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Abstract
Dendritic spines are tiny membrane specialization forming the postsynaptic part of most excitatory synapses. They have been
suggested to play a crucial role in regulating synaptic transmission during development and in adult learning processes. Changes
in their number, size, and shape are correlated with processes of structural synaptic plasticity and learning and memory and also
with neurodegenerative diseases, when spines are lost. Thus, their alterations can correlate with neuronal homeostasis, but also
with dysfunction in several neurological disorders characterized by cognitive impairment. Therefore, it is important to understand
how different stages in the life of a dendritic spine, including formation, maturation, and plasticity, are strictly regulated. In this
context, brain-derived neurotrophic factor (BDNF), belonging to the NGF-neurotrophin family, is among the most intensively
investigated molecule. This reviewwould like to report the current knowledge regarding the role of BDNF in regulating dendritic
spine number, structure, and plasticity concentrating especially on its signaling via its two often functionally antagonistic
receptors, TrkB and p75NTR. In addition, we point out a series of open points in which, while the role of BDNF signaling is
extremely likely conclusive, evidence is still missing.
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Introduction

Since their first description by Ramon y Cajal (yCajal 1891),
dendritic spines have been postulated to be involved in regu-
lating the communication between neurons. Indeed, these tiny
membranous protrusions, emerging from the dendrites of
most principal neurons, are the postsynaptic site of the major-
ity of excitatory glutamatergic synapses in the brain (Gray
1959). Dendritic spines consist of a bulbous head, containing
the postsynaptic density and connected to the dendrite via a
thin and long neck. Dendritic spines serve as compartments in
which calcium (Muller and Connor 1991) and biochemical
(Guthrie et al. 1991) and electrical signals (Araya et al.
2006; Grunditz et al. 2008) are confined during glutamatergic
transmission, shaping synaptic transmission.

Dendritic spines come in diverse sizes and morphologies
especially regarding head volume, spine neck lengths, and
thickness and are commonly classified, according to these
criteria in three groups, i.e., stubby, thin, and mushroom
spines (Peters and Kaiserman-Abramof 1969), possibly
reflecting different functions. The size of the spine head scales
with the size of the postsynaptic density, the number of neu-
rotransmitter receptors, and synaptic strength. Moreover, the
observation that dendritic spines are extremely dynamic both
in size and shape of pre-existing spines and also in their new
formation and disappearance links them to processes of
activity-dependent synaptic plasticity (Sala and Segal 2014).
Indeed, several studies showed activity-dependent changes in
dendritic spine morphology and number occurring after induc-
tion of synaptic plasticity, i.e., long-term potentiation (LTP)
and long-term depression (LTD). Our current knowledge
about dendritic spines indicates their crucial role in synaptic
transmission and plasticity linking their morpho-physiology
with cognition processes such as acquisition of new informa-
tion and its long-term retention (Holtmaat and Caroni 2016).
Accordingly, spine dysfunction is related to cognitive decline
in aging (von Bohlen und Halbach et al. 2006) as well as to
several neuropsychiatric, neurodevelopmental, and neurode-
generative diseases including autisms (Sudhof 2008), mental
retardation (Purpura 1974), and Alzheimer’s disease

* Marta Zagrebelsky
m.zagrebelsky@tu-bs.de

* Martin Korte
m.korte@tu-bs.de

1 Division of Cellular Neurobiology, Zoological Institute, TU
Braunschweig, Spielmannstr 7, 38106 Braunschweig, Germany

2 Helmholtz Centre for Infection Research, AG NIND, Inhoffenstr. 7,
D-38124 Braunschweig, Germany

https://doi.org/10.1007/s00441-020-03226-5

/ Published online: 14 June 2020

Cell and Tissue Research (2020) 382:185–199

http://crossmark.crossref.org/dialog/?doi=10.1007/s00441-020-03226-5&domain=pdf
http://orcid.org/0000-0001-6956-5913
mailto:m.zagrebelsky@tu-bs.de
mailto:m.korte@tu-bs.de


(Dorostkar et al. 2015). Ensuring their crucial physiological
functions and preventing the severe consequences of their
dysfunction under pathological conditions require a very tight
regulation of the processes involved in the different phases of
the life of dendritic spines. Among the many molecules con-
trolling the structure and function of dendritic spines, the
brain-derived neurotrophic factor (BDNF) stands out for its
compelling activities at all stages of a spine’s life.

This review will give an overview about the actions
of BDNF signaling, via its receptors in regulating the
dendritic spine formation, maturation, and its need for
the maintenance of the mature spine phenotype and
their plasticity. BDNF is a member of the neurotrophin
family, comprising four closely related secreted proteins
known to regulate survival, growth, and differentiation
of neurons during development as well as activity-
dependent synaptic plasticity and processes of learning
and memory in the mature CNS (Park and Poo 2013;
Zagrebelsky and Korte 2014). Both BDNF and its pre-
cursor proBDNF have been shown to be biologically
active and exert their actions upon their binding to
two transmembrane receptors – the tropomyosin receptor
tyrosine kinase B (TrkB), with a higher affinity for the
mature form of BDNF, and the p75 Neurotrophin recep-
tor (p75NTR) preferentially binding proBDNF (Barbacid
1993; Chao and Hempstead 1995).

BDNF is one of the neuroprotective, growth substances
released by neurons under stress or pathological conditions,
and brain pathologies are associated with the reduction in
BDNF release, resulting in lower brain ad blood levels.
Thus, BDNF has been suggested as a biomarker for different
brain pathologies and for the efficacy of their therapy. Indeed,
most currently used treatments are accompanied by significant
changes in BDNF expression and release levels. However,
due to space limitations, this review will not address the cur-
rent knowledge regarding BDNF signaling in the pathophys-
iology and therapy of neurological diseases.

The role of BDNF in regulating dendritic spine
development

Spinogenesis

Mature dendritic spines have been proposed to develop from
filopodia, long thin and highly motile dendritic protrusions
upon their contact with an axon (Bonhoeffer and Yuste
2002). The maturation process of dendritic spines involves
the progressive increase in their density, associated to a re-
duction in the number of filopodia (Dunaevsky et al. 1999;
Nimchinsky et al. 2002). Several studies have shown that
long-term in vitro treatment with exogenous BDNF in-
creases dendritic spine density in pyramidal hippocampal

neurons (Gottmann et al. 2009; Ji et al. 2005; Tyler and
Pozzo-Miller 2001; for reviews see Zagrebelsky and Korte
2014) and in cerebellar Purkinje cells (Shimada et al. 1998).
These growth-promoting effects of BDNF occur in a TrkB-
dependent manner. Indeed, activation of TrkB is induced by
BDNF application protocols known to increase dendritic
spine density (Ji et al. 2010), and the increase in spine density
upon BDNF treatment is prevented by simultaneously
inhibiting the Trk receptors using K252a (Tyler and Pozzo-
Miller 2001) or more specifically by TrkB receptor bodies
(Shimada et al. 1998). Accordingly, activation of signaling
pathways downstream of TrkB has been shown to be in-
volved in the effects of BDNF on spine formation (Fig. 1a).
The BDNF-induced increase in spine density depends upon
themembrane insertionof transient receptor potential canon-
ical subfamily 3 (TRPC3) channels promoted by the activa-
tion of the TrkB-PLCγ pathway (Amaral and Pozzo-Miller
2007). Also, the activation of MAPK/ERK1/2, downstream
of the TrkB-Shc site, is required for the increase in dendritic
spine density uponBDNF treatment in hippocampal pyrami-
dal neurons (Alonso et al. 2004). Here it should be pointed
out that the effects of an exogenous BDNF application on
spine density are not reproduced in all studies, possibly due
to different culture conditions (Kellner et al. 2014;
Zagrebelsky et al. 2018). Indeed, culture conditions have
been shown to influence the neuronal response to BDNF
(Chapleau et al. 2008).Nevertheless, the physiological rele-
vance of the positive effects of BDNF/TrkB signaling on
dendritic spine formation in vitro is supported by the obser-
vation that scavenging endogenousBDNF in primary hippo-
campal cultures results in adecrease in spine density (Kellner
et al. 2014).Moreover, inhibitionofTrkB receptor activation
with K252a not only blocked the effect of BDNF but further
reduced spine density below control level (Tyler and Pozzo-
Miller 2001).

�Fig. 1 a Schematic representation of the intracellular signaling cascades
downstream of the binding of BDNF to TrkB and of its precursor
proBDNF to p75NTR. BDNF binding to TrkB promotes dendritic spine
formation and maturation via the Shc site Erk1/2, to control gene
regulation as well as the activation of the PI-3 kinase in order to
promote the insertion of TRPC channels at the membrane. Moreover,
activation of the PLCγ site promotes the formations of IP3 and the
release of Ca2+ from the internal stores. On the contrary, binding of Met
variant of proBDNF or of the BDNF pro-peptide results in dendritic spine
loss via the inhibition of Rac1 and the activation of caspase-3. b
Schematic representation of the signaling initiated by BDNF binding to
TrkB and resulting in the long-lasting enlargement of the spine head in a
process known as structural potentiation (sLTP). BDNF binding to TrkB
induces in this case the polymerization of actin by promoting the activity
of Rac1 and Cdc42 within dendritic spines. Moreover, activation of the
NMDARs results in an increase in local protein synthesis in a CaMKII-
dependent manner possibly also providing the BDNF required to activate
TrkB at spines in an autocrine way. Black arrows indicate activation,
while the red arrows indicate inhibition
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Studying the role of BDNF/TrkB signaling in regulating
dendritic spine formation in vivo is complicated by the fact
that most of the bdnf knockout mice die soon after birth (Jones
et al. 1994). Moreover, the conditional deletion of bdnf result-
ed in contradictory observations. On one side, a forebrain-
specific bdnf knockout mouse (CamKII-BDNFKO), in which
BDNF is lost primarily in the cortex and hippocampus during
early adulthood showed a delayed decrease in dendritic spine
density for layer II/III pyramidal neurons of the visual cortex
(Vigers et al. 2012) suggesting a role of BDNF in maintaining
dendritic spines rather than in their formation. On the other
hand, the complete brain-specific deletion of bdnf in the Tau-
BDNFKO mouse showed a significant reduction in spine den-
sity for medium spiny neurons (MSNs) of the striatum, but not
effects on the spines of hippocampal pyramidal neurons
(Rauskolb et al. 2010). Interestingly, the potassium-chloride
cotransporter KCC2 has been recently shown to increase den-
dritic spine density in a BDNF-dependent manner in the cor-
tex but not in the hippocampus (Awad et al. 2018) further
underlying the possibility that in vivo the BDNF actions on
dendritic spine formation occur in an area-specific manner.

Most of the studies addressing the role of BDNF signaling
in regulating dendritic spine formation have been performed
in the hippocampus or the cortex. However, more recently the
levels of both BDNF and TrkB have been shown to be regu-
lated in the nucleus accumbens shell (NACsh) in a mouse
model for chronic cocaine addiction (Graham et al. 2007;
Graham et al. 2009). Moreover, loss-of-function for either
BDNF or TrkB specifically in the NACsh results in reduction
in cocaine self-administration (Graham et al. 2007; Graham
et al. 2009) suggesting an important role of BDNF/TrkB sig-
naling in this context. Psychostimulant drugs induce a series
of biochemical and morphological alterations especially in the
brain monoamine systems. Treatment with amphetamine or
cocaine increases dendritic spine density of MSNs in
NACsh and on apical dendrites of layer V pyramidal cells in
the prefrontal cortex (Robinson and Kolb 1999). BDNF sig-
naling through TrkB in NACsh is necessary for cocaine-
induced long-lasting dendritic spine formation in MSNs
(Anderson et al. 2017). Intriguingly, while increasing TrkB
expression after chronic cocaine administration reverses the
increase in dendritic spine density, loss-of-function for TrkB
after chronic cocaine self-administration failed to affect spine
density (Anderson et al. 2017) indicating an important role of
BDNF/TrkB signaling in the cocaine-induced formation of
new spines, but not in their maintenance.

Dendritic spine maturation and stabilization

Dendritic spine maturation is characterized morphologically
by an overall decrease in spine length and motility (Dailey and
Smith 1996; Marrs et al. 2001) and an increase in spine head
volume correlated to an enlargement of the postsynaptic

density and to an increase in the number of inserted neuro-
transmitter receptors and scaffold proteins (Harris et al. 1992;
Harris and Stevens 1989). These changes are reflected in the
proportion of the different spine types, classified based on
their morphology by confocal imaging. While thin spines,
with their long necks and thin head, are supposed to represent
a more immature stage, stubby andmushroom spines are char-
acterized by larger postsynaptic densities and higher stability
and therefore proposed to be mature spines (Bonhoeffer and
Yuste 2002). Loss- and gain-of-function experiments for
BDNF in vitro affect dendritic spine morphology, thereby
altering the distribution of different spine types. Specifically,
BDNF treatment in organotypic hippocampal cultures result-
ed in an increase in the proportion of stubby and a reduction in
the one of mushroom spines (Tyler and Pozzo-Miller 2003).
Moreover, acute and gradual BDNF application in primary
hippocampal neurons resulted respectively in a fast and tran-
sient activation of TrkB and ERK1/2 associated to spine head
enlargement or in a sustained TrkB and ERK1/2 activation
accompanied by spine neck elongation (Fig. 1a; Ji et al.
2010). These observations underlie the importance of how
BDNF itself is delivered. Moreover, it is important to point
out that the effects of an exogenous BDNF application on
dendritic spine maturation in hippocampal neurons depend
on neuronal activity. When BDNF was applied together with
botulinum toxin C to block miniature synaptic neurotransmit-
ter release, the proportion of long and thin possibly immature
spines was increased (Tyler and Pozzo-Miller 2003). Also,
application of BDNF to hippocampal cultures kept in a high
magnesium containing medium showed a significant increase
in the proportion of mature spines with larger heads with a
comparable significant decrease in the proportion of immature
spines with small heads. Accordingly, a loss-of-function for
BDNF by application of BDNF scavenging antibodies to pri-
mary hippocampal neurons resulted in a decrease in dendritic
spine headwidth associated to an increase in length, indicating
a less mature phenotype (Kellner et al. 2014). In addition,
primary hippocampal and cortical pyramidal neurons show a
significant decrease in the proportion of mushroom spines,
associated to an increase in one of the thin spines upon cre-
mediated deletion of bdnf both in vitro (Zagrebelsky et al.
2018) and in vivo (Rauskolb et al. 2010). In vivo, hippocam-
pal pyramidal neurons of a mutant mouse specifically lacking
the dendritic localization of BDNF (bdnf klox/klox) show a
higher density of longer and thinner dendritic spines in layer
2/3 pyramidal neurons of the visual cortex and in the hippo-
campus (An et al. 2008). Furthermore, knocking down specif-
ically the long 3′ UTR, dendritic Bdnf mRNA or blocking its
transport to dendrites inhibits spine maturation and pruning,
whereas overexpressing it enhances these processes in cul-
tured hippocampal neurons (Orefice et al. 2013).

Several lines of evidence indicate that the role of BDNF in
promoting dendritic spine maturation depends on its signaling
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via TrkB. Expression of a dominant negative TrkB receptor in
pyramidal neurons of the visual cortex resulted in the reduced
maintenance of mushroom spines accompanied by an increase
in the density of long and thin spines (Chakravarthy et al.
2006). Also, a recent study showed that copine-6, a C2-
domain-contaning protein mediating calcium-dependent bind-
ing to membrane phospholipids, is recruited to spines upon
BDFN application and promotes BDNF-dependent changes
in dendritic spine morphology by recycling activated TrkB
receptors to the membrane surface (Burk et al. 2018).

Overexpression of the postsynaptic density scaffold pro-
tein PSD-95 drives the maturation of glutamatergic excit-
atory synapses and increases dendritic spine density (El-
Husseini et al. 2000). In cortical pyramidal neurons, the
localization of PSD-95 at spines correlates with an increase
in their stability over time (Cane et al. 2014). Interestingly,
the TrkB receptor has been shown to be associated to PSD-
95, and its activation, upon BDNF binding, increases the
recruitment of the postsynaptic density protein to synapses
via the PI3K pathway (Yoshii and Constantine-Paton 2007).
Furthermore, BDNF/TrkB signaling increases PSD-95 lo-
calization at dendritic spines by prolonging the microtubule
invasions (Hu et al. 2011). PSD-95 binds many postsynaptic
molecules that can regulate dendritic spine growth. For ex-
ample, PSD-95 binds Kalirin, a neuronal Rho guanine nu-
cleotide exchange factor (Rho-GEF) that facilitates actin
polymerization within spines, thereby increasing both their
number and their size (Penzes et al. 2001). Taken together
these observations suggest a crucial role of BDNF signaling
via its TrkB receptor in promoting dendritic spine matura-
tion and stabilization. On the other hand, it has to be men-
tioned that in developing pyramidal neurons in organotypic
slice cultures of ferret visual cortex, the overexpression of
BDNF resulted in an increase in the remodeling of dendritic
spines, possibly acting through an autocrine loop (Horch
et al. 1999).

Role of BDNF signaling in activity-dependent struc-
tural plasticity at spines

Long-term synaptic plasticity, i.e., LTP and LTD, repre-
sents the cellular mechanism underlying learning and mem-
ory processes. Both LTP and LTD have been shown to be
associated to structural changes at dendritic spines (Engert
and Bonhoeffer 1999; Yuste and Bonhoeffer 2001).
Specifically, LTP induction results in long-lasting spine
head enlargement (Matsuzaki et al. 2004), while LTD re-
sults in its shrinkage (Nagerl et al. 2004; Zhou et al. 2004;
for a review see Holtmaat and Svoboda 2009) reflecting
changes in the number of neurotransmitter receptors
(Kopec et al. 2006) and in the spine responsiveness to glu-
tamate (Matsuzaki et al. 2004). While in vivo dendritic
spines have been shown to remain stable over months

(Grutzendler et al. 2002; Trachtenberg et al. 2002), provid-
ing the structural correlate for the long-term storage of in-
formation, structural plasticity of dendritic spines is re-
quired for learning and memory formation (Hayashi-
Takagi et al. 2015; Xu et al. 2009; Yang et al. 2014a;
Yang et al. 2009a). Structural plasticity at spines relies upon
the activation of a series of intracellular signaling cascades
mostly regulating the remodeling of the actin cytoskeleton
and protein synthesis. Among the extracellular factors im-
pinging on these intracellular signaling cascades, BDNF is
for several reasons of special interest. BDNF is released by
neurons in an activity-dependent manner (Goodman et al.
1996; Griesbeck et al. 1999) and specifically upon LTP-
inducing electrical stimulation in hippocampal neurons
(Gartner and Staiger 2002). Moreover, BDNF signaling
modulates dendritic spine morphology and is required both
for induction and maintenance of LTP (Korte et al. 1995;
Kovalchuk et al. 2002; Zagrebelsky and Korte 2014) and for
learning and memory processes (Alonso et al. 2002; Petzold
et al. 2015). Recent evidence implicates BDNF in regulat-
ing activity-dependent structural plasticity at spines as
BDNF/TrkB signaling is necessary and sufficient to induce
long-lasting structural changes at dendritic spines upon LTP
induction (Tanaka et al. 2008). Synaptic stimulation by glu-
tamate uncaging was paired with postsynaptic spikes, a pro-
tocol resulting in the gradual and long-lasting spine head
enlargement also known as structural LTP (sLTP;
Matsuzaki et al. 2004). Here the progressive and long-
lasting spine head enlargement upon pre- to postsynaptic
pairing was shown to depend on TrkB (Tanaka et al.
2008). While the secretion of BDNF could not be directly
shown, the authors suggested an autocrine function of
BDNF released from the postsynaptic neuron in this context
(Fig. 1b). More recently, fluorescence resonance energy
transfer-based sensor for TrkB and two-photon fluores-
cence lifetime imaging were combined to monitor TrkB
activity at single dendritic spines of CA1 pyramidal neurons
upon sLTP. The results obtained describe in stimulated
spines a fast, followed by a sustained activation of TrkB
depending on the postsynaptic synthesis of BDNF and its
release at single spines (Harward et al. 2016). While these
results come with the limitation that they are based on the
ectopic overexpression of pHluorin-fused BDNF and pos-
sibly do not represent the endogenous conditions, they are
noteworthy in supporting a crucial role of postsynaptic
BDNF/TrkB signaling not only for functional but also for
structural plasticity at spines. Indeed, BDNF has been
shown to be a newly a synthetized product required for the
maintenance of late LTP (Pang et al. 2004).

A dense network of actin cytoskeleton underlies the struc-
ture of dendritic spines and via its dynamics supports the
structural changes at spines during plasticity processes
(Colgan and Yasuda 2014; Hotulainen and Hoogenraad
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2010). Cytoskeletal remodeling depends upon the activation
of the small GTPase proteins (Nakahata and Yasuda 2018).
Specifically, the precise spatiotemporally coordinated activa-
tion of RhoA, Rac1, and Cdc42 downstream of the Ca2+/cal-
modulin kinase II (CaMKII; Lee et al. 2009; Matsuzaki et al.
2004) underlies sLTP (Bosch et al. 2014; Murakoshi et al.
2011). BDNF signaling modulates the activation of actin
binding proteins (Fass et al. 2004; Gehler et al. 2004) down-
stream of Rho GTPases (Briz et al. 2015). Indeed, exogenous
application of BDNF signaling via TrkB in rat hippocampal
slices promotes actin polymerization resulting in an increase
in the number of dendritic spines containing F-actin, and co-
application of TrkB receptor bodies prevents the actin poly-
merization induced by LTP-inducing theta burst stimulation
(Rex et al. 2007). These results indicate that BDNF is a crucial
component in promoting LTP-related cytoskeletal changes at
dendritic spines. A recent study confirmed this hypothesis by
showing the critical role of BDNF in inducing the coordinated
activation of Rho GTPases during sLTP (Hedrick et al. 2016).
Specifically, BDNF signaling via TrkB postsynaptically acti-
vates Cdc42 and Rac1, but not RhoA (Hedrick et al. 2016).
Interestingly, this action of BDNF supports the input specific-
ity and the heterosynaptic facilitation typically observed in
sLTP by activating on one side a spine-specific signaling com-
prising BDNF–TrkB–Cdc42, and a diffuse one comprising
BDNF–TrkB–Rac1 signaling. Moreover, these results en-
lighten the facilitation of plasticity observed upon BDNF
treatment by priming spines to sLTP via the activation of
Rho GTPases.

Sustained structural plasticity of spines requires activity-
dependent protein synthesis (Bosch et a l . 2014;
Govindarajan et al. 2011; Tanaka et al. 2008). For several
plasticity-relevant proteins (i.e., β-actin and CaMKII;
Miller et al. 2002; Tiruchinapalli et al. 2003), the mRNAs
are bidirectionally transported along microtubule in den-
drites in an activity-dependent manner and stop at the base
of stimulated spines suggesting their regulated local trans-
lation upon sLTP induction (Buxbaum et al. 2015). While it
is not yet conclusively shown that BDNF promotes dendrit-
ic spine morphogenesis upon activity-dependent plasticity
by regulating local protein synthesis, different lines of evi-
dence suggest this possibility. BDNF is now clearly impli-
cated in promoting local protein synthesis by the observa-
tions that its application increases the incorporation of radio
labeled amino acids and promotes the translation of a fluo-
rescent translation reporter also in isolated dendrites and in
synaptosomes (Aakalu et al. 2001; Takei et al. 2004).
Moreover, BDNF application induces a protein synthesis-
dependent form of LTP (Kang and Schuman 1996; Kang
and Schuman 1995) opening the possibility that BDNF pro-
motes structural plasticity at spines both by promoting the
cytoskeletal reorganization and the local protein synthesis
of plasticity promoting proteins.

Involvement of BDNF signaling in learning-induced
structural plasticity in vivo

A role of BDNF in regulating learning and memory processes
has been suggested by several studies often based on purely
correlative evidence. Indeed, BDNF and TrkB expression
(Gomez-Pinilla et al. 2001; Hall et al. 2000; Silhol et al.
2007) and TrkB phosphorylation (Gooney et al. 2002) are
rapidly induced in the hippocampus upon contextual spatial
learning. And, fear extinction training has been shown to in-
crease BDNF expression in the ventral hippocampus (Peters
et al. 2010; Rosas-Vidal et al. 2014). Gain-of-function ap-
proaches for BDNF and TrkB in the hippocampus improve
spatial learning performance (Cirulli et al. 2004; Koponen
et al. 2004; Nakajo et al. 2008) and in the infralimbic cortex
facilitate fear extinction (Peters et al. 2010). On the contrary,
interfering with the BDNF/TrkB signaling results in impaired
performance in the water maze task (Mu et al. 1999; Petzold
et al. 2015) and prevents fear extinction (Peters et al. 2010;
Rosas-Vidal et al. 2014) or consolidation (Chhatwal et al.
2006). Learning and memory processes are associated with
structural alterations at dendritic spines in the hippocampus,
cortex, and amygdala (Heinrichs et al. 2013; Lai et al. 2012;
Leuner and Shors 2004;Moser et al. 1994; Vetere et al. 2011a;
Vetere et al. 2011b), and BDNF modulates dendritic spine
number and structure both during development and in the
adult brain. However, while the evidence for a role for
BDNF in promoting structural plasticity at spines in vivo dur-
ing learning and memory processes is still largely correlative,
one recent study provided direct evidence for a role of BDNF
signaling in promoting formation of new dendritic spines up-
on motor learning. This study analyzed the role of microglia
produced BDNF in this context. Although the major source of
BDNF in the adult brain appears to be neurons (Rauskolb
et al. 2010; Dieni et al. 2012), BDNF can also be detected in
oligodendrocytes, astrocytes, and microglia (Dougherty et al.
2000). Conditional deletion of BDNF from microglia resulted
in the impairment of motor learning associated to an impair-
ment in the learning-induced formation of new dendritic
spines in the motor cortex (Parkhurst et al. 2013) suggesting
a new BDNF-mediated role for microglia in locally modulat-
ing specific subsets of synaptic connections possibly involved
in specific learning tasks.

Involvement of BDNF in age-dependent dendritic
spine alterations

Aging in the CNS is a physiological process characterized by
the progressive decrease in brain volume and decline in brain
function leading to different degrees of cognitive impairment.
The cognitive decline seems not to reflect neuronal loss, oc-
curring in fact only in few brain areas (Cabello et al. 2002;
Stranahan et al. 2012; Woodruff-Pak et al. 2010), but rather
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subtle structural changes in network connectivity at the level
of dendritic spines. An age-related progressive loss of dendrit-
ic spines was shown for the cerebral cortex and the hippocam-
pus of rodents, non-human primates, and humans (Dumitriu
et al. 2010; Feldman and Dowd 1975; Jacobs et al. 1997;
Luebke et al. 2010; von Bohlen und Halbach et al. 2006)
and is correlated to age-related cognitive impairment in
Rhesus monkeys (Dickstein et al. 2013) and impairment of
hippocampus-dependent spatial learning in aged rodents (von
Bohlen und Halbach et al. 2006; Zeng et al. 2012b).
Moreover, cognitively unimpaired aged rats show no alter-
ations in spine density (Zeng et al. 2012b) strengthening the
functional relevance of the age-dependent spine loss.
Moreover, some studies described alterations in the proportion
of spine types with a predominance of larger spines in older
animals (Xu et al. 2018) and an increase in their stability
(Mostany et al. 2013). This observation is relevant to the cog-
nitive impairment as smaller, thin spines have been shown to
be especially important for memory storage (Bourne and
Harris 2007).

Impairments in the BDNF/TrkB signaling are highly cor-
related with cognitive impairment and dendritic spine changes
during aging. Indeed, TrkB expression and activation have
been shown to be reduced in aged rodents and humans
(Buhusi et al. 2017; Croll et al. 1998; Gooney et al. 2004;
Webster et al. 2006). However, there is less consensus about
the effect of aging on BDNF levels. In humans, although
increasing age in health individuals has been associated with
reduced levels of serum BDNF and poorer memory perfor-
mance (Shimada et al. 2014; Siuda et al. 2017), no changes in
BDNF mRNA in the hippocampus and temporal cortex were
detected from postmortem brains (Webster et al. 2006). While
in mice, BDNF levels did not change in the hippocampus with
age (Buhusi et al. 2017), aged cognitively impaired rats
displayed a lower increase in training-induced BDNF
mRNA level than aged non-impaired rats in the CA1 region
of the hippocampus (Schaaf et al. 2001). Furthermore, BDNF-
induced LTP and its downstream signaling were significantly
impaired in aged rats (Gooney et al. 2004). Accordingly, aged
mutant mice carrying a deletion in one copy of the BDNF
gene performed significantly worse than controls
(Linnarsson et al. 1997). Cognitive unimpaired aged rats show
no alterations in spine density associated to normal levels of
TrkB expression, activation, and downstream signaling (Zeng
et al. 2012b), and lower levels of TrkB expression, activation,
and downstream signaling are associated with lower spine
density and impaired hippocampus-dependent learning in
aged rats (Zeng et al. 2012b). Intriguingly, the cognitive im-
pairment as well as the decrease in spine number could be
rescued by a treatment with the TrkB agonist 7,8-
sihydroxyflavone (7,8-DHF; Zeng et al. 2012b) strengthening
the link between BDNF/TrkB signaling and spine loss upon
aging. Moreover, proBDNF and P75NTR, exerting a negative

regulation on dendritic spine density and plasticity, are upreg-
ulated in aged mice (Buhusi et al. 2017; Costantini et al. 2005;
Perovic et al. 2013), and hippocampal proBDNF levels are
inversely correlated with spatial memory in aged mice
(Buhusi et al. 2017). In spite of the correlative evidence for
a role of the age-dependent alteration in BDNF/TrkB signal-
ing and dendritic spine loss, studies causally linking these two
events are still lacking, which would be a prerequisite for a
rational therapeutic intervention using BDNF or TrkB
agonists.

Autocrine versus local paracrine BDNF actions

BDNF is a sticky, positively charged protein whose biochem-
ical characteristics prevent its diffusion within the target re-
gion and indicate that BDNF is only acting locally at synapses
(few micrometers range; Horch and Katz 2002). Moreover,
defining the locus of BDNF functional secretion is made by
difficult its very low endogenous amounts. Taken together the
low endogenous amounts and the locally restricted actions of
BDNF complicate the distinction between autocrine and local
paracrine signaling. However, a few studies made use of chi-
mera neuronal cultures to address this issue in the context of
the activity of BDNF on neuronal architecture and dendritic
spines and provided strong evidence for a cell autonomous,
autocrine mode of action for BDNF in this context.
Particularly, a sparse deletion of BDNF in adult born granule
cells of the dentate gyrus resulted in shorter dendrites and
impaired spino- and synaptogenesis in a cell autonomous
manner (Wang et al., 2015). Accordingly, BDNF overexpres-
sion in pyramidal neurons of the visual cortex induced struc-
tural instability specifically of dendrites and spines in BDNF
expressing neurons (Horch et al. 1999). On the other hand, the
same authors also showed locally restricted increase in den-
drite density upon BDNF overexpression in neighboring, non-
transfected neurons, depending on BDNF release indicating a
local paracrine action of BDNF (Horch and Katz 2002). These
observations suggest the possibility of a self-amplifying auto-
crine BDNF signaling as shown at early stages of axonal de-
velopment (Cheng et al. 2011). Finally, recent studies con-
vincingly demonstrated a spine-autonomous, autocrine mode
of action for endogenous BDNF in regulating structural LTP
at a single spine level (Harward et al., 2016; Hedrick et al.
2016) as well as theta burst-induced LTP (Edelmann et al.,
2015; Brigadski and Lessmann 2020).

BDNF/TrkB and proBDNF/p75NTR: functional
antagonisms in regulating dendritic spine structure
and plasticity

BDNF is initially synthetized as a precursor proBDNF which
is cleaved to produce the mature protein exerting a series of
positive actions on neuronal structure and plasticity processes
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via its specific binding to TrkB. While p75NTR also binds the
mature BDNF, albeit at a lower affinity, it preferentially me-
diates the action of proBDNF (Lee et al. 2001). While the
BDNF/TrkB-induced modulation of dendritic spine structure
and plasticity is well described (see above; Minichiello 2009;
Zagrebelsky and Korte 2014), the role of proBDNF/p75NTR

signaling in this context remains less investigated. The appli-
cation of exogenous uncleavable proBDNF (CR-proBDNF)
in vitro suggests that it exerts opposite effects than mature
BDNF (Cowansage et al. 2010; Lu et al. 2005; Teng et al.
2010). While the treatment of mature hippocampal neurons
with BDNF increases their dendritic spine density, application
of CR-proBDNF significantly reduced it without affecting
neuronal survival (Koshimizu et al. 2009). These opposite
actions of proBDNF and BDNF on dendritic spines are
complemented by the observation that the actions of exoge-
nous BDNF on the pyramidal neurons of slice cultures depend
on the presence of serum in the medium. Indeed, while BDNF
exposure of slices kept in serum-free conditions increases the
proportion of stubby spines, in serum-containing media, the
same treatment induces an increase in the proportion of mush-
room and thin spines and a decrease of one of the stubby
spines (Chapleau et al. 2008). Intriguingly, slices maintained
in serum media showed a lower p75NTR-to-TrkB expression
level than serum-free slices (Chapleau et al. 2008) supporting
the idea of the opposing functional signaling by on the one
hand of proBDNF/p75NTR and on the other hand of
BDNF/TrkB ligand-receptor interaction. Accordingly, pyra-
midal neurons of the hippocampus of p75NTR knockout mice
have a significantly higher dendritic spine density associated
with a decrease in the proportion of stubby spines
(Zagrebelsky et al. 2005). However, whether proBDNF is
secreted by neurons in vivo under physiological conditions,
it is still under debate. While some studies showed that BDNF
and its pro-peptide are stored in presynaptic dense core vesi-
cles and are secreted together (Dieni et al. 2012) suggesting an
intracellular cleavage (Matsumoto et al. 2008), others showed
proBDNF release by neurons (Yang et al. 2009b) and its
activity-dependent extracellular cleavage (Nagappan et al.
2009; Pang et al. 2004). It is noteworthy that the physiological
relevance of the proBDNF/p75NTR signaling in neuronal plas-
ticity is supported by the observation that a low-frequency
stimulation results in the release of proBDNF (Nagappan
et al. 2009) leading to the p75NTR-dependent facilitation of
LTD (Woo et al. 2005). Moreover, proBDNF/p75NTR signal-
ing was shown to mediate the synaptic depression observed in
neighboring, non-coactive spines upon strengthening of syn-
aptic connections via spontaneous activity in the hippocampus
(Winnubst et al. 2015).

To further evaluate the role of the endogenous proBDNF
in vivo on dendritic spines in depth, a knockin mouse was
generated expressing one mutated, uncleavable probdnf-HA
allele (probdnf-HA/+; Yang et al. 2014b) resulting in the

specific secretion of proBDNF upon neuronal stimulation. In
probdnf-HA/+ mice, a significant decrease in dendritic spine
density was observed which was greater than the one shown
by heterozygous bdnf knockout mice indicating that
proBDNF exerts specific negative effects on dendritic spines
density (Yang et al. 2014b). Moreover, while in hippocampal
neurons the constitutive somatic synthesis of BDNF promotes
dendritic spine formation in a TrkB-dependent manner (An
et al. 2008; Orefice et al. 2013), neuronal activity promotes
the translation of dendritic bdnfmRNA and the secretion of its
translation product mostly as proBDNF (Orefice et al. 2016).
The proBDNF secreted under these conditions binds to
p75NTR resulting in increased dendritic spine pruning
(Orefice et al. 2016). While no data so far show a role of
proBDNF in modulating structural plasticity at spines in
probdnf-HA/+ mice, theta burst-induced LTP is impaired
and LTD is enhanced (Yang et al. 2014b) showing its ability
to modulate synaptic plasticity.

It was generally believed that after cleavage, the BDNF
pro-peptide is rapidly degraded. But it was shown that in the
hippocampus, the mature BDNF, and its pro-peptide are
stored together in dense core vesicles and are secreted in equi-
molar ratios at a ten times higher concentration than proBDNF
(Dieni et al. 2012). The secretion of the BDNF pro-peptide
from hippocampal neurons in vitro occurs in an activity-
dependent manner (Anastasia et al. 2013; Guo et al. 2016;
Mizui et al. 2015). A common single-nucleotide substitution
in the human bdnf gene results in a Val66Met substitution in
the BDNF pro-peptide sequence and has been shown to affect
activity-dependent BDNF secretion and to be associated with
a decrease in hippocampal volume, impairment of episodic
memory, and increase in depression and anxiety disorders
(Chen et al. 2006; Egan et al. 2003; Soliman et al. 2010;
Verhagen et al. 2010). Recently the Met66 variant of the
BDNF pro-peptide has been identified as a new, biologically
active ligand able to modulate neuronal morphology and plas-
ticity. Application of Met66 BDNF pro-peptide to hippocam-
pal neurons resulted in growth cone collapse in a p75NTR-
dependent manner via its interaction with the sortilin-related
Vps10p-domain sorting receptor 2 (SorCS2) known to facili-
tate the interaction of p75NTR with downstream signaling pro-
teins (Anastasia et al. 2013). Moreover, exposure of mature
hippocampal neurons to BDNF pro-peptide significantly re-
duces dendritic spine density via the activation of caspase-3
(Guo et al. 2016). And treatment with purified recombinant
BDNF pro-peptide significantly enhances LTD in a p75NTR-
dependent manner by promoting NMDS-triggered GluA2 en-
docytosis (Mizui et al. 2015). Interestingly, while the Val66
BDNF pro-peptide enhanced LTD, the Met66 variant mark-
edly reduced it (Mizui et al. 2015). Together with the obser-
vation that the Met66 BDNF pro-peptide variant alters its
structure, influencing the interaction with SorCS2 and its bi-
ological activity, the results so far suggest the interesting idea
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that the BDNF pro-peptide and its naturally occurring poly-
morphism are negative regulators of neuronal structure and
functional plasticity. A recent study provided exciting evi-
dence for a role in vivo of the Met66 BDNF pro-peptide var-
iant by showing that its administration to the ventral hippo-
campus triggers the disassembly of mushroom spines and the
loss of synapses in CA1 pyramidal neurons by mobilizing
different actin regulators through its interaction with the
SorCS2/p75NTR receptor complex, thereby disrupting cued
fear extinction (Giza et al. 2018).

TrkB signaling at dendritic spines in the absence of
neurotrophins

BDNF is considered to be the prototypical neurotrophin li-
gand for the TrkB receptor, inducing its dimerization and ac-
tivation by tyrosine phosphorylation. However, TrkB can
autophosphorylate and activate its downstream signaling
without BDNF in a process of transactivation depending on
the Src family of tyrosine kinases (Lee and Chao 2001;
Rajagopal and Chao 2006; Rajagopal et al. 2004).
Transactivation of TrkB is mediated by G protein-coupled
adenosine 2A or dopamine D1 receptors (Iwakura et al.
2008; Lee and Chao 2001; Wiese et al. 2007) and by an
EGF-EGF receptor-induced Src-dependent pathway
(Puehringer et al. 2013). In hippocampal neurons, the divalent
cation zinc transactivates TrkB in a BDNF-independent man-
ner and Src family in a kinase-dependent manner resulting in
the potentiation of the mossy fiber-CA3 synapses (Huang
et al. 2008). A recent study provided evidence for a role of
zinc-mediated TrkB transactivation in regulating both dendrit-
icmorphology and spine density inmature primary hippocam-
pal neurons (Zagrebelsky et al. 2018). Moreover, cocaine
treatment has been shown to increase dendritic spine density
in hippocampal neurons by promoting TrkB transactivation
via the Sigma-1 receptor (Ka et al. 2016). Transactivation of
TrkB results in biologically relevant consequences both in the
healthy brain, where it regulates neuronal migration, architec-
ture. and plasticity as well as under pathological conditions,
and it should be further explored as a signaling route utilized
for therapeutic approaches in neurodegenerative diseases as
well as depression.

Specific TrkB agonists

Inhibiting BDNF/TrkB signaling negatively influences den-
dritic spine number (Ji et al. 2010; Kellner et al. 2014; Tyler
and Pozzo-Miller 2001), changes spine morphology towards a
more immature phenotype (Kellner et al. 2014), inhibits long-
term potentiation (Korte et al. 1995; Korte et al. 1998), and
impairs learning and memory processes (Blank et al. 2016;
Heldt et al. 2007). Impaired BDNF/TrkB signaling is associ-
ated with several neurological disorders, including

neurodegenerative, neurodevelopmental, and neuropsychiat-
ric diseases (for review see Duman et al. 2019; Gupta et al.
2013; Li and Pozzo-Miller 2014; Zuccato and Cattaneo 2009),
characterized, among others, by dendritic spine alterations (for
review see Bloss et al. 2011; Qiao et al. 2016; Xu et al. 2014).
Thus, the possibility of applying BDNF as a therapeutic agent
has been tested in numerous disease models, and the results
show beneficial effects both in vitro and in vivo (de Pins et al.
2019; Jiao et al. 2016; Khalin et al. 2016; Zuccato and
Cattaneo 2009). However, due to the poor pharmacological
properties of BDNF, clinical trials could not reproduce in
patients the therapeutic efficacy of BDNF observed in animal
models (Lu et al. 2013). Among the possible approaches to
circumvent the poor drug-like properties of BDNF, of rele-
vance, is the development of highly selective TrkB agonists.

Small-molecule mimetics of BDNF reported to act specif-
ically on TrkB showed beneficial effects in rescuing the symp-
toms of different diseases in animal models; however, only
few studies investigated their ability to prevent or rescue den-
dritic spine pathology. Below we highlight these studies.

The most studied TrkB agonist is the 7,8-dihydroxyflavone
(7,8-DHF), a member of the flavonoids family shown to cross
the blood-brain barrier and to bind to TrkB with high affinity
(Jang et al. 2010). In vivo studies indicate that peripheral
administration of 7,8-DHF enhances emotional learning and
rescues memory impairment in several rodent models (Andero
et al. 2012; Choi et al. 2012; Liu et al. 2010). Specifically
regarding dendritic spines, in aged rats, administration of
7,8-dihydroxyflavone improved cognitive impairment in the
Morris water maze and rescued spine density in the hippocam-
pus (Zeng et al. 2012b). Moreover, treatment with 7,8-DHF
restored dendritic spine density in several brain regions asso-
ciated with fear memory, including the amygdala and prefron-
tal cortex, and improved the performance in a fear condition-
ing tasks to a level similar to the one of young animals (Zeng
et al. 2012a). In two different Alzheimer mouse models, den-
dritic spine loss could be prevented and spatial memory im-
proved by the administration of 7,8-DHF and of its prodrug
R13 (Chen et al. 2018; Gao et al. 2016). Moreover, R13 res-
cued dendritic spine density and promoted spine maturation in
neurons of the perirhinal cortex in a mouse model of the X-
linked cyclin-dependent kinase-like 5 deficiency disorders
(Ren et al. 2019). These structural improvements were accom-
panied by the rescue of LTP and visual recognition memory
(Ren et al. 2019). Finally, postnatal injection with 7,8-DHF in
a mouse model of Down syndrome rescued dendritic spine
number and levels of the presynaptic protein synaptophysin
(Stagni et al. 2017) and was able to ameliorate the
TrkB/p75NTR imbalance, seen in Huntington’s disease
(Garcia-Diaz Barriga et al. 2017). A second well-studied
TrkB agonist, LM22A-4 (Massa et al. 2010), is a small mol-
ecule identified in silico for its high affinity specific binding to
TrkB and has been shown to prevent spine loss in striatal
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MSNs and to improve motor deficits, in a mouse model of
Huntington’s disease (Simmons et al. 2013).

In summary, the TrkB agonists have shown their propen-
sity to rescue dendritic spine density in aging and in several
disease murine models, contributing to restoring some of the
typical symptoms. In contrast to methods trying to increase
BDNF levels, TrkB agonists have the advantage to avert pos-
sible pleiotropic effects due to binding of BDNF to the
p75NTR, avoiding to activate its negative modulation of spine
structure and plasticity. However, it has to be mentioned that
two independent studies were unable to detect activation of
TrkB signaling by these compounds in vitro (Boltaev et al.
2017; Todd et al. 2014) contradicting previous reports that
propose small molecules as specific TrkB agonists and sug-
gesting that further research is required to identify and screen
molecules. Interestingly, new TrkB agonist monoclonal anti-
bodies have been identified that induce receptor activation in a
manner consistent with the activation profile of BDNF
(Merkouris et al. 2018; Todd et al. 2014) opening new inter-
esting windows of opportunities which should be further
developed.
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