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Randomwalk (RW)method has been widely used to segment the organ in the volumetric medical image. However, it leads to a very
large-scale graph due to a number of nodes equal to a voxel number and inaccurate segmentation because of the unavailability of
appropriate initial seed point setting. In addition, the classical RW algorithm was designed for a user to mark a few pixels with an
arbitrary number of labels, regardless of the intensity and shape information of the organ. Hence, we propose a prior knowledge-
based Bayes randomwalk framework to segment the volumetric medical image in a slice-by-slice manner. Our strategy is to employ
the previous segmented slice to obtain the shape and intensity knowledge of the target organ for the adjacent slice. According to the
prior knowledge, the object/background seed points can be dynamically updated for the adjacent slice by combining the narrow
band threshold (NBT) method and the organ model with a Gaussian process. Finally, a high-quality image segmentation result
can be automatically achieved using Bayes RW algorithm. Comparing our method with conventional RW and state-of-the-art
interactive segmentation methods, our results show an improvement in the accuracy for liver segmentation (p < 0 001).

1. Introduction

Segmentation of organ from CT volume is an important
prerequisite for computer-aided surgery, computer-assisted
intervention, and image-guided surgery. The accurate seg-
mentation of the organ from clinical CT images is considered
a challenging task: Large variations in shape make an accu-
rate segmentation difficult, and existing lesions (e.g., tumors)
exhibit considerable variation for the organ anatomical struc-
ture. To accurately segment an organ, various approaches
have been proposed in literatures [1–8], such as intensity-
based [9–11], classification-based [12, 13], clustering-based
[14–18], statistical shape model- (SSM-) based [19, 20], prob-
abilistic atlas- (PA-) based [21–25], active contour- (AC-)
based [26, 27], and watershed-based [28, 29] segmentation
methods. However, the main challenge of the abovemen-
tioned methods is the fast and efficient segmentation of large

image data. This can be observed particularly in medical
applications where a resolution of three-dimensional CT
and MRI body scans constantly increases.

Recently, a growing interest is attracted by an interactive
graph-based image segmentation algorithms such as graph
cut (GC) [30–36] and random walker (RW) [37–41] algo-
rithms. The random walker algorithm represents a recent
noteworthy development in the weighted graph-based inter-
active segmentation methods. This technique with user inter-
action is more suitable for volumetric medical images to
guarantee the reliability, accuracy, and fast speed demands.

However, due to the classical RW algorithm definitions
on the weighted graphs, for a high-resolution volumetric
medical image, RW method needs to construct the corre-
sponding large-scale graph to solve the resulting sparse linear
system, which leads to high computation cost: the long
computation time and the high memory usage. Hence, over
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the past years, a large amount of research has been conducted
to extend and enhance the random walker algorithm. Grady
et al. [40] extended the classical RW segmentation approach
by combining the regional intensity priors. The sparse linear
equations can be addressed by the preconditioned conjugate
gradient to achieve an acceptable memory consumption and
easy parallelization. In [41], the computational demands with
RW are alleviated by introducing an “offline” precomputa-
tion before user interaction with RW in real-time “online.”
Using a similar principle, an offline precomputation was used
to further speed up the online segmentation in [42]. Both
methods used the “offline” and “online” strategies to mini-
mize the time spent waiting. In addition, Goclawski et al.
[43] proposed a superpixel-based random walker method to
reduce the graph size, while the computation time increases
linearly with the number of superpixels. The accuracy of
superpixels plays an immediate decisive role in the process
of organ segmentation.

To resolve these limitations, in our previous research
[44], we proposed a knowledge-based segmentation frame-
work for the volumetric medical image in a slice-by-slice
manner based on the classical random walker. This algo-
rithm employs the previous segmented slice as the prior
knowledge for automatically setting the object/background
seed points for the adjacent slices. It can reduce the graph
scale and significantly speed up the optimization procedure
of the graph. However, the classical RW algorithm was
designed to be a general purpose interactive segmentation
method, such that a user could mark a few pixels with an
arbitrary number of labels and expect a quality result, regard-
less of the data set or the segmentation goal. Segmentation of
a medical image ignores itself absolute intensity and shape
information. If a consistent intensity and shape profile
characterize an object of interest, then this information
should be incorporated into the RW segmentation process.

Taking these into consideration, in our study, we
extended a classical random walker algorithm by incorpo-
rating the prior (shape and intensity) knowledge in the
optimization of sparse linear system. The objective of our
work is to combine the prior knowledge with the spatial
cohesion of the random walker algorithm in a principled
way that produces the correct result. Based on the extended
random walker, we applied a knowledge-based segmentation
framework for the volumetric medical image in a slice-by-
slice manner. Our strategy is to employ the previous
segmented slice to obtain the prior (shape and intensity)
knowledge of the target organ for the adjacent slice. With a
small number of user-defined seed points, we can obtain
the segmentation results of the start slice in the volume which
can be used as the prior knowledge of the target organ.
According to this prior knowledge, the object/background
seed points are automatically defined and the corresponding
Bayes model can be generated. Integrating this Bayes model
into the RW sparse system, the organ is automatically seg-
mented for the adjacent slice.

The remainder of this paper is organized as follows.
Section 2 presents a brief recapitulation of the randomwalker
algorithm and then extends to incorporate the prior (shape
and intensity) knowledge. Section 3 elaborates our proposed

knowledge-based framework using the extended RW with
the Bayes model. Section 4 contains experimental work,
and Section 5 discusses the implementation of our method,
followed by the conclusion (Section 6).

2. Development

The random walk algorithm treats image segmentation as
an optimization problem on a weighted graph, where each
node represents a pixel or voxel. Therefore, we firstly
define the graph that we are working on. We use the follow-
ing notations for the rest of the paper. Given an image, I, a
graph consists of G = V , E with vertices (nodes) v ∈ V and
edges e ∈ E. Each node vi in V uniquely identifies an image
pixel xi. An edge, e, spanning two vertices vi and vj, is
denoted by eij. A weighted graph assigns a weight to each
edge. The weight of an edge, eij, is denoted by wij. It repre-
sents the similarity between two neighboring nodes vi and
vj. The degree of a vertex is di =∑jwij for all edges eij incident
on vi.

2.1. Review of Random Walker Method. The random walker
segmentation algorithm of [37] computes the probability,
for each pixel, that a random walker leaving that pixel will
first arrive at a foreground seed before arriving at a back-
ground seed. It was shown in [37] that these probabilities
may be calculated analytically by solving a linear system of
equations with the graph Laplacian matrix. The Laplacian
matrix is defined as

Lij =
di i = j

−wij vi and vj are adjacent nodes
0 otherwise,

1

where Lij is indexed by vertices vi and vj. wij = exp −β
Ii − I j

2 is the edge weight, and Ii and I j indicate the image
intensity at vertices vi and vj, respectively. β represents a
tuning constant that depends on the user.

Given a weighted graph, a set of marked (labeled)
nodes, VM , and a set of unmarked nodes, VU , such that
VM ∪VU = V and VM ∩VU =∅, we would like to label
each node vi ∈ VU with a label s. s = 1 stands for the fore-
ground, and s = 2 stands for the background. Assuming
that each node vj ∈ VM has also been assigned with a label s,
we can compute the probabilities, xi

s, that a random walker
leaving node vi arrives at a marked node vj by solving the
minimization of

Es
internal =

1
2
xsTLxs 2

All nodes V are divided into two sets: the marked
(prelabeled) nodes VM and unlabeled (i.e., free) nodes VU .
Therefore, the above function can be reformulated as follows:

Es
internal =

1
2

xsTMxsTU
LM B

BT LU

xsM
xsU

3
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Minimization of (3) with respect to xsU , the random
walker problem can be solved by the following system
of equations:

LUx
s
U = −BTxsM 4

The variable xsU represents the set of probabilities corre-
sponding to unmarked nodes; xsM is the set of probabilities
corresponding to marked nodes (i.e., “1” for foreground
nodes and “0” for background nodes). By virtue of xi being
a probability,

〠
2

s=1
xsi = 1 ∀i 5

The random walk algorithm is explained in detail else-
where [37]. Next, we will now present how the incorporation
of the Bayes model into the above framework yields a
segmentation algorithm.

2.2. Random Walker with Bayes Model. According to the
above priori knowledge, we can calculate a posterior proba-
bility p s Ii at the node vi which belongs to the label s.
Assuming that each label is equally likely, Bayes theorem
gives the probability that a node vi belongs to label s as

xsi =
p s Ii

〠2
q=1p q Ii

=
p Ii s × p s

〠2
q=1p Ii q × p q

, 6

where p I s is the likelihood map for an organ and p s is
the shape map for the targeted organ. p s can be obtained
by dilating the targeted organ region in the previous seg-
mented slice. p I s can be estimated by the previous
segmented slice of the organ. s = 1 is the foreground, and
s = 2 is the background.

Equation (6) can be also written in vector notation:

〠
2

q=1
Λq xs = p s I , 7

where Λs is a diagonal matrix with the values of p s I on
the diagonal.

According to (6), the minimum energy distribution for
the external function is

Es
external = 〠

2

q=1,q≠s
xqTΛqxq + xs − 1 TΛs xs − 1 8

To incorporate the posteriori probability function
(external term) into the RW algorithm (internal term), we
may optimize the following energy:

Es
total = Es

internal + γEs
external 9

The first term is the driving force behind the spatial
cohesion of the random walker algorithm. The second term

is a Bayes penalty term with the weight γ used to guarantee
robustness to small disconnected pieces. The used Bayes
model is generated according to the prior knowledge of an
organ: shape and intensity. In this work, we set the weight
to γ = 0 01.

The minimum energy of the above equation is obtained
when xs satisfies the solution to

L + γ〠
2

q=1
Λq xs = γp s I 10

Optimizing this energy leads to the system of linear
equations:

LU + γ〠
2

q=1
Λq xsU = γp s IU − BTxM 11

The usage of the proposed Bayes-based RW algorithm is
strongly limited by the enormous size of the graph repre-
sented in 3D volumetric medical image and the necessity of
solving a huge sparse linear system. It results in the relative
increase of the unlabeled seed points relative to a 2D image.
Hence, in order to estimate the probability of each unlabeled
seed point, the extended RW algorithm needs to calculate the

larger inverse matrix LU + γ∑2
q=1Λq −1

, which leads to high
computation costs: long computation time and high memory
usage. We integrated our extended RW algorithm into a
knowledge-based framework to make it more suitable and
workable for our application. The following details our
knowledge-based framework and results.

3. Knowledge-Based Framework

Our knowledge-based strategy employs the previous
segmented slice as the prior (shape and intensity) knowl-
edge of the target organ for automatic segmentation of
the adjacent slice. Using a small number of user-defined
seed points, we can obtain the segmentation results of
the start slice of the volume for use as the prior knowledge
of the target organ. According to the prior knowledge, the
object/background seed points can be dynamically updated
for the adjacent slice by combining the narrow band
threshold (NBT) method and the organ model with a
Gaussian process. Meanwhile, the corresponding Bayes
model can be generated. Finally, an extended Bayes-
based random walker algorithm is applied to automatically
segment the whole volume in a slice-by-slice manner. In
our work, “object” means the target organ to be segmented
and “background” means the other tissues except the tar-
get organ. The whole procedure of the proposed approach
is shown in Figure 1. In this method, there is a three-step
pipeline consisting of the following:

(1) Selecting and segmenting the start slice, as shown in
the middle-part of Figure 1: (a) Manually defining
the object/background seed points. (b) Generating a
Gaussian model (GM) using the seed points. (c)
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Segmenting the organ (“Candicate Pixels” for the
liver) using the classical RW method.

(2) Segmenting the adjacent slice, as shown in the upper-
part and bottom-part of Figure 1: (a) Generating a
Gaussian model (GM) according to the previous seg-
mented organ (intensity knowledge). (b) Automatic
setting the object/background seeds based on the
restricted region by morphological operation of the
previous segmented organ (shape knowledge). (c)
Refining the seed points based on NBT. (d) Segment-
ing the organ using our proposed Bayes-based RW
methods. Thus, it automatically segments the whole
organ in the remaining slices based on the updated
prior knowledge of the organ.

(3) Smoothing the boundary of the whole volume:
Finally, the boundary of the output volume is
smoothed by “Fourier transform” that forms the final
organ surface.

In the following section, we will introduce the start slice
segmentation, the GM generation, and automatic seed point
selection which integrate the prior intensity and shape
knowledge of the previous segmented organ.

3.1. Interactive Segmentation of the Start Slice. Our proposed
segmentation is a slice-by-slice method. There are two main
steps in our proposed method. The first step is to segment
the start slices interactively, and the second step is to segment
other remaining slices automatically based on the segmented
start slices. The aim of the first step (interactive segmentation
of the start slices) is to find the initial region of the target
organ (liver) so that it can be used as prior (intensity and
shape) knowledge of the organ as the following steps for
automatic segmentation.

The process of the first interactive segmentation of two
start slices is shown in Figure 2 and involves four steps: (1)
manually select one axial start slice. Scanning an input CT

volume along the axial axis to find one slice in which the
organ has the relative larger cross section in the axial plane;
(2) manually define the object/background seeds on this start
slice; (3) automatically generate the thresholded images
based on the constructed Gaussian model (GM) using these
seeds. To remove the intercostal muscles and the other
nonobject parts, the object seeds are employed to construct
the approximate intensity models for this organ using the
Gaussian model (GM). After estimating the statistical inten-
sity model, the constructed model is thresholded to find
“Candidate Pixels” for the organ; (4) automatically segment
the thresholded images. The final step of this process is to
segment the thresholded image based on “Candidate Pixels”
by the classical RW method.

3.2. Automatic Segmentation of the Adjacent Slice

3.2.1. GM for Generation of the Thresholded Image. Con-
structing a Gaussian model (GM) [45] is aimed to estimate
a new preprocessed image of the target organ so that it can
more easily distinguish the difference between the target
organ and other tissues. As explained in the last section, the
initial segmented slice can be used to estimate the statistical
parameters of the liver model for the current slice. Due to
the existence of a large number of the liver pixels, estimation
of the statistical parameters can be trusted. A Gaussian
model is employed to estimate the intensity distribution of
the liver. The Gaussian model is given by

p Ii s =
1
2πσ2s

exp
− Ii − μs

2

2σ2s
,

p Ii s =
p Ii s

〠2
q=1p Ii q

,
12

where the parameters mean μs and variance σ2s can be esti-
mated by the marked seed points or the previous segmented

ith + 1 slice
Seeds: automatic

ith − 1 slice
Seeds: manual

ith − 1 slice
Seeds: automatic

Knowledge:
(1) Shape
(2) Intensity

Knowledge

Knowledge

Figure 1: The whole procedure of our knowledge-based method.
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slice of the organ. Ii indicates the image intensity at the node
vi. s = 1 is the object, and s = 2 is the background.

The intensity models are automatically determined for
each slice according to the segmented organ in the previous
slice. Furthermore, in order to remove some nonobject parts
and obtain an accurate result, we threshold the output of this
intensity model by discarding probabilities less than 0.5, so it
can generate a likelihood map of the object. Comparison of
the original CT image (Figure 3(b)) with the corresponding
intensity model (Figure 3(c)) revealed that the liver can be
more easily distinguished from other tissues. However, for
the background, the likelihood map keeps the original prob-
ability value without thresholding.

3.2.2. Automatic Setting of Seed Points. The main assumption
in our method is that it can determine the approximate prior
(shape and intensity) knowledge for the organ. Due to a slice-
by-slice technique that is applied to segment the organ in our
method, the user segments one slice in the volume to define
this prior knowledge, and consequently, they are automati-
cally updated for the nearby slices. In this approach, assum-
ing the consequent slices of the same patient have a high
correlation, the boundary of the organ in the next slice does
not go far from its border in the previous slice. Thus, a
defined shape constraints based on the previous slice can be

used to roughly select the object/background seed points
for the adjacent slice.

Assuming the cross-section of the liver in the ith slice is
divided intom parts and the region of the organ for each part
(Maski,j, 1 ≤ j ≤m) is known, corresponding to the part j in
the i + 1 th slice, the object and background seeds can be
defined by the following equation:

BSi+1,j = Maski,j ⊕ BEDilation2 − Maski,j ⊕ BEDilation1 ,
FSi+1,j =Maski,j ⊕ REErosion,

13
where Maski,j is the mask of the organ corresponding to
the jth part in the slice i. BEDilation1 and BEDilation2 are the
structuring elements used for dilation in the region.
REErosion is the structuring elements used for erosion in the
region. These elements are empirically selected to be disks
with a radius of BEDilation1 = 10 pixels, BEDilation2 = 8 pixels,
and BEErosion = 8 pixels.

The background seed points are directly selected in the
current slice in the region BSi+1,j which can be considered
as accurately seeded points outside the liver’s boundary.
However, as shown in Figure 3(d), it can be seen that there
were still a lot of false positives (other tissues) in the FSi+1,j
despite eroding the liver region for the previous slice, because

Start slice Seed points Threshold GM RW

Figure 2: Interactive segmentation of the start slice in CT image.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: Steps of the RWBayes method. (a) The segmented liver (red) of the previous slice; (b) the current slice; (c) candidate pixel by
thresholding the GM; (d) the rough object (red) and background (green) seed points; (e) the fine seed points using a NBT method; (f)
the initial segmentation result by RWBayes; (g) smoothing the boundary by Fourier transform; and (h) visualisation of the segmented
liver volume.

5Journal of Healthcare Engineering



we cannot segment the previous slice accurately and there
still exists a variation of liver shape for different slices.

3.2.3. Refinement of Seed Points. As already explained above,
it can dynamically update the parameters of GM model
for the following slices. If the intensity model of the liver
includes the parameters μ and σ, we can threshold this
component in the narrow region TL, TH to find the fine
seed points corresponding to the candidate liver pixel.

TL = μ − βσ,
TH = μ + βσ

14

We empirically found that the values of β are in the
range 0 05, 0 3 corresponding to low-contrast and high-
contrast datasets.

In addition, it can been seen from Figure 3(d), since the
defined region FSi+1,j may include the nonliver part (such
as vessels); we can threshold the narrow band to achieve
more accurate object seeds (Figure 3(e)). Thus, for a pixel
located in the region FSi+1,j, if the intensity value of this pixel
belongs to the narrow range TL, TH , it is considered as an
object seed. After estimating the “Candidate Pixels” and the
fine object/background seeds for the current slice, the
Bayes-based RW algorithm is applied to segment the liver
(Figure 3(f)).

3.3. Smoothing the Boundary of the Whole Volume.However,
the boundary of the segmented object obtained in the last
step is not smooth, as shown in Figure 3(f). If the coordinates
of the boundary points are analyzed by the Fourier transform
(FT), they contain a significant number of high-frequency
components. According to the definition of the FT, the coor-
dinates x, y are transformed from the spatial domain into
the frequency domain as

Fx k = 〠
N

j=1
x j e −2πi

N j−1 k−1

Fy k = 〠
N

j=1
y j e −2πi

N j−1 k−1

i = −1 , 15

where N is the number of the boundary points that are
usually greater than 100. The boundary is smoothed by
removing the high-frequency components, while the useful
(information bearing) low-frequency components are
retained. Hence, the first 15 components in frequency
domain are kept and then transferred into the spatial domain
(Figure 3(g)).

x j = 〠
15

k=1
Fx k e

2πi
N j−1 k−1

y j = 〠
15

k=1
Fy k e

2πi
N j−1 k−1

i = −1 16

4. Results

4.1. Database. Our dataset included 26 CT images of the
abdominal region with a resolution of 0.683× 0.683×
1mm3 and a size of 512× 512× (159–263) pixels. All of the
data were stored in DICOM image format with a depth of
12 bits per pixel. These data were acquired by GE LightSpeed
Ultra scanners with eight detectors. The large variation of
liver images was an important feature in the evaluation of
our segmentation method. Hence, data were acquired from
normal and pathological cases between 20 and 75 years old.
The sample contained 20 normal cases and 6 pathological
cases: no. 1 to no. 20 were normal cases and no. 21 to no.
26 belonged to pathological cases. Therein, patients (patho-
logical cases) were those who were suspected of having a
disease, such as chronic liver disease, and were scanned in
the course of diagnosis. In order to make a quantitative
evaluation for our proposed method, the liver was segmented
for each image (i.e., subject) manually as the ground truth.
The segmentation was performed under the guidance of a
physician in order to obtain accurate liver volumes. This
study was conducted with the approval of the institutional
review boards at University Ethics Committee, and all data
provided written informed consent.

The proposed algorithm was implemented in a MC-OS-
based personal computer (Intel®Corei7 2.5GHz and 16GB-
DRAM). The programming environment was coded in the
MATLAB environment. Visualization of the shapes was
performed using VTK [46] in C++ languages.

4.2. Quantitative Measurement. To measure the accuracy of
our method, we compared it with the conventional RW
method and the state-of-the-art interactive segmentation
algorithms by two metrics.

4.2.1. Dice Coefficient (Dice). The dice coefficient is one of the
most popular methods to evaluate segmentation accuracy.
This metric is given in percent and based on the voxels of
two binary 3D volumes, with Vmanual as the manually and
Vauto as the automatically segmented organs.

Dice =
2 Vmanual ∩Vauto
Vmanual + Vauto

× 100% 17

4.2.2. Volumetric Overlap Error (VOE). The volumetric over-
lap error between two sets of voxels Vmanual and Vauto is given
in percent. This ratio is also known as Tanimoto or Jaccard
coefficient.

VOE =
Vmanual ∩Vauto
Vmanual ∪Vauto

× 100% 18

4.3. Quantitative Validation of Liver Segmentation. To
investigate the performance of our proposed segmentation
method, we applied our proposed RWBayes method to 26
clinical CT volumes which are described in the previous
section. The segmentation results of two typical cases are
shown in Figure 4. The results in Figure 4 proved that per-
forming the RWBayes method to segment the livers can give
us accurate results. A common difficulty for computer-aided

6 Journal of Healthcare Engineering



liver segmentation is the erroneous inclusion of heart
volumes, which our method robustly avoided. It confirmed
the ability of our method to segment the livers with a preci-
sion segmentation result.

Additional challenges come from enlarged livers, where
the liver has large shape variations which made it very diffi-
cult to be segmented. Taking this limitation into consider-
ation, in this research, our technique performed on 26 CT
scans that combined normal cases and pathological cases
with large morphological variations. Figure 4 shows the liver
segmentation result from one pathological case. It proved the
performance of our proposed algorithm which was robust for
segmenting the liver in the pathological cases with large
morphological variations.

Apart from a visual inspection, a quantitative evaluation
was conducted. Figure 5 gave a more clear depiction of the
corresponding accurate results of 26 cases. The first 20 data
points correspond to normal cases (the average Dice is
0.946), and the remaining 6 data points are pathological
cases (the average Dice is 0.930). Regarding the result of
applying our method to synthetic shapes, we can conclude
that our proposed method was robust in addressing the
segmentation of the liver (with the average Dice’s simi-
larity coefficient = 0.942). Future research directions will

include applying our method on more datasets in order
to more accurately evaluate the performance.

4.4. Qualitative Comparison of Interactive Segmentation
Methods. To evaluate the effectiveness of the proposed
method (RWBayes), RWBayes was compared with the
classical random walk (RW3D) [37]. Considering the
memory usage demands for applying the RW3D algorithm
to the computer, we resized all of our datasets (512 × 512 ×
159–263 pixels) into the size of 128 × 128 × 36 pixels.
Moreover, we also compared our proposed method with a
knowledge-based framework using the classical random
walker and narrow band threshold (RWNBT) [44], in which
the RWNBT did not generate a thresholded image based on
the constructed Gaussian mixture model according to the
previous segmented liver.

Quantitative and comparative results from applying the
RW3D, RWNBT, and RWBayes methods for the liver seg-
mentation are presented in Figure 6. In order to intuitively
make a comparison between our proposed RWBayes and
RW3D methods, it was unreasonable to give only one start
slice with the corresponding segmentation result. It was
necessary to show different slices for one data correspond-
ing to a point on the curve with 128 × 86 × 33 pixels. The

Slice 183 Slice 183 Slice 119 Slice 257

Slice 109 Slice 109 Slice 74 Slice 183

Normal case

Pathological case

Figure 4: Comparison of the manual segmentation (blue) with the segmentation results of our method (red). The first row is the
segmentation result in case 9. The second row is the segmentation result of pathological case with the unusual liver shape in case 22.

1

0.8

0.6

0.4

0.2

0

D
ic

e v
al

ue

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Normal case Abnormal case

Figure 5: Our technique performed on 26 CT scans with Dice measurement. The first 20 data points are normal cases, and the remaining
6 data points are pathological cases.
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red images were segmented liver slices, which were over-
laid with the original CT slices. The simulation verifies
that the performance of RWBayes was significantly better
than the RW3D and RWNBT methods for segmenting
the liver.

In order to make a comparison with the state-of-the-art
interactive segmentation algorithms, we also compared the
results using the graph cut algorithm (GC) [34] and interac-
tive K-means algorithm (IKM) [14]. Table 1 clearly depicts
the merits of our method by listing the comparative results
with the average of Dice, VOE, and runtime between auto-
mated and manual segmentations for all 26 test CT scans.
Computation time is an important metric for evaluating
one segmentation algorithm. For the classical RW algorithm,
the basis of RW method is a large, sparsely occupied linear
equations, whose size corresponds to the number of voxels
in the 3D image. Hence, it exhibited slowness for solving
3D image segmentation. A significant reduction in runtime
values using RWBayes-based segmentation compared with
those based on RW3D was confirmed. Meanwhile, the accu-
racy of RWBayes was observed to have significantly higher
Dice/VOE than the state-of-the-art interactive segmentation

methods. To directly demonstrate the performance of our
proposed method, in respect to the statistical significance
analysis, the p value was the probability of obtaining a test
statistic result that was actually observed. These statistical
tests demonstrated that our proposed RWBayes approach
yields the high precision results with respect to the conven-
tional RW3D method (p < 0 001).

5. Discussion

This paper introduced a new knowledge-based framework
for the organ segmentation using the RWBayes method.
The proposed method segmented an organ based on a set
of prior knowledge. Prior knowledge included the approxi-
mate shape of an organ (shape knowledge) and statistical
parameters of the organ’s intensities (intensity knowledge).
According to a prior knowledge of an organ, the proper
selection of object/background seeds was performed skillfully
for our method to accurately segment the organ from the
CT image.

The basic idea of the proposed method is based on the
high correlation between adjacent slices. Seed points for
the current slice are automatically generated according to
the prior knowledge from the segmented organ region of
the previous slice. As shown in Figure 5, precision results
were achieved in our experiments as we used high-
resolution data.

In practical clinics, however, CT images exist in various
resolutions. In general, thin slices (high resolution) corre-
spond to strong correlation while thick slices (low resolution)
correspond to weak correlation.

In order to verify the effect of resolutions on our
RWBayes method, a typical CT image (a resolution of
0 683 × 0 683 × 1 25mm3 and a size of 512 × 512 × 159

RWBayes

RWNBT

RW3D

Slice 25 Slice 30 Slice 14

Slice 25

Start slice

Figure 6: Comparison of the liver segmentation results with RWBayes method, RWNBT method, and RW3D method in case 6.

Table 1: Segmentation accuracy obtained by the state-of-the-art
methods for the liver on 26 CT scans.

RW3D
[37]

GC
[34]

IKM
[14]

RWNBT
[44]

RWBayes

Dice 0.573 0.857 0.894 0.687 0.934

VOE 0.404 0.758 0.810 0.526 0.874

Runtime
(sec)

45.800 1.828 2.530 1.781 1.231
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pixels) is resized into 7 different resolutions in the axial-axis
(z-axis) and then segmented with the same seed points.
Figure 7 indicates that our proposed technique can be per-
formed on the CT scans with large resolution variations.
Regardless of image resolution, satisfactory segmentation
results were achieved. In conclusion, our RWBayes method
was robust in segmenting the livers from CT images of
various resolutions. The simulation results prove the high
capacity of our proposed RWBayes method for the organ
segmentation using various resolutions of CT scans.

6. Conclusion

In this paper, we proposed a novel knowledge-based
framework for organ segmentation using the RWBayes
algorithm. A prior knowledge of the previous segmented
organ was integrated into our strategy and has the following
benefits: (1) small-scale graph; (2) automation of object/
background seed setting according to the prior knowledge
of the already segmented slices; and (3) robust segmentation
technique by combing a Bayes model of an organ into the
sparse system to calculate the probability of each unmarked
node. The evaluation of the results demonstrated the high
precision of the proposed approach. Compared with the
conventional RW and the state-of-the-art interactive seg-
mentation methods, our proposed method can significantly
improve the segmentation accuracy (p < 0 001). As for future
applications, the proposed method can be extended to
segment other organs.
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