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Abstract

Epicardial derivatives, including vascular smooth muscle cells and cardiac fibroblasts, are crucial 

for proper development of the coronary vasculature and cardiac fibrous matrix, both of which 

support myocardial integrity and function in the normal heart. Epicardial formation, epithelial-to-

mesenchymal transition (EMT), and epicardium-derived cell (EPDC) differentiation are precisely 

regulated by complex interactions among signaling molecules and transcription factors. Here we 

review the roles of critical transcription factors that are required for specific aspects of epicardial 

development, EMT, and EPDC lineage specification in development and disease. Epicardial cells 

and subepicardial EPDCs express transcription factors including Wt1, Tcf21, Tbx18, and Nfatc1. 

As EPDCs invade the myocardium, epicardial progenitor transcription factors such as Wt1 are 

downregulated. EPDC differentiation into SMC and fibroblast lineages is precisely regulated by a 

complex network of transcription factors, including Tcf21 and Tbx18. These and other 

transcription factors also regulate epicardial EMT, EPDC invasion, and lineage maturation. In 

addition, there is increasing evidence that epicardial transcription factors are reactivated with adult 

cardiac ischemic injury. Determining the function of reactivated epicardial cells in myocardial 

infarction and fibrosis may improve our understanding of the pathogenesis of heart disease.
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1. Epicardium-Derived Cells (EPDCs) in Heart Development and Disease

In the developing heart, cells that form the coronary vessels and the cardiac fibrous matrix 

are derived from the epicardium and are required for cardiac function [1,2]. Specifically, 

epicardium-derived cells (EPDCs), generated from the epicardial cell layer by an epithelial-

to-mesenchymal transition (EMT), include progenitors of coronary vascular smooth muscle 

cells (SMCs) and cardiac fibroblasts. Additional Cre-based lineage analysis and cell fate 
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mapping studies provide evidence that EPDCs contribute to vascular endothelial cell and 

cardiomyocyte lineages [3–7]. Several transcription factors including Wt1, Tcf21, Tbx18, 

and Nfatc1 have been implicated in epicardial EMT and EPDC lineage development [8–13]. 

Congenital abnormalities in EPDC lineages can lead to coronary artery anomalies that occur 

in 1.3% of the population often resulting in life-threatening arrhythmia, myocardial 

infarction (MI), or even sudden death [14]. Likewise, epicardium-derived coronary vascular 

SMCs and cardiac fibroblasts may be reactivated in adult heart disease and cardiac fibrosis 

[4,15]. Following MI, the epicardium is activated, with new EPDC formation and epicardial 

transcription factor reactivation suggesting a potential role in adult cardiac injury response, 

fibrosis, and pathology [16–18]. Thus, there is increasing evidence for recapitulation of 

epicardial transcriptional developmental regulatory mechanisms in adult cardiovascular 

disease.

2. Overview of Epicardial Formation and Cell Lineage Diversification

In the vertebrate embryo, the proepicardium (PE) is derived from the splanchnic mesoderm 

and forms as a cluster of mesothelial cells located between the liver and cardiac sinus 

venosus [19]. Although transient, the PE is significant in that it contributes multiple cell 

lineages required for heart function, including fibroblasts and coronary smooth muscle (SM) 

[6,20]. As the primitive heart loops to form the four-chambered heart, the cells of the PE, 

located at the venous pole of the heart, proliferate and migrate over the myocardium to form 

the epithelial epicardium [21]. A subset of epicardial cells undergoes EMT and invades the 

subepicardial space and then the myocardium [20]. Epicardial EMT is evident by embryonic 

day 11.5 (E11.5) in mice and E3 in chick [22,23]. Following invasion into the myocardium, 

the majority of progenitor EPDCs differentiates into vascular SMCs, adventitial fibroblasts 

that support the coronary vasculature, or interstitial fibroblasts that generate the cardiac 

fibrous matrix [4,7,19,24].

Early retroviral labeling lineage studies and quail-chick chimera experiments indicated that 

EPDCs contribute to fibroblast, SM, and coronary endothelial cell lineages [1,2]. 

Subsequent Cre-based fate mapping experiments confirmed epicardial origin of these 

lineages and also suggested that epicardial derivatives may contribute to cardiomyocytes 

[3,6,7]. However, the extent to which EPDCs differentiate into coronary endothelium and 

cardiomyocytes is controversial [3,5–7,25–27]. In the atrioventricular (AV) sulcus, 

subepicardial mesenchymal cells coalesce to form a primitive capillary plexus, which later 

remodels to form the mature coronary vasculature [28], and also contributes to the fibrous 

annulus and parietal AV valve leaflets [24,29,30]. While it is known that multiple cell types 

arise from epicardial progenitors, the timing and regulation of SMC, fibroblast, and 

endothelial cell lineage determination is not fully characterized. In addition it is not known if 

the various epicardial derivatives arise from common or distinct progenitor pools. Recent 

studies provide evidence that EPDC lineages arise from distinct populations located at the 

venous pole of the heart and are specified prior to epicardial EMT [6,13].
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3. Transcriptional Regulation of Epicardial EMT and EPDC Lineage 

Specification

Initial formation of the epicardium, epicardial EMT, and EPDC lineage determination are 

regulated by a complex network of transcription factors, including the zinc finger 

transcription factors Wt1, Snai1, and Snai2, as well as the bHLH transcription factors Tcf21, 

Scleraxis, Twist1, and Hand2 (Figure 1) [8–11]. Additional factors, including Tbx18, 

Nfatc1, Sox9, and C/EBP, regulate aspects of EPDC lineage development. Signaling 

pathways and transcription factors together regulate EPDC behavior and differentiation into 

cardiac fibroblasts and vascular SMCs [4]. Transcription factors expressed in EPDCs, 

including Wt1, Tbx18, Tcf21, Snai1, and C/EBP, are reactivated in cardiac injury and may 

mark progenitor or reparative populations in the disease state [18,31,32].

3.1. Wt1

The zinc finger transcription factor Wt1 was originally described as a tumor suppressor gene 

that is mutated in Wilms’ tumor patients [33]. Wt1 is robustly expressed in the septum 

transversum/ pericardial mesothelium, the PE, and the epicardium [34,35]. Following 

epicardial EMT, Wt1 expression is rapidly downregulated in invading EPDCs in the 

developing heart [36]. Therefore, Wt1 is expressed in EPDC progenitors with expression 

that diminishes prior to EPDC differentiation. Mice lacking Wt1 have epicardial defects with 

a paucity of EPDCs, suggesting an EMT defect [12,37,38]. Wt1 is necessary and sufficient 

to activate transcription of α4integrin (Itga4) via the proximal promoter (Table 1), and Itga4 
is required to maintain epicardial adhesion and integrity [11]. In addition, Wt1 directly 

regulates Snai1 and Snai2 (Slug) transcription in the epicardium [39,40]. Therefore, Wt1 is a 

crucial component of the mechanism regulating epicardial adhesion and EMT. Wt1 is 

required to promote epicardial expression of additional downstream targets, including 

Nestin, a component of intermediate filaments, TrkB (Tyrosine kinase type B receptor), 

important for BDNF (brain-derived neurotrophic factor) signaling and vascularization, and 

Coronin1B, which is crucial for cell motility [41–43]. Thus, loss of Wt1 adversely affects 

the cytoskeleton, thereby impacting EMT.

Multiple signaling pathways required for EPDC lineage development are affected with loss 

of Wt1. Retinoic acid (RA) signaling is required during cardiac morphogenesis [44]. 

Retinoid X Receptor α, which binds RA in the nucleus, is required during cardiac 

development, as Rxrα null mice are embryonic lethal by E15 with ventricular hypoplasia 

and delayed formation of the epicardium [45–47]. Wt1-deficient embryos have decreased 

expression of Retinaldehyde dehydrogenase-2 (Raldh2), a direct downstream target of Wt1, 

and epicardial EMT is partially rescued by RA supplementation in Wt1-deficient embryos 

[12,37]. Interestingly, RA induces Wt1 expression in proepicardial cells and EPDCs in cell 

culture supporting a feedforward regulatory mechanism [8]. Canonical Wnt/β-Catenin 

signaling, required for epicardial EMT, ventricular compaction, and formation of the 

coronary plexus in mouse embryonic hearts, also is downstream of Wt1 [12,48,49]. In Wt1 

null embryos, the epicardium fails to undergo EMT and Wnt signaling is reduced [12,48,49]. 

Therefore, Wt1 is a master regulator upstream of crucial signaling pathways, including Wnt/

β-Catenin and RA, in epicardial development. In addition, Wt1, Wnt/β-Catenin, and Raldh2 
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are reactivated in mouse models of adult heart disease, including MI, ischemia/reperfusion 

(I/R), and pressure overload (Figure 2) [16,18,31,50].

Initial Wt1Cre-based lineage studies reported that the majority of Wt1-derived cells 

differentiate into SM, but that some Wt1-derived cells differentiate into cardiomyocytes and 

endothelial cells [7]. Wt1 lineage-derived cells also contribute to fibroblasts of the annulus 

fibrosis, interstitial fibroblasts, and AV valve parietal leaflet interstitial cells [24,30]. Very 

few, if any, endothelial cells are derived from the Wt1 lineage in these analyses [7,24,30]. 

The report that Wt1 lineage-positive cells become cardiomyocytes, thereby supporting an 

epicardial origin for cardiac muscle, is controversial [51,52]. Caveats to this approach are 

that Wt1 expression is not completely epicardial-specific in addition to potential leakiness of 

Cre expression and inefficiency of recombination inherent to the Wt1Cre mouse lines 

[51,52]. Tamoxifen-inducible Wt1Cre lines add temporal and spatial specificity, but 

inefficient and variable recombination following tamoxifen induction is a concern with the 

Wt1CreERT2 mouse line [51,52]. It remains controversial whether small subpopulations of 

Wt1 lineage-positive epicardial cells become cardiomyocytes or endothelial cells. However, 

there is general agreement that the majority of Wt1Cre-positive epicardial derivatives 

become fibroblasts and vascular SMCs [7,24,51].

3.2. Tcf21

The bHLH transcription factor Tcf21 (Pod1/Epicardin/Capsulin) is expressed in developing 

mesothelial cell populations, including the PE and epicardium, as well as kidney, lung, and 

reproductive tract [53–55]. Loss of Tcf21 leads to kidney and lung defects, spleen agenesis, 

and neonatal lethality [56,57]. In the heart, Tcf21 is required for normal epicardial 

development and regulates EPDC differentiation into SM and fibroblast lineages [8,13]. 

Tcf21 deficiency leads to aberrant SM differentiation in the subepicardial mesenchyme and 

a paucity of cardiac fibroblasts in the myocardial interstitium [8]. Expression of Tcf21, like 

Wt1, is induced by RA signaling in EPDCs, and RA inhibits SM differentiation of PE 

derivatives [8,58]. Tcf21 expression is downregulated in differentiated vascular SM in the 

myocardial interstitium, consistent with a repressive role in the differentiation of this 

lineage. Thus, Tcf21 and RA signaling together inhibit SM gene expression and 

differentiation in EPDC progenitor cells prior to their localization in the coronary 

vasculature. In contrast, Tcf21 expression promotes cardiac fibroblast identity and persists in 

differentiated cardiac interstitial and adventitial fibroblasts in the postnatal and adult heart 

[8,13,59].

Tcf21 heterodimerizes with the class I bHLH transcription factor E12 [60,61]. Together, 

Tcf21 and E12 negatively regulate transcription [60,62]. Analysis of Xenopus embryos 

indicates that Tcf21 functions as a transcriptional repressor with other repressor proteins to 

regulate PE-specific gene expression [63]. Additional bHLH dimerization partners for Tcf21 

have not been described, nor have Tcf21 downstream targets been identified in the heart in 
vivo. Studies using a mesenchymal cell line derived from adult mouse kidney determined 

that Tcf21 binds to E-box DNA consensus sequences (CAnnTG) in the SM22α, Calponin, 

and αSMA promoters [64]. Overexpression of Tcf21 alone leads to decreased expression of 

SM22α, Calponin, and αSMA protein, whereas overexpression of Tcf21 and E2A results in 
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increased SM22α, Calponin, and αSMA protein expression [64]. Therefore, expression of 

E2A, which encodes the E12 and E47 transcription factors, may influence the role of Tcf21 

in terms of SM and myofibroblast downstream targets [65]. In addition to acting as a 

transcriptional repressor, Tcf21 contains an activation domain at its C-terminus [66,67]. 

While expression of SM22α, Calponin, and αSMA is increased in Tcf21 null hearts [8], 

direct regulatory interactions of Tcf21 with these gene regulatory elements have not yet been 

established in EPDCs. The dynamic and differential mechanisms by which Tcf21 regulates 

cell fate have yet to be determined. Likewise, the identity of Tcf21 E-box binding partners is 

likely to influence Tcf21 function in different contexts [62].

Fate mapping studies with the tamoxifen-inducible Tcf21iCre mouse line demonstrate that 

Tcf21iCre-derived cells contribute to fibroblasts of the coronary adventitia and myocardial 

interstitium, in addition to coronary vascular SMCs, when Cre activity is induced during 

embryogenesis [59]. In addition, Tcf21iCre-derived cells are detected in the gonads, lung, 

spleen, adrenal gland, and facial skeletal muscles [59]. Interestingly, in the heart, lung, 

kidney, spleen, adrenal gland, testes, and ovaries, Tcf21iCre-derived cells contribute to 

interstitial cells that support organ function [59]. Therefore, Tcf21 regulation of interstitial 

fibroblast formation may be conserved throughout the developing embryo. In the heart, fate 

mapping of the embryonic Tcf21 lineage marks fibroblasts and SMCs, but not 

cardiomyocytes or endothelial cells [59,68]. Postnatal induction of Tcf21iCre activity leads 

to recombination in cardiac interstitial cells, but not endothelial cells, supporting a 

homeostatic role for Tcf21 in fibroblast lineages after birth [59]. As determined by genome-

wide association studies of human coronary artery disease (CAD), a variant of TCF21 is 

associated with increased risk of CAD in European and Chinese Han populations [69,70]. 

Likewise, TCF21 is expressed in human cardiac fibrotic disease and ischemic 

cardiomyopathy ([71]; Braitsch, unpublished). In addition, Tcf21 is reactivated following 

myocardial injury in adult mouse and zebrafish models (Figure 2) [15,16,18,31,68]. 

Therefore, Tcf21 is likely to play an important role in adult cardiac homeostasis and disease.

3.3. Tbx18

Tbx18, a member of the T-box transcription factor family, is expressed in the PE, 

epicardium, somites, limb buds, and genital ridge [72,73]. Mice lacking Tbx18 die at birth 

due to cyanosis resulting from severe defects of the axial skeleton [10,74]. In the heart, 

Tbx18 contributes to, and is required for, formation of the sinus horn myocardium at the 

venous pole of the heart [75]. Loss of Tbx18 does not appear to affect epicardial 

development, as EPDCs are apparently unaffected in the Tbx18−/− mouse heart [74]. It is 

possible that Tbx20, which is expressed in the epicardium and subepicardial EPDCs, may 

have overlapping or redundant functions with Tbx18 in these cells [76]. Lineage-tracing 

analysis of a Tbx18Cre knock-in allele indicates that cells from the Tbx18Cre lineage 

differentiate into fibroblasts, vascular SMCs, and cardiomyocytes [3]. However, Tbx18 is 

actively expressed in myocardium of the interventricular septum and left ventricle during 

mouse embryogenesis from E10.5–E16.5, supporting a nonepicardial source for Tbx18 

lineage-positive cardiomyocytes [75,77]. In contrast, studies by multiple groups confirm that 

vascular SM and cardiac fibroblasts, but not endothelial cells, arise from a Tbx18-positive 

epicardial lineage [3,77,78].
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T-box transcription factors can act as transcriptional activators and/or repressors [73]. In the 

developing somites, Tbx18 maintains anterior somite identity by acting as a transcriptional 

repressor of Delta-like 1 (Dll1), a Notch effector [79]. In EPDCs, there is evidence that 

Tbx18 functions as a transcriptional repressor of SM differentiation, since ectopic 

expression of a transcriptional activator Tbx18VP16 leads to premature SM differentiation 

in the epicardium [10]. Tbx18VP16-mediated SM differentiation in epicardial cells is 

reversed by Notch inhibition in vitro [10]. However, few cardiac-specific downstream targets 

of Tbx18 have been identified. Tbx18 directly binds and promotes epicardial Snai2 
expression, thereby promoting epicardial EMT in cell culture [40]. Together these studies 

indicate that Tbx18 maintains progenitor cell identity by acting as a transcriptional repressor 

during embryonic development, often upstream of Notch signaling. In addition, Tbx18 is 

reactivated in epicardial cells in adult ischemic heart disease (Figure 2) [16,31].

3.4. Nfatc1

Nfatc1 is a member of the nuclear factor of activated T cells family of transcription factors, 

which are activated and localized to the nucleus by Ca2+ signaling via the calcium-

responsive phosphatase calcineurin [80]. Loss of Nfatc1 in mice leads to lethality at E12.5–

E14.5 with defects in heart valve remodeling [81,82]. Nfatc1 is expressed in the endocardial 

cushions and remodeling heart valves, as well as in the PE, epicardium, and EPDCs during 

heart development [9,83,84]. In the developing valves, Nfatc1 is required to promote 

endocardial cushion proliferation through the VEGF pathway and to regulate heart valve 

remodeling via Receptor Activator of Nuclear factor Kappa-B Ligand (RANKL) signaling 

[83,85,86]. In EPDCs, Nfatc1 is required for invasion of the myocardium, and mice deficient 

in epicardial Nfatc1 have decreased interstitial fibrous matrix deposition and exhibit 

neonatal lethality [9]. Likewise, epicardial loss of Nfatc1 results in decreased coronary 

vessel penetration, without affected SM differentiation, in the embryonic mouse heart [9]. 

Specifically, epicardial Nfatc1 is necessary for RANKL promotion of CathepsinK (Ctsk) 
mediated EPDC invasion of the myocardium [9]. Ctsk is an ECM remodeling enzyme that 

facilitates cell migration and is a transcriptional target of Nfatc1 (Table 1), first defined in 

osteoclast cell lineages [87,88]. Therefore, Nfatc1 is required for Ctsk expression and cell 

invasion, necessary for EPDC lineage development, in a mechanism that also is active in 

developing osteoclasts and remodeling heart valves.

Nfatc1 also has been implicated in coronary endothelial lineage development. Nfatc1 is 

expressed in differentiated coronary endothelial cells, and calcineurin/NFAT signaling is 

required for coronary angiogenesis during embryonic heart development [9,89]. Targeted 

deletion of Nfatc1 with Wt1Cre or Gata5Cre does not prevent differentiation of coronary 

endothelial cells, but these Cre lines are not generally considered to be active in the 

endothelial lineage [9,51]. However, calcineurin/NFAT signaling is required in endothelial 

cells for coronary vessel development and is induced by VEGF signaling [89]. Recently, 

endocardial endothelial cells were reported to be a source of coronary endothelial cells based 

on restriction of Nfatc1 expression to the endocardium [27]. While these data do not take 

into account Nfatc1 expression in the epicardium and its necessity for EPDC invasion, they 

do support multiple sources of coronary endothelial cells that warrant further investigation 
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[6,9,27]. In addition, the specific functions and downstream targets of Nfatc1 in coronary 

endothelial cell differentiation have not been identified.

3.5. Snai1 and Snal2

The zinc finger transcription factors Snai1 (Snail1) and Snai2 (Snail2, Slug) are robustly 

expressed in the epicardium and EPDCs of mouse and chick embryonic hearts [90,91]. 

Snai1 promotes EMT in the endocardial cushions as well as in other organ systems and 

during tumorigenesis, in part via the Snai1 downstream target Mmp15 [92,93]. However, 

there is conflicting evidence for the requirement for Snai1 and Snai2 in epicardial EMT 

[39,90,94]. In cultured avian epicardial cells, Snai1 overexpression promotes cell migration 

and invasion [94]. Similarly in mouse epicardial cell cultures, loss of Snai2 inhibits EMT, 

and Snai2 gene expression is dependent on Wt1 and Tbx18 [40]. Deletion of Wt1 from the 

more broadly expressed Gata5Cre lineage leads to loss of Snai1 expression with 

concomitant epicardial EMT defects with embryonic lethality [39,95]. In contrast, in vivo 
loss of Snai1 in Wt1Cre or Tbx18Cre lineages does not affect epicardial EMT or 

differentiation [90]. In a variety of cell types, Snai1 represses expression of E-cadherin and 

other adhesion molecules, which are required to maintain epithelial integrity [96,97]. 

Wt1Cre-mediated loss of the Notch pathway transcriptional activator Rbpj leads to 

decreased expression of Snai1, consistent with an observed EMT defect, as well as aberrant 

coronary SM differentiation [98]. Together these studies suggest that Notch signaling 

regulates Snai1 and E-cadherin, both of which affect epicardial EMT. This same regulatory 

hierarchy also is active in endocardial cushion EMT [99]. In addition, Snai1 expression is 

reactivated in the infarct scar following MI (Figure 2) [31].

3.6. Twist1 and Hand2

In addition to Tcf21, the bHLH transcription factors Twist1 and Hand2 also have been 

implicated in EPDC development. Twist1 is expressed in EPDCs of avian embryos at the 

same time it is expressed in endocardial cushions, where it promotes mesenchymal cell 

proliferation and migration [76]. In mice, EPDCs isolated from mouse AV canals express 

Twist1, in addition to Snai1, Snai2, and Smad1 markers of EMT [30]. However, a specific 

function for Twist1 in the epicardium or EPDCs has not yet been demonstrated. In 

endocardial cushions, Twist1 promotes expression of genes associated with cell proliferation 

and migration, and a similar regulatory mechanism may be active in EPDCs [76,100]. For 

example, Tbx20 is expressed in EPDCs as well as endocardial cushions and is a direct 

downstream target of Twist1 in endocardial cushion cells [76,100]. Likewise, Hand1 is 

expressed at the venous pole of the heart and cells of the Hand1 lineage contribute to 

epicardial progenitors [101]. In addition, loss of Hand2 in the Hand1 lineage leads to 

epicardial blistering, abnormal coronary vessel development, and loss of cardiac fibroblasts 

[101]. Hand2 promotes expression of Pdgfra, which is required for epicardial EMT and 

epicardium-derived cardiac fibroblasts [101,102]. Additional studies are necessary to define 

the specific functions and transcriptional targets of Twist1, Hand1, and Hand2 in epicardial 

lineage development.
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3.7. Scleraxis and Sox9

Scleraxis (Scx) is a bHLH transcription factor originally reported to be important in tendon 

development, and it also functions in cell lineage diversification in heart valvulogenesis 

[103–105]. Scx is expressed in a subdomain of the mouse PE, beginning at E9.5, and in the 

epicardium at E10.5 [6]. In the PE, cells that express Scx do not express Wt1 or Tbx18, 

demonstrating heterogeneity of this progenitor population [6]. ScxCre-derived cells 

contribute to coronary endothelial cells on the surface of the heart and also to 

cardiomyocytes in the LV. However, ScxCre-positive cells are rarely detected in SM at 

E12.5, in contrast to Wt1Cre or Tbx18Cre-derived cells, providing evidence for distinct 

compartments of proepicardial cells that give rise to endothelial versus fibroblast and SM 

lineages. The specific function(s) of Scx in epicardial development has not been 

demonstrated, although loss of Scx leads to persistent expression of EMT markers and heart 

valve remodeling defects at E17.5 in mice [106]. Interestingly, in adult Scx−/− mice, 

thickening and increased collagen deposition are apparent in the AV annulus and mitral 

valve parietal leaflet that are derived from epicardium [24,30,106]. In adult cardiac 

fibroblasts, Scx directly regulates Col1a2 gene expression, and Scx expression also is 

induced after MI, supporting a role in cardiac fibrosis (Figure 2) [107]. However, additional 

studies are necessary to define the specific functions of Scx in epicardium-derived cell 

lineage development or pathogenesis related to EPDCs.

Sox9 is an SRY-related transcription factor that is crucial for heart valve development [104]. 

During valvulogenesis, Sox9 is required for endocardial cushion EMT, progenitor cell 

proliferation, and proteoglycan-rich cell lineage development [104,108]. Sox9 also is 

expressed in EPDCs and is sufficient to promote epicardial EMT and migration [102]. 

Therefore, mechanisms regulating EMT and mesenchymal proliferation may be conserved 

in endocardial cushions and epicardium. However, little is known of Sox9 functions in 

EPDCs, and defective EPDC lineage development has not been reported in Sox9-deficient 

mouse embryos.

3.8. C/EBP

In a recent report, CCAAT/enhancer binding proteins (C/EBPs) were identified as critical 

transcriptional regulators of epicardial gene expression during development, that are also 

activated after cardiac injury [32]. Analysis of conserved enhancer regions of Raldh2 and 

Wt1 revealed the presence of multiple C/EBP binding sites required for epicardial 

expression of both genes during embryonic development. In adult mice, epicardial C/EBPβ 
expression is activated with cardiac ischemic injury (Figure 2), and C/EBP function is 

required for epicardial Wt1 and Raldh2 gene activation. Loss of C/EBP function with 

cardiac ischemic injury leads to reduced fibrosis, decreased inflammation, and improved 

cardiac function. C/EBPs likely act with other epicardially expressed transcription factors in 

yet unidentified regulatory hierarchies in EPDC development and response to cardiac injury.
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4. Transcriptional Regulation of EPDC Lineages in Adult Cardiac 

Regeneration, Injury, and Fibrosis

Adult zebrafish, unlike adult mammals, have the ability to regenerate cardiac muscle after 

resection or cryoinjury [109,110]. Epicardial activation, evident in increased Raldh2, Wt1, 

Tbx18, and Tcf21 expression and increased cellularity of the epicardium, occurs with injury 

in adult zebrafish [68,111,112]. However, the new muscle arises from existing 

cardiomyocytes during the regenerative process [113,114]. Fate mapping of Tcf21-positive 

epicardial cells demonstrates that they contribute to perivascular cells, but not 

cardiomyocytes, during regeneration [68]. Epicardial contributions to the regenerate were 

not observed, although Raldh2 expression was increased, indicative of epicardial activation 

with injury [111]. The role of epicardial activation and specific functions of transcription 

factors in the activated epicardium are not known; however, RA signaling emanating from 

the epicardium and endocardium is required for regeneration [111]. Since Raldh2 is a 

downstream target of Wt1 in mouse embryo EPDCs, a similar regulatory interaction may be 

conserved in zebrafish regeneration. In mice, neonates can renegerate myocardium after 

ventricular resection, but this ability is lost by postnatal day 7 [115]. Wt1 and Raldh2 
expression is increased in the neonatal mouse epicardium after injury, but proliferation of 

existing cardiomyocytes was observed to be the source of regenerated myocardium. 

Together, studies in zebrafish and neonatal mice demonstrate a potential indirect inductive 

role for EPDC activation in cardiac regeneration and revascularization, but do not support 

direct EPDC contributions to new cardiomyocyte populations.

In adult humans and mice, EPDC transcriptional programs are reactivated with cardiac 

injury and fibrosis. Epicardial expression of Wt1, Tcf21, Tbx18, and Raldh2 is increased 

after MI in mice and in human diseased hearts [16,18,31,71,116]. In addition, increased 

numbers of cells, that include EPDCs and infiltrating immune cells, are present in the 

subepicardial space (Figure 2) [18]. Indicators of EMT, including Wnt/β-catenin signaling, 

Notch signaling, and Snai1 expression, are induced, consistent with reactivation of 

epicardial cells and generation of new EPDCs of unknown fate or function 

[18,31,50,71,117]. Fate mapping studies of the tamoxifen-inducible Wt1CreER lineage 

demonstrated that the activated EPDCs that express Wt1 become fibroblasts and SM cells, 

but not cardiomyocytes or endothelial cells, after MI in mice [18]. Increased EPDC 

expression of proangiogenic factors also was observed in these studies, but it is not clear if 

these genes are directly regulated by EPDC transcription factors such as Wt1, Tcf21, or 

Tbx18 that also are induced with MI [18]. In addition to subepicardial cells and EPDCs, 

Wt1, Tcf21, and Tbx18 also are expressed in interstitial and perivascular fibrotic regions of 

human and mouse diseased heart, but the functions of these factors in cardiac fibrosis and 

origins of these cells have not yet been determined ([18,31]; Braitsch, unpublished). While it 

is clear that transcription factors expressed in embryonic EPDCs also are expressed in the 

adult epicardium with cardiac injury and fibrotic regions of diseased hearts, additional 

research is necessary to determine their specific regulatory mechanisms and potential 

therapeutic applications in human cardiovascular disease.
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5. Conclusions and Future Perspectives

Since the initial reports of EPDCs in the 1990s, there have been rapid discoveries of 

transcription factors and signaling pathways important for epicardium-derived cell lineage 

development. More recently, epicardial transcription factor expression has been reported in 

adult cardiac disease. While EPDC transcription factors have been used as markers for 

progenitor cells and epicardial activation, specific information related to transcriptional 

targets and cell lineage regulation is limited. Much is yet to be learned in terms of 

transcriptional regulatory networks and lineage determination mechanisms in the developing 

epicardium and its derivatives. Interestingly, epicardial transcription factors, including Wt1, 

Tcf21, and Tbx18, also are expressed in a variety of mesothelial progenitor lineages, and it 

is likely that they have similar roles in fibroblast and SM development in multiple organs. 

Intersection with Notch, RA, and Wnt signaling pathways also may be conserved in the 

development of these lineages. Transcription factors expressed in the epicardium prior to or 

during the generation of EPDCs are in many cases also expressed once EPDCs reach their 

final destination in the heart and differentiate into fibroblasts and SMCs. Thus, it seems 

likely that there will be more than one function for these factors depending on timing 

(epicardium versus EPDC) and environment (surface, myocardial interstitium, coronary 

vessel). Even less is known of activated EPDC function and transcriptional regulatory 

mechanisms in adult cardiovascular disease. There has been much recent excitement and 

high impact research in this area, but specific pathologic or reparative functions of EPDCs 

and associated transcription factors are yet to be fully defined. While it is possible that 

EPDCs contribute to cardiac repair, especially in the promotion of vascularization, it seems 

very likely that EPDCs also contribute to pathological fibrosis and, potentially, heart failure. 

Thus, efforts directed towards harnessing EPDCs in the treatment of human cardiovascular 

disease should proceed with caution.
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Figure 1. 
Schematic depicting transcription factor regulation of epicardial cells during embryonic 

heart development. Several transcription factors are expressed during epicardial epithelial-

to-mesenchymal transition (EMT), epicardium-derived cell (EPDC) lineage specification, 

and EPDC differentiation into vascular smooth muscle cells and cardiac fibroblasts. See text 

for details and references.
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Figure 2. 
Model depicting epicardial cell reactivation and expression of transcription factors, 

including Tcf21, Wt1, Tbx18, Snai1, and C/EBPβ, following myocardial infarction (MI) in 

the adult heart. Activated epicardial cells undergo EMT and invade the subepicardial space 

following MI. The ultimate fate of activated EPDCs and their ability to invade the 

myocardium in the infarcted heart has not yet been fully characterized. In the area of the 

infarct scar Tcf21, Wt1, Tbx18, and Scleraxis (Scx) also are expressed, and immune cells 

are present in the activated epicardium and fibrotic scar. Currently, it has not been reported 
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whether epicardial transcription factors are activated in other forms of cardiac fibrosis. See 

text for details and references.
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Table 1

Transcription factor expression and function in epicardial development (see text for details and references).

Gene Loss-of-function cardiac phenotype a Known downstream targets
expressed in EPDCs

References

Wt1 Ventricular non-compaction; impaired
epicardial EMT; impaired coronary plexus
formation; pericardial hemorrhaging; die by
E13.5

Itga4, Nestin, TrkB,
Coronin1B, Raldh2, Snai1,
Snai2

[11,12,37–43]

Tbx18 Caval vein defects; sinus horn myocardial
hypoplasia; neonatal lethality

Snai2 [40,74,75]

Tcf21 Aberrant smooth muscle differentiation; loss
of cardiac fibroblasts; pericardial
hemorrhaging; neonatal lethality

None identified [8,13,57]

Nfatc1 bReduced cardiac fibrous matrix with
decreased coronary vessel penetration;
neonatal lethality

Ctsk [9,87,88]

Snai1 b,cPhenotypically normal and viable E-cadherin, Mmp15 [92,93,96,97]

Snai2 Phenotypically normal and viable None identified [40]

Sox9 Hypoplastic endocardial cushions. Embryonic
lethality at E11.5–E12 due to congestive heart
failure.

None identified [102,104,108]

Scleraxis Thickened valves; viable Col1a2 [106,107]

C/EBP dImproved cardiac function after
ischemia/reperfusion injury

Raldh2, Wt1 [32]

Hand2 eEpicardial blistering; abnormal coronary
vessel development; loss of cardiac
fibroblasts; persistent truncus arteriosus.
Embryonic lethality by E14.5.

Pdgfra [101]

Twist1 Abnormal outflow tract endocardial cushion
mesenchyme. Embryonic lethality by E11.5.

Tbx20, Snai2 [30,76,100]

a
Described phenotypes are due to knockout mouse models, except in cases of epicardial-specific gene deletion, as indicated; Gene (floxed allele) 

was deleted from the

b
Wt1Cre,

c
Tbx18Cre, or

e
Hand1Cre lineages, as indicated;

d
Antisense adenoviral-mediated knockdown.
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