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a b s t r a c t 

Locoregional failure remains a therapeutic challenge in oropharyngeal squamous cell carcinoma (OPSCC). We 

aimed to devise novel objective imaging biomarkers for prediction of locoregional progression in HPV-associated 

OPSCC. Following manual lesion delineation, 1037 PET and 1037 CT radiomic features were extracted from 

each primary tumor and metastatic cervical lymph node on baseline PET/CT scans. Applying random forest 

machine-learning algorithms, we generated radiomic models for censoring-aware locoregional progression prog- 

nostication (evaluated by Harrell’s C-index) and risk stratification (evaluated in Kaplan-Meier analysis). A total 

of 190 patients were included; an optimized model yielded a median (interquartile range) C-index of 0.76 (0.66- 

0.81; p = 0.01) in prognostication of locoregional progression, using combined PET/CT radiomic features from 

primary tumors. Radiomics-based risk stratification reliably identified patients at risk for locoregional progres- 

sion within 2-, 3-, 4-, and 5-year follow-up intervals, with log-rank p-values of p = 0.003, p = 0.001, p = 0.02, 

p = 0.006 in Kaplan-Meier analysis, respectively. Our results suggest PET/CT radiomic biomarkers can predict 

post-radiotherapy locoregional progression in HPV-associated OPSCC. Pending validation in large, independent 

cohorts, such objective biomarkers may improve patient selection for treatment de-intensification trials in this 

prognostically favorable OPSCC entity, and eventually facilitate personalized therapy. 
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Head and neck squamous cell carcinoma (HNSCC) is among the most

orbid cancers [1] . Sustained high-risk human papillomavirus (HPV)-
Abbreviations: AJCC, American Joint Committee on Cancer; AUC, area under the 

umor volume; Gy, Gray; HNSCC, head and neck squamous cell carcinoma; HPV, hu

PSCC, oropharyngeal squamous cell carcinoma; PET, [18F]fluorodeoxyglucose po

urvival forest; TCIA, The Cancer Imaging Archive; VOI, volume of interest. 
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nfection in the oropharynx is the cause of a large and increasing propor-

ion of oropharyngeal squamous cell carcinomas (OPSCC) [2] , charac-

erized by distinct demographic, biologic and – most notably – prognos-

ic attributes compared to HPV-negative OPSCC [3] . Consequently, the
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merican Joint Committee on Cancer (AJCC) adopted separate staging

chemes for HPV-associated and HPV-negative OPSCC in the 8th edition

taging manual [ 4 , 5 ]. 

Improved responsiveness to treatment and more indolent natural his-

ory of HPV-associated OPSCC may potentially render this prognosti-

ally favorable subtype amenable to treatment de-intensification with

educed treatment-related toxicity [ 6 , 7 ]. Nevertheless, treatment fail-

re with locoregional disease progression (LRP) is a negative prognos-

ic factor in HPV-associated OPSCC, often entailing salvage resection

r irradiation which are commonly associated with increased morbidity

nd impaired functionality, and ultimately resulting in reduced over-

ll survival [8–10] . Thus, there is a pressing need for novel biomarkers

o identify patients amenable for safe treatment de-escalation and ulti-

ately personalized clinical decision-making. 

The notion that quantitative characterization of increasingly larger

ets of biomedical data may pave the way for precision diagnosis, prog-

ostication and treatment decision-making has shaped the “-omics ” con-

ept – e.g. genomics, metabolomics, proteomics. Radiomics analysis has

xpanded the scope of “-omics ” to quantitative characterization of med-

cal images by extracting high-dimensional sets of “features ” from vol-

mes of interest (VOI) such as primary tumor lesions, which capture le-

ion shape, image intensity and texture patterns. The resulting imaging

iomarkers may be correlated with treatment outcome, tumor microen-

ironment, tissue heterogeneity and pathophysiology; and may enable

evelopment of prognostic tools substituting or supplementing tradi-

ional outcome predictors such as cancer staging [11–15] . Depending

n the imaging modality used, radiomic features can represent a vari-

ty of tumor characteristics; [ 18 F]fluorodeoxyglucose positron emission

omography (PET) radiomics may provide wholistic quantification of tu-

or metabolic activity and activity distribution; whereas computed to-

ography (CT) radiomics can describe structural properties and tissue

ensity. In many centers, PET/CT imaging is an integral part of cancer

taging and work-up. 

Prior studies have demonstrated the predictive value of radiomic

iomarkers for LRP in HNSCC, but HPV status was rarely available in

ll studied OPSCC patients, and subgroup analysis of HPV-associated

PSCC was not reported [16–19] . Radiomics analysis can predict HPV

tatus, and thus the results of prior studies may in part reflect the differ-

nces between HPV-associated and HPV-negative subgroups [ 20 , 21 ]. In

his study, we aim to apply machine-learning algorithms using combined

ET and non-contrast CT radiomic features extracted from baseline clin-

cal scans for prediction and risk stratification of post-radiotherapy LRP

n an HPV-associated OPSCC cohort. We acquired a multi-institutional

ohort, and devised prognostic biomarkers using radiomic features from

he primary tumor as well as metastatic cervical lymph nodes in addition

o clinical variables. 

aterial and methods 

maging and clinical data 

Imaging data and corresponding clinical information were retro-

pectively acquired from (1) Yale’s Smilow Hospital cancer registry

rom 2009 to 2019; and (2) public collections in The Cancer Imaging

rchive (TCIA) [22] : (2a) the “Head-Neck-PET-CT ” collection provides

ata from four institutions in Canada ( “Canadian ” cohort) [23] ; and

2b) the “Data from Head and Neck Cancer CT Atlas ” collection holds

n MD Anderson Cancer Center dataset ( “MD Anderson ” cohort) [24] .

ur institutional review board approved this study under IRB proto-

ol #2,000,024,295 and waived informed consent; TCIA provides de-

dentified data with consents obtained and ethical compliance ensured

y source institutions. 

We included cases of histopathologically confirmed OPSCC with

1) confirmed HPV-association, (2) pre-treatment PET and non-contrast

T scans of the neck, (3) LRP events or ≥ 18 months of adequate

ollow-up documentation, and (4) patients who received radiotherapy
s part of definitive or adjuvant treatment after surgery, with or with-

ut concurrent platinum-based chemotherapy or targeted therapy with

etuximab. 

We excluded (1) HPV-negative subjects, (2) patients receiving pallia-

ion only and/or denying treatment, (3) patients with recurrent OPSCC,

4) with M1 disease at initial staging, (5) with > 50% of the primary

ross tumor volume affected by artifacts on visual evaluation of CT

cans [25] , and (6) with < 60 Gray (Gy) in the adjuvant, and < 66 Gy

n the definitive radiotherapy setting delivered to the gross tumor

olume [26] . 

Post-treatment cancer surveillance at our institution included regu-

ar physical examinations, endoscopy and imaging, with additional tis-

ue sampling performed at specialists’ discretion. Locoregional disease

rogression was ascertained by tissue sampling or unequivocal imag-

ng evidence; the latter was confirmed in retrospective data review by

ocumented response to therapy or additional histopathological exam-

nation. Study endpoints in TCIA cohorts were based on annotations

rovided in the datasets. 

esion segmentation and staging 

The segmentation, radiomic feature extraction and disease progres-

ion modelling pipeline employed in our study is illustrated in Fig. 1 .

eparate PET and CT VOI corresponding to the primary tumor lesion

nd each individual metastatic cervical lymph node were generated as

 first step in our radiomics pipeline. Regional metastatic spread was

etermined based on tissue sampling or unequivocal PET scan findings.

e utilized 3D-Slicer version 4.10.1 [27] for image review and segmen-

ation. 

The co-registered pre-treatment PET/CT scans were retrieved and re-

iewed in 3D-Slicer, and the gross tumor volume (GTV) as defined by

he “ICRU 83 ” report [28] was assessed. Using the “Paint ” and “Erase ”

ools in the 3D-Slicer “Segment Editor ” module, hypermetabolic areas of

he primary tumor and every metastatic lymph node were manually de-

ineated (i.e. slice-by-slice segmentation on axial PET reconstructions).

ET segmentations were then copied onto the co-registered CT and man-

ally adjusted to the GTV outline on CT using the “Paint ” and “Erase ”

ools to generate the CT VOI, excluding air, adjacent uninvolved bone,

nd preserved fat planes. Axial CT slices with streak artifacts involv-

ng the lesion upon visual assessment were excluded from analysis; and

etastatic lymph nodes with > 50% of the GTV involved were entirely

xcluded [25] . 

A trained research associate (SPH) initially segmented all lesions; fol-

owed by VOI verification and adaption by a neuroradiologist (SP) with

reater than 8 years of experience in head and neck cancer imaging. SP

nd AM (neuroradiologist with greater than 12 years of experience) per-

ormed OPSCC staging in accordance with the AJCC 8th edition staging

anual [5] . 

re-processing, feature extraction and stability-based feature pre-selection 

PET/CT imaging and image reconstruction were performed at the

can source institutions utilizing standard clinical protocols. PET and CT

re-processing was applied before radiomic feature extraction to homog-

nize the imaging data: PET grey scale normalization, PET and CT voxel

ize interpolation to isotropic dimensions, CT re-segmentation, genera-

ion of ten image derivates per original PET or CT enhancing certain im-

ge characteristics, and grey scale discretization were consecutively per-

ormed – a detailed description of our automated pre-processing pipeline

s included in the supplementary methods [20] . 

A set of 1037 PET and 1037 CT radiomic features was subse-

uently extracted from each primary tumor and metastatic node VOI;

omprised of volumetric shape features ( n = 14 features) extracted

rom only the original image ( n = 1 image); and first-order ( n = 18

eatures) and texture-matrix features ( n = 75 features) extracted from
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Fig. 1. Radiomics pipeline: (a) VOI delineation – af- 

ter reviewing the co-registered scans, all lesions were 

manually delineated on PET axial images, and seg- 

mentations were transferred and adapted to the cor- 

responding CT; (b) image pre-processing – details 

are included in the supplementary methods; (c) ra- 

diomics features extraction – 1037 PET and 1037 

CT features corresponding to three categories (first- 

order, volumetric shape, texture) were extracted 

from each lesion, a comprehensive feature list is in- 

cluded in the supplement; (d) LRP analysis – prognos- 

tication and risk stratification was based on random 

forest machine-learning models with 1000 decision 

trees internally validated in 20-repeat 5-fold cross- 

validation, wherein models were iteratively trained 

on 4 folds, and evaluated in the 5th fold. 
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oth the originals ( n = 1 image) and image derivates ( n = 10 im-

ges) generated in pre-processing. This approach yielded a total of

14 ×1 + 18 ×11 + 75 ×11 = ) 1037 PET and 1037 CT features per lesion.

 complete list of radiomic features utilized in this study is included in

upplementary Table 1. A Pyradiomics version 2.1.2 pipeline was cus-

omized and applied for radiomics analysis [ 20 , 29 ]. 

We investigated radiomic feature stability in an inter-rater and intra-

ater setting to pre-select features prior to disease progression mod-

lling, given the volatile robustness of individual features to delineation

ariability reported in previous studies [30–32] . Unstable features were

xcluded; the methodology and results are reported in the supplemen-

ary methods and supplementary Table 2, respectively [20] . 
isease progression modelling and prognostication 

We defined locoregional progression (LRP) as the event of interest,

ith time-to-LRP defined as the time interval from OPSCC initial diag-

osis to progression. Right-censoring was applied for loss to follow-up,

eath, or diagnosis of distant metastases. Subsequently, patients without

n LRP event and < 18 months of follow-up from diagnosis to censoring

ere excluded. 

We devised and compared three types of LRP models [15] : (1) “Ra-

iomics ” models used radiomic signatures, (2) the “clinical ” model in-

orporated AJCC staging (T-, N- and overall-stage), patient age at ini-

ial diagnosis, and the treatment modality, and (3) “combined ” mod-
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ls utilized the combined set of radiomics and above-mentioned clin-

cal predictors for LRP prognostication. AJCC T-, N- and overall-stage

ere included as ordinal variables with four (T1-T4), four (N0-N3) and

hree (overall stages I-III) levels, respectively. No overall-stage IV can-

ers were present, since subjects with distant metastases were excluded.

adiomic features, feature clusters and patient age were numeric vari-

bles, and the treatment modality was included as a categorical variable.

An array of different approaches was implemented and compared to

enerate and select features for prognostically optimized radiomic sig-

atures in combined and radiomic models: (1) Radiomic features from

hree imaging modalities (PET, CT, PET and CT) were used for LRP

odelling; (2) we derived radiomic features from two VOI sources: the

rimary tumor and a “virtual ” VOI combining the primary tumor and

ll metastatic nodes in a given subject as described by Yu et al. [21] ;

nd (3) the prognostic ability of unreduced feature sets was compared

o three dimensionality reduction techniques (abbreviations in Fig. 2 ,

etails in the supplementary methods). We applied and compared all

ethodological approaches (3 imaging modalities x 2 VOI sources x 4

imensionality reduction techniques) for LRP modelling. 

The generic model types ( “radiomics ”, “clinical ”, “combined ”) intro-

uced above were implemented applying random survival forest (RSF)

33] machine-learning algorithms for prognostication, which were con-

gured to grow 1000 decision trees using a C-index split rule [34] with

he remaining parameters in default. Statistical analysis was performed

n R version 3.6.0 [35] using extension packages, R base functions and

ustom-written code. We used the “ranger ” package (version 0.12.1)

33] for RSF modelling. 

To limit overfitting and enhance generalizability, all models were

nternally validated in a framework applying 20 repeats of stratified 5-

old cross-validation (i.e. 100 permutations) using the event/non-event

roups and follow-up duration as strata. Consensus VOI generation (if

pplicable), radiomic feature standardization, dimensionality reduction

if applicable), and RSF fitting were consecutively performed on the

raining folds, and RSF performance was quantified in the validation

old of each cross-validation iteration. This approach avoids “informa-

ion leakage ” from training to validation data and generates realistic

stimates of RSF performance in new datasets. 

We quantified models’ prognostic abilities in each validation fold

ith a right-censoring adjusted concordance index (Harrell’s C-index

34] ), and the median score was calculated across 20 cross-validation

terations to represent models’ overall performance. 

We further investigated the performance of three select models: the

linical model, and the best – in terms of C-index score – radiomic and

ombined model, respectively. Models’ validation fold C-index distri-

ution across 20-repeat 5-fold cross validation was compared against

andom predictions (i.e. C-index calculated with the same model pre-

ictions but randomly resampled validation fold LRP outcome) using

 corrected paired t -test ( “corrected repeated k-fold cv test ” [36] ). P-

alues < 0.05 ascertained significance. 

We generated time-dependent performance curves to track and com-

are model performance throughout follow-up by calculating Uno’s es-

imator of cumulative/dynamic area under the curve (AUC) for right-

ensored survival data [37] in each validation fold ( “survAUC ” package

38] for R), and averaging AUC scores across 20 ×5-fold cross valida-

ion. The resulting performance curves were plotted for the first five

ears of follow-up. 

isk stratification and Kaplan-Meier analysis 

The potential role of radiomics for LRP risk stratification was inves-

igated by generating radiomics risk groups (high-risk vs. low-risk) in

inary classification analysis [15] . We subsequently conducted Kaplan-

eier analysis with radiomics risk groups. For comparison, AJCC-

taging (T-, N- overall-stage), patient age (age ≥ cohort median vs. < co-

ort median), and treatment modality variables served as Kaplan-Meier
isk groups. A log-rank test generated p-values with p < 0.05 considered

ignificant. 

To generate radiomics risk groups, our framework applying 20-

epeat stratified 5-fold cross-validation was adapted for binary classifi-

ation, using event/non-event groups as strata, and a random classifica-

ion forest (RCF) algorithm ( “ranger ” package version 0.12.1) [33] con-

gured to grow 1000 decision trees for risk score computation (i.e. prob-

bility of experiencing an event). RCF case weights in a given outcome

lass (event or non-event) were specified to be inversely proportional to

he class distribution in the training data to account for imbalance, with

he remaining RCF parameters in default. 

Patients’ RCF risk scores were averaged across validation folds,

nd a risk cutoff was calculated by maximizing Youden’s statistic in

eceiver operating characteristic-analysis. Patients with averaged risk

cores greater than the cutoff were allocated to the radiomics high-risk

roup. RCF models were trained on the radiomics-only dataset of the ra-

iomic LRP model selected for further evaluation (previous subsection)

ithout feature selection applied. 

Patients were labelled for Kaplan-Meier analysis using 2-, 3-, 4- and

-year follow-up cutoffs; subjects diagnosed with LRP before a given

utoff were labelled positive, subjects lost to follow-up before a cutoff

ere excluded, and the remainder was labelled negative and censored

t the cutoff. Separate RCF models were generated for each cutoff, and

he resulting radiomics risk groups and were investigated in separate

aplan-Meier plots. Equivalently, Kaplan-Meier analysis with clinical

ariables was conducted separately for each follow-up cutoff. This strat-

gy avoids censoring before a cutoff (i.e. “dense ” survival data) and thus

nables RCF performance maximization, while allowing both exploring

he majority of the documented follow-up period as well as comparing

adiomics risk stratification with clinical variables in an easily inter-

retable fashion. 

esults 

ohort characteristics 

A total of 190 patients with HPV-associated OPSCC met inclusion

riteria; thereof, 15 ( ∼8%) had LRP events at a median (interquartile

ange, IQR) of 14.5 (11.0–21.6) months after initial diagnosis. Patients

ere followed-up for a median (IQR) of 40.7 (30.7–53.5) months after

nitial diagnosis. Table 1 summarizes demographics, treatment, imaging

nd staging characteristics of our study cohort. 

In addition to 190 OPSCC primary tumors, 266 metastatic lymph

odes were segmented. Thereof, 422 (19.2%) out of 2193 primary tumor

esion axial slices, and 155 (5.6%) out of 2778 lymph node lesion axial

lices were affected by streak artifact on CT, and were excluded (details

n supplementary Table 3). 

rognostication of locoregional disease progression 

The best radiomics LRP model in our study yielded a median (IQR) C-

ndex of 0.76 (0.66-0.81; p = 0.01) using the full set of PET/CT primary

umor radiomic features ( Fig. 2 ). The model using clinical variables

id not exhibit prognostic value in cross validation, yielding a C-index

IQR) of 0.49 (0.39-0.58; p = 0.46), and combined models achieved me-

ian scores similar to those of corresponding radiomic models ( Fig. 2 ).

ombined PET/CT radiomic models achieved higher prognostic perfor-

ance than single imaging modality models in the majority of permuta-

ions. Models combining radiomic features from primary tumors and

etastatic cervical lymph nodes ( “virtual ” consensus VOI) improved

ET-based LRP prognostication, with the best combined model yielding

 median C-index (IQR) of 0.65 (0.52–0.76) using random forest-based

eature selection ( “pRF ”); whereas the corresponding PET primary tu-

or model yielded a median C-index of 0.64 (0.50–0.71). 

Select models subjected to further evaluation are highlighted

n Fig. 2 . Performance curve plotting ( Fig. 3 ) again revealed similar
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Table 1 

Cohort characteristics. 

Number of OPSCC patients – n 190 

Included metastatic lymph nodes – n 266 

LRP events – n (%) 15 (7.9%) 

Follow-up [months] – median (IQR) 40.7 (30.7–53.5) 

Time-to-event [months] – median (IQR) 14.5 (11.0–21.6) 

Data source – n (%) 

Yale 112 (58.9%) 

TCIA 78 (41.1%) 

Sex – n (%) 

male 154 (81.1%) 

female 36 (18.9%) 

Age [years] – mean (SD) 59.83 (8.51) 

HPV status – n (%) 

positive 190 (100%) 

Smoking – n (%) 

never-smoker 48 (25.3%) 

smoker 77 (40.5%) 

pack-years – median (IQR) 15 (7.75–30) 

pack-years unknown – n 15 

unknown 65 (34.2%) 

T stage a – n (%) 

T1 26 (13.7%) 

T2 77 (40.5%) 

T3 64 (33.7%) 

T4 23 (12.1%) 

N stage a – n (%) 

N0 35 (18.4%) 

N1 108 (56.8%) 

N2 43 (22.6%) 

N3 4 (2.1%) 

Overall stage a – n (%) 

I 85 (44.7%) 

II 78 (41.1%) 

III 27 (14.2%) 

Included lymph nodes / patient – range 0 – 6 

Primary treatment – n (%) 

CCRT or CBRT 135 (71.1%) 

Surgery with adjuvant RT, CCRT or CBRT 34 (17.9%) 

RT alone 21 (11.1%) 

PET b – mean (SD) 

slice thickness [mm] 3.44 (0.40) 

in-plane pixel spacing [mm] 4.28 (0.90) 

in-plane image matrix [n x n] 148.25 (60.17) x idem 

CT b – mean (SD) 

slice thickness [mm] 3.06 (0.60) 

in-plane pixel spacing [mm] 1.12 (0.18) 

in-plane image matrix [n x n] 512 × 512 

a AJCC 8th edition staging manual T/N/overall stage [5] . 
b Values from image originals before preprocessing. 

CBRT = concurrent bioradiotherapy with cetuximab; CCRT = con- 

current platinum-based chemoradiotherapy; RT = radiotherapy alone; 

SD = standard deviation. 

Fig. 2. Heatmap summary of LRP model performance quantified by the median 

(IQR) validation fold Harrell´s C-index across 20-repeat 5-fold cross-validation. 

The radiomics and combined models selected for further evaluation are high- 

lighted (blue frame). All methodological combinations to generate radiomics 

signatures for radiomics and combined models were applied (3 imaging modali- 

ties x 2 VOI sources x 4 dimensionality reduction techniques (HClust, none, pRF, 

RIDGE)). 

Clinical = clinical model; Combined = combined model; HClust = hierarchical 

clustering; none = no dimensionality reduction applied; pRF = Pearson 

correlation-based redundancy reduction with random survival forest variable 

importance; Radiomics = radiomics model; RIDGE = Cox regression with RIDGE 

regularization adapted for feature selection. 
Fig. 3. Time-dependent performance curves depict selected models’ 

(highlighted in Fig. 2 ) prognostic performance throughout 5-years of 

follow-up. The corresponding clinical model is presented for compar- 

ison. 
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Fig. 4. Kaplan-Meier plots and log-rank test p-values depicting risk stratification based on radiomics analysis and clinical variables. 
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uperiority of the radiomic model and the combined model over the

linical model. Notably, while radiomic modelling exhibited high prog-

ostic performance in follow-up years 1 through 4, model performance

as moderate in the fifth year. 

isk stratification of locoregional disease progression 

In Kaplan-Meier analysis, radiomics high-risk groups exhibited sig-

ificantly higher rates of LRP than corresponding low-risk groups

n analysis of all follow-up cutoffs, achieving log-rank p-values of

 = 0.003, p = 0.001, p = 0.02, p = 0.006 for the 2-, 3-, 4-, and 5-year
ollow-up intervals, respectively ( Fig. 4 ). Risk groups derived from clin-

cal variables (AJCC staging, age, treatment) did not differ significantly

 p > 0.05, Fig. 4 ). 

iscussion 

Improved responsiveness to treatment and more indolent natural

istory of HPV-associated OPSCC – as compared to HPV-negative can-

ers – may render this prognostically favorable subtype amenable to

e-intensified therapy with reduced treatment-related toxicity and mor-

idity [ 6 , 7 ]. Accurate prognostication and risk stratification are, how-
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ver, the first steps in personalized treatment decision-making. Using a

ulti-institutional cohort, we investigated the prognostic value of base-

ine PET/CT radiomics in prediction of LRP. Applying machine-learning

nalysis, we devised prognostic models utilizing PET/CT features from

rimary tumor lesions (with and without metastatic cervical nodes).

ending validation in larger cohorts, these novel objective biomarkers

an provide decision assistance tools for precision treatment planning

n patients with HPV-associated OPSCC. 

LRP represents treatment failure of definite therapy in curative in-

ent, with few remaining satisfactory options: Salvage surgery and irra-

iation are commonly associated with increased morbidity and impaired

unctionality; and while new immune checkpoint inhibitors alone or in

ddition to conventional systemic treatment improved outcome in pa-

ients not amenable to localized therapy, long-term control of relapsed

NSCC often remains fairly poor [39–41] . Locoregional relapse is also

trongly tied to poor overall survival in HPV-associated OPSCC [ 8 , 10 ],

ubstantiating the importance of this endpoint for therapeutic decision

aking in OPSCC. 

While pre-treatment PET/CT imaging is a mainstay of disease work-

p and cancer staging, human visual interpretation cannot seize the

ull prognostic utility encoded in metabolic and structural bioimag-

ng patterns [11–14] . By capturing such bioimaging features, radiomic

iomarkers may help identify patients who are at increased risk for LRP,

nd may potentially improve patient selection in future trials of treat-

ent de-intensification for HPV-associated OPSCC, and guide personal-

zed clinical treatment planning. 

In this study, we showed the merits of radiomic features quantifying

umor intensity, volumetric shape and texture for LRP prognostication

nd risk stratification. Employing a pre-processing pipeline designed to

itigate heterogeneity in imaging data, a multiple-delineation feature

re-selection approach retaining only stable radiomic features, and a

igorous cross-validation scheme avoiding data leakage from training

o test sets, our results depict the prognostic potentials of machine-

earning-generated radiomic biomarkers for LRP in a realistic fashion. A

odel utilizing the full set of combined PET/CT primary tumor radiomic

eatures was reliably prognostic of LRP in cross validation, yielding a

edian (IQR) C-index of 0.76 (0.66-0.81; p = 0.01); whereas a clinical

odel combining AJCC overall-, T- and N-stage as well as treatment

odality and patient age did not exhibit prognostic abilities. This re-

ult may be linked to the low event rate of ∼8% and the relatively

mall cohort size. Models combining clinical variables and radiomic

ignatures performed similarly to the corresponding radiomic models.

dditionally, radiomics-based risk-stratification biomarkers identified

atients at increased risk of LRP in different follow-up cutoffs (2-, 3-,

- and 5-year follow-up with p < 0.05); whereas clinical variables could

ot significantly stratify LRP risk ( p > 0.05). These findings suggest ra-

iomics analysis may be a more powerful means for LRP risk strat-

fication and prognostication than the tested set of potential clinical

redictors. 

Notably, models integrating PET and CT radiomics outperformed sin-

le modality models in most permutations in both primary tumor and

ombined tumor/lymph node analysis, suggesting complementary prog-

ostic value of “metabolic ” and “structural ” features derived from PET

nd CT imaging, respectively. Additionally, consensus VOI combining

ET radiomics information from primary tumors and metastatic cervi-

al lymph nodes yielded performance improvements over most corre-

ponding PET primary tumor models. This finding may suggest added

rognostic value from PET lymph node features. 

Performance curves ( Fig. 3 ) are a valuable tool to investigate model

rognostic accuracy throughout a relevant follow-up period, providing

 more granular understanding of model performance than summary

easures such as Harrell´s C index. We plotted performance curves for

elect radiomic and combined models as well as the clinical model,

gain revealing superiority of radiomics-based prognostication. While

adiomic models achieved high prognostic performance in follow-up

ears 1 through 4, model performance was moderate in the fifth year,
hich could be related to data sparsity in model training secondary to

ight censoring. 

Accurate contouring of head-and-neck cancer lesions on CT is chal-

enging – especially on pre-contrast images. In this study, we applied

anual PET-guided segmentation, allowing full utilization of both ac-

urate PET-guided lesion contouring and standardized CT tissue densi-

ies devoid of contrast-induced variability. Notably, analysis of contrast-

nhanced CT scans may be limited due to variabilities in contrast ac-

umulation, affecting radiomic feature extraction and reproducibility

14] . Additionally, combined PET and non-contrast CT radiomics anal-

sis extracts both “metabolic ” and “structural ” tissue density features,

llowing comprehensive assessment of primary tumor and metastatic

odes. 

Methodologically, our modelling approach relied on random for-

st machine-learning algorithms: we applied RSF algorithms designed

o handle right-censored survival data as well as “classical ” RCF mod-

ls for binary classification [33] . Machine-learning has proven effec-

ive in handling the high variable dimensionality commonly associ-

ted with radiomics analysis, with random forest models in particu-

ar often outperforming other approaches due to superior robustness

 11 , 14 , 19 ]. 

We acquired a multi-national and multi-institutional cohort incorpo-

ating data from our institution and several additional centers in Canada

nd in the United States to increase the cohort size. Additionally, us-

ng multi-center data may help augment model robustness to variations

mong imaging protocols, scanner hardware and image reconstruction

nd ultimately lead to more generalizable models and model perfor-

ance estimates. 

LRP in HPV-associated OPSCC treated with radiotherapy is rare – in

ur cohort of 190 subjects, ∼8% experienced events – making alloca-

ion of independent validation sets in our study challenging. Thus, we

pplied a rigorous cross validation framework, with particular attention

iven to avoiding data leakage from training to validation folds; i.e. con-

ensus VOI generation, feature standardization, dimensionality reduc-

ion, and RSF fitting were performed on the training folds, and model

erformance was quantified in the corresponding validation folds. This

pproach is expected to yield realistic quantification of model perfor-

ance in new datasets. Nevertheless, future prospective studies with

arger study cohorts and higher absolute event counts are required to

onfirm the prognostic value of quantitative imaging models for LRP

rediction. Additionally, our models require independent validation in

xternal cohorts before translation to clinical application may be con-

idered. 

Our cohort of 190 patients with HPV-associated OPSCC was ac-

uired from Yale’s Smilow Hospital (2009 to 2019) and two public

ollections in The Cancer Imaging Archive. PET/CT acquisition and

mage reconstruction protocols varied over the years and between

ifferent cancer centers. This limitation was addressed by adopting

 comprehensive image pre-processing pipeline designed to reduce

eterogeneity, denoise our dataset, and homogenize PET/CT scans.

onetheless, standardization of both PET and CT image acquisition

cross centers and scanner manufacturers may harbor potential for im-

roved radiomics capabilities in OPSCC outcome prognostication and

hould be pursued as a long-term goal in the field of quantitative

maging. 

Manual lesion segmentation is inherently prone to inter- and intra-

ater variability as well as limited reproducibility. Despite our efforts to

re-select a subset of robust radiomics features in multiple delineation

nalysis, fully or partially automating the lesion delineation process may

elp reduce the aforementioned limitations and ultimately contribute to

mproved LRP prognostic performance. 

Future studies should also incorporate further established LRP pre-

ictors into clinical and combined models – e.g. smoking status was

navailable in a considerable portion of our dataset. Finally, metastatic

nvolvement of cervical lymph nodes was determined by expert radiolo-

ist assessment, but without histopathological examination of all nodes.
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onclusion 

Radiomics analysis decoding metabolic and structural bioimag-

ng patterns of the primary tumor lesion and metastatic nodes in

re-treatment PET/CT scans can provide novel quantitative imaging

iomarkers for risk stratification and prediction of post-radiotherapy

RP in HPV-associated OPSCC. Pending independent validation in large

xternal cohorts, such biomarkers may supplement patient selection

or trials of treatment de-intensification for prognostically favorable

PV-associated OPSCC, and ultimately guide personalized treatment

ecision-making. 
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