 
vertical axis shows the signal strength. The signals are plotted vertically as a function of the carrier density. (b) 
Fourier spectrum of the time-resolved reflectivity change at each carrier density. The horizontal axis indicates 
the frequency, and the vertical axis indicates the intensity. The Fourier spectra are plotted vertically as a function 
of the carrier density as in (a). The dashed lines of the LB and UB curves in show the upper branch on the high-
frequency side and lower branch on the low-frequency side, respectively, of the LOPC mode as calculated from 
the phenomenological effective Hamiltonian. The thin vertical dashed lines represent the frequencies of LO 
phonons at 8.7 THz.
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An important parameter for the phenomenological effective Hamiltonian is the damping rate, which DMD 
is able to estimate. Figure 3b shows the damping rate results: it is illustrated in the same manner as Fig. 3a. The 
damping rates of the UB, LB, and LO modes selected from the intensity of frequency plots were 0.35, 0.57, and 
0.09 THz, respectively. The dumping rate is related to the lifetime of each mode; the larger the value, the shorter 
the lifetime. The UB and LB in the LOPC mode have short lifetimes while the LO mode has a long lifetime. 
This result is consistent with the finding that the bonding state (i.e., LOPC mode) has a shorter lifetime than the 
coherent phonon (LO mode). Unlike the Fourier analysis, DMD was able to estimate the damping rate.

The vibration components extracted by DMD can be visualized to help clarify their qualitative nature. Fig-
ure 3c shows the results of restoring each mode from Fig. 3a,b to the original signal. The figure shows the UB, 
LB, and LO modes and the difference between the sum of those three modes and the measurement. We tripled 
the vibration components of the UB mode and ‘Residual’ for easier visualization. The LB mode indicated a large-
amplitude vibration component up to 2 ps, while the LO mode indicated a vibration component that continues 
after 2 ps. The ‘Residual’ amplitude was small, especially after 2 ps and approached close to zero. The ‘Residual’ 
vibration component remained for up to 2 ps. This difference was attributed to the effects of fluctuation and 
experimental artifacts. The small residual indicates that the oscillatory component elements can be explained by 
three modes: UB, LB, and LO. Thus, DMD is useful for examining the qualitative nature of the modes. Because 
DMD can estimate the frequency and damping rate, it allows for comparison with the phenomenological effec-
tive Hamiltonian.

DMD allows the detection of the UB and LB of the LOPC mode and the estimation of the frequency and 
damping rate. The real and imaginary parts of the complex eigenvalues calculated from the phenomenological 
effective Hamiltonian correspond to the frequency and damping rate of the LOPC modes, respectively. So, it 
allows the complex eigenvalues calculated from the model in Eqs. (5) and (6) be compared with the LOPC modes 
obtained by DMD. Here, we discuss the dependence on the carrier density of the frequencies and damping rates 
of the LOPC modes by comparing the calculated eigenvalues with the experimental results.

We first discuss the frequency results. Figure 4a illustrates the carrier density dependence of the frequencies 
obtained by DMD and by the real part of the complex eigenvalue as calculated from the phenomenological effec-
tive Hamiltonian. The dots represents the results of experimental data from DMD, and the solid line represents 
the real part of the calculated complex eigenvalue. The LB, UB, and LO modes are color-coded in the same man-
ner as Fig. 3a. Except for the high carrier density region of the UB mode, the experimental results were in good 
agreement with the theoretical values of the phenomenological effective Hamiltonian. The deviation in the high 
carrier density region is because the width of the laser pulse was about 80 fs , which made accurate measurement 
in the high-frequency region difficult. The star points in Fig. 4a show the same frequency result of the Fourier 
spectrum for comparison. Since it was difficult to detect the peak of UB mode from the Fourier spectrum, UB is 
not shown in the figure. Although the frequencies for UB and LO of the Fourier spectrum are almost the same 
as those for DMD, the DMD’s frequencies are closer to the theoretical values.

Next, we discuss the damping rate results. Figure 4b shows the damping rate obtained by DMD and the 
imaginary part of the phenomenological effective Hamiltonian. The theoretical lines from the non-Hermitian 
Hamiltonian follow the experimental values extracted from the DMD. The theoretical line of the damping rate 
γpl calculated from the phenomenological effective Hamiltonian was derived from Eq. (23). Because γpl0 and 
c in Eq. (7) are unknown parameters, in this case, they were determined from the estimated mode properties 
according to DMD. The previous studies only provided a heuristic approach to estimating these parameters38,39. 

Figure 3.   The spectra for the case of nexe = 5.72× 1017cm−3 . (a) The results of frequencies. The horizontal axis 
shows the frequencies, and the vertical axis shows the intensity of each mode of DMD and Fourier spectrum. 
The black bars indicate the discrete modes obtained by DMD. The green, red, and blue bars indicate the modes 
corresponding to the LO, LB, and UB modes, respectively, of the black DMD mode. The solid light blue line 
shows the Fourier spectrum. (b) The results of dumping rate γ̃ . The horizontal axis shows γ , and the vertical axis 
shows the strength of the DMD mode. Modes selected in (a) are colored in the same way. (c) Result of restoring 
the original signal format for each modes. As in (a) and (b), each mode is color-coded. The solid black lines 
show the residuals of the sum of the three selected modes and the experimental signal. To visualize the vibration 
components, we tripled the amplitudes of the UB and residuals.
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We set γpl0 = 1.23 THz and c = 9.61× 10−5 THz cm . We then set the value of γpl0 to minimize the squared 
error between the estimated value by DMD and theoretical value by the Hamiltonian. We obtained the value of 
c from Hugel et al.38 because the value estimated by the least-squares method was very large and deviated from 
the physically acceptable range. γpl0 was about 1/10 the value by Hugel et al.38. Although the estimated param-
eters did not agree with the results of previous studies, the fitting of the damping rate γ in Fig. 4 was generally 
consistent with the data. Higher accuracy for parameter estimation is a future challenge. We demonstrated that 
the carrier density dependence of the frequencies and damping rates obtained by DMD can be simultaneously 
expressed by the complex eigenvalues calculated from the phenomenological effective Hamiltonian. The intercept 
was 1.23 THz , and the proportionality coefficient was c = 9.61× 10−5 THz cm . As same for the Fig. 4a, Fig. 4b 
shows the damping rate of the Fourier spectrum for comparison. The damping rate of the Fourier spectrum was 
estimated from the full width at half maximum (FWHM) of the Fourier spectral peaks using the half-power 
method56,57. As in Fig. 4a, UB is not shown because it was difficult to find the peak. From the LB modes results, 
it is clear that the damping rates of DMD are closer to the theoretical values. For LO modes with low dumping 
rates, the results are almost identical to those of DMD.

Discussion
In this study, we applied DMD to analyzing exponential damping in quantum dissipative systems. We used 
the pump-probe method to observe time-domain signals containing coupled LO phonon and plasmon modes 
at various pump powers. Fourier transformed spectra showed broad and asymmetric modes, which makes it 
difficult to evaluate their frequencies and damping rates precisely. In contrast, the DMD can directly handle 
exponential damping and thus can accurately evaluate the frequency and damping rate of damped oscillations. 
We successfully applied DMD to identifying LOPC modes and clarifying the excitation carrier dependence of 
the frequency and damping rate. We compared the pump-power dependence of the LOPC modes with the car-
rier density dependence of the complex eigen energies of the phenomenological effective Hamiltonian. Good 
agreement was obtained between the observed and calculated dependences.

Previously, the Fourier transform is generally used to analyze time domain signals such as coherent 
phonons58–62. Because the Fourier transform is a plane wave expansion, the damping rate γ of the eigenmodes 
cannot be estimated directly. Previous studies have used the spectral width and shape symmetry59,60. However, 
it is difficult to estimate the damping rate γ from the spectral shape is difficult because of experimental artifacts 
such as background roar effects and measurement noise. In this study, we used DMD instead of the Fourier 
transform to solve this problem. The form of the modes extracted by the DMD was consistent with the form of 
the observed signals.

The DMD analysis is an effective alternative to Fourier analysis for estimation of exponential dumping of dis-
sipation phenomenon. The other contribution of our study is to provide a framework for estimating the dumping 
rate of plasmon mode. In contrast to our proposed framework, the previous studies only provide a heuristic way 
to estimate the plasmon’s dumping rate38,39. It is known that the dumping rate of the plasmon mode is propor-
tional to 1/3 power of the carrier density, and we estimated the intercept and the proportionality coefficient. 

Figure 4.   Carrier density dependence of the frequencies and damping rates. The measurement data is one point 
for each carrier density. For both (a) and (b), the horizontal axis is √npl . (a) Carrier density dependence of the 
peak frequencies extracted by DMD and Fourier spectrum (FT). The horizontal axis shows the square root of 
the carrier density, and the vertical axis shows the frequencies of each mode. Green, blue, and red plots show the 
LO, UB and LB, respectively. The solid line corresponding to each color shows the carrier density dependence of 
the real part of the complex energy eigenvalues obtained from Eq. (23). Note that the UB of Fourier spectrum is 
not shown because it was difficult to detect the peak of UB mode from the Fourier spectrum. (b) Dependence of 
the damping rate γ̃ . The Fourier spectrum’s damping rate was estimated from the FWHM of the spectral peaks 
using the half-power method. The horizontal axis shows the square root of the carrier density, and the vertical 
axis shows the damping rate γ̃ of each mode. The plot is color-coded in the same way as (a). The solid line shows 
the carrier density dependence of the imaginary part of Eq. (23).
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Although the estimated parameters did not agree with the results of previous studies, the fitting of the damping 
rate γ is generally consistent with the data. Higher accuracy in parameter estimation is a future challenge.

Method
This section explains the DMD algorithm and the form of the damped oscillations expressed by the DMD basis. 
DMD is a method of decomposing high-dimensional time-series data. However, the measurement signal used 
in this study is one-dimensional. To apply the DMD to a one-dimensional signal, we constructed a data matrix 
as shown in Fig. 5, similarly to the previous studies on coherent phonons36,37. Now, we can suppose the measure-
ment signal is N points with a constant time interval of δt , and we can denote the time series as 

(

y0, . . . , yN
)

 . We 
first make a snapshot of the projected measurement signal yt on a M dimensional vector.

We can assume that we obtain m+ 1 snapshots at regular time intervals m+ 1 . Furthermore, the created 
M-dimensional vectors are arranged m times to create a data matrix of M ×m , where m = N −M + 1 . We 
considered the time-shifted pairs V0 and V1 as an introduction to the time evolution.

The objective of DMD is to find a matrix A such that the following relationship holds:

here, we briefly describe the DMD algorithm by Jovanović et al.63. A in Eq. (16) is derived from the least-squares 
optimization of the following equation

where P ∈ R
M×r ,� ∈ R

r×r , and Q ∈ R
m×r is the singular value decomposition (SVD) matrix. The eigenvalues 

and eigenvectors obtained by decomposing A into eigenvalues correspond to the parameters of the damped 
vibration. Let Dµ = diag(µ1,µ2, . . . ,µr) be a diagonal matrix of eigenvalues µ of A. We also consider the matrix 
� = PW , which is a matrix W with the eigenvectors of A aligned in the column direction and projected by U  . 
Note that each column is 

{

φ1,φ2, . . . ,φr

}

, φ ∈ C
M . Because A is a transition matrix of the time evolution, 

repeatedly applying t actions on the initial state vector v0 results in vt:

here, α = (α1,α2, . . . ,αr)
T ≡ �†v0 ∈ C

r and µ = (µ1,µ2, . . . ,µr)
T ∈ C

r . The DMD is a discrete representation, 
but it becomes a damped oscillation form if we change it to a continuous representation. First, as a preparation, 
we convert complex eigenvalues µj into polar form µj = rj exp

(

iθj
)

 . By this deformation, µj to the n-th power 
µn
j  is µn

j = exp
(

n ln rj
)

exp
(

inθj
)

 . Next, we introduce a continuous time t. Assuming that the initial time of the 
time series data is t0 and that the time interval �t is constant, the relationship between the time step n and the 
time t is n = (t − t0)/�t . Now, µn

j  is expressed using t as follows

(13)vt =
(

yt , yt+1, . . . , yt+M−1

)T
.

(14)V0 = (v0, . . . , vm−1) ∈ R
M×m,

(15)V1 = (v1, . . . , vm) ∈ R
M×m.

(16)V1 = AV0.

(17)A = argmin
A

||V1 − AV0||F = V1V
+
0 ≈ V1V�−1U∗.

(18)vt = Atv0 ≈
(

�Dµ�
†
)t
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r
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Figure 5.   A method of creating a matrix for DMD from the CP signals.



8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:23169  | https://doi.org/10.1038/s41598-021-02413-w

www.nature.com/scientificreports/

where Rj is Rj = µ
−t0/�t
j  . We rewrite this equation in the form of damped oscillation as follows

The relationship between γ̃j and ν̃j is as follows.

The γ̃j corresponds to the damping rate and the ν̃j corresponds to the frequency of vibration. Therefore, the 
Eq. (18) is rewritten as follows.

Given that only the real part is observed,

here, ãν = Re(Rν), b̃ν = −Im(Rν) . This is consistent with the form of Eq. (10). The damping rate γ in Eq. (10) 
corresponds to the damping rate of DMD modes γ̃ . The frequency ν in Eq. (10) corresponds to the frequency of 
DMD modes ν̃ . In the same manner, the coefficients of oscillations a and b in Eq. (10) correspond to the coef-
ficients of the DMD modes ã and b̃ . Thus, each parameterof the damped vibration can be calculated by DMD.
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