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Abstract: Cancer prognosis is an essential goal for early diagnosis, biomarker selection, and medical
therapy. In the past decade, deep learning has successfully solved a variety of biomedical problems.
However, due to the high dimensional limitation of human cancer transcriptome data and the small
number of training samples, there is still no mature deep learning-based survival analysis model
that can completely solve problems in the training process like overfitting and accurate prognosis.
Given these problems, we introduced a novel framework called SAVAE-Cox for survival analysis of
high-dimensional transcriptome data. This model adopts a novel attention mechanism and takes
full advantage of the adversarial transfer learning strategy. We trained the model on 16 types of
TCGA cancer RNA-seq data sets. Experiments show that our module outperformed state-of-the-art
survival analysis models such as the Cox proportional hazard model (Cox-ph), Cox-lasso, Cox-ridge,
Cox-nnet, and VAECox on the concordance index. In addition, we carry out some feature analysis
experiments. Based on the experimental results, we concluded that our model is helpful for revealing
cancer-related genes and biological functions.

Keywords: deep learning; survival analysis; neural networks; Cox regression; cancer prognosis

1. Introduction

Since the 20th century, cancer has become a serious threat to human life and health.
Multi-angle and multi-level prognostic studies on cancer emerge one after another. How-
ever, prognostic research for cancer is still a challenging task. One of the most important
factors is that due to the existence of censored patient samples, the traditional analysis
models cannot effectively determine the actual time of death [1]. Compared with traditional
prognosis, survival analysis models focus more on the survival time point of the patient
rather than the death time point. The use of survival analysis models can be very effective
in dealing with censored data. The most widely used is the Cox proportional hazards
model (Cox-ph) model [2]. The Cox-ph model is a semi-parametric proportional hazards
model. The covariates of the model can explain the relative risk of a patient, called hazard
ratio, prognostic index or risk score. According to the relative risk score, the risk of changes
in various factors can be effectively analyzed, thereby helping doctors to develop effective
targeted therapy strategies.

The arrival of the Human Genome Project has raised the survival sub-model to the re-
search category of high-throughput multi-omics [3]. There are many experiments and stud-
ies showing that it is very meaningful to do cancer survival analysis on high-throughput
transcriptome data [4—-6]. Computationally, however, performing survival analysis on

Cells 2022, 11, 1421. https:/ /doi.org/10.3390/ cells11091421

https:/ /www.mdpi.com/journal/cells


https://doi.org/10.3390/cells11091421
https://doi.org/10.3390/cells11091421
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0001-5696-3090
https://orcid.org/0000-0002-2741-433X
https://orcid.org/0000-0003-2671-8275
https://orcid.org/0000-0002-7652-4375
https://doi.org/10.3390/cells11091421
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells11091421?type=check_update&version=3

Cells 2022, 11, 1421

20f18

high-dimensional transcriptome gene expression data is equivalent to solving a regression
problem of complex nonlinear equations. Using traditional Cox-ph regression models
cannot effectively handle high-dimensional feature representation and accurately predict
prognosis. In the past two decades, some researchers have used some machine learning
methods to modify the original Cox survival analysis model, and the regression effect of
the model has been improved to a certain extent. Some methods use the support vector
machine (SVM) algorithm to perform feature extraction and dimensionality reduction for
high-dimensional gene expression data [7,8]. The result after mechanized dimensionality
reduction of SVM fuses the original high-dimensional gene features, and the use of Cox-ph
model to represent low-dimensional gene expression features can effectively implement
survival analysis prediction. Some methods will use an ensemble learning method such as
Cox-Boost, which divides the parameters into several independent partitions for ensemble
training and fitting [9]. Some methods replace the original proportional hazards model by
using the ensemble mean cumulative hazard function (CHF) with the help of the nonlinear
ensemble method of random forests [10].

With the maturity of deep learning methods in different fields [11,12], the Cox model,
based on an artificial neural network, has received extensive attention from researchers.
To the best of our knowledge, the earliest application of artificial neural networks for
survival analysis is Faraggi et al. [13]. They used four diagnoses as inputs to model the
learning of a survival analysis for prostate cancer. Then Ching et al. designed a Cox-
nnet composed of two-layer neural networks, and successfully used Cox-nnet to make
reasonable survival analysis recommendations for 10 different cancer gene expression
data [14]. Katzman et al. proposed a Cox regression model constructed by a multi-layer
neural network, while formulating corresponding treatment recommendations based on
the trained Cox model [15]. Huang et al. [16] proposed a survival analysis model for
multi-omics data of breast cancer. They first constructed a co-expression feature matrix
of mRNA data and miRNA data through gene co-expression analysis to alleviate the
learning difficulties and overfitting problem caused by high-dimensional data. They finally
proposed a multi-group student survival analysis model for breast cancer [16]. Kim et al.
used a transfer learning approach, first pre-training a VAE model, and then using the
VAE model for fine-tuning training on 20 TCGA datasets [17]. Using the above method
effectively alleviates the overfitting problem caused by the high genetic dimension and the
small number of training patients. Ramirez et al. [18] focused on the degree of correlation
between different genes. They constructed gene association graphs through correlation
coefficient scores, PPI networks and other methods, introduced the correlation map as a
prior knowledge into the training of the GCN survival analysis model, and explained the
important biological significance of the GCNN model in survival analysis [18].

The high dimensionality and complex semantics of genetic data bring many challenges
to feature extraction. So far, there is a lot of work that is trying to use new ideas to ensure
rich feature extraction. The most classic method in deep learning was multilayer perceptron
(MLP), which learns linear correlations between different data. It was considered to be
the optimal choice for processing sequential data. There are a lot of works to extract
high-dimensional genetic data based on MLP [14,16,19]. In the past decades, convolutional
neural networks (CNN) have shown excellent results in computer vision. More and more
studies have demonstrated the powerful ability of CNNs to deal with spatial structural
features. Many recent works have attempted to extract features from high-dimensional
genetic data using CNNs and demonstrated the transferability of CNNs in multi-omics
data. Rehman et al. proposed densely connected neural network based N4-methylcytosine
site prediction (DCNN-4mC), and this framework obtains the greatest performance for 4mC
site identification in all species [20]. Chen et al. used Lasso and CNN as a target model and
studied the trade-off between the defense power against MIA and the prediction accuracy
of the target model under various privacy settings of DP [21]. Torada et al. proposed a CNN-
based program, called ImaGene, on genomic data for the detection and quantification of
natural selection [22]. Hao et al. proposed a biologically interpretable deep learning model
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(PAGE-Net) that integrates histopathological images and genomic data [23]. Jeong et al.
proposed a new tool called GMStool-based CNN for selecting optimal marker sets and
predicting quantitative phenotypes [24]. Rehman et al. proposed the m6A-NeuralTool to
extract the important features from the one-hot encoded input sequence based on CNN [25].
At the same time, some works [18,26] take advantage of novel feature extraction methods
for sequence data and exhibit remarkable results.

Since the Generative Adversarial Network (GAN) proposed by Ian et al. [27], a lot
of research has used this training strategy for data generation, reconstruction and dimen-
sionality reduction tasks. GAN adopts an adversarial training strategy, which effectively
learns the distribution of high-dimensional data and effectively generates results sampled
from the overall data distribution. In recent years, GAN has been widely used in protein
and gene sequence research. Repecka et al. [28] developed a variant of attention-based
GAN and called it ProteinGAN. ProteinGAN learns the evolutionary relationships of pro-
tein sequences directly from the complex multidimensional amino acid sequence space
and creates highly diverse new sequence variants with natural physical properties, which
demonstrates the potential of GANs to rapidly generate highly diverse functional proteins
within the biological constraints allowed by the sequence space. LIN et al. [29] proposed
the DR-A framework, which implements dimensionality reduction for scRNA-seq data
based on an adversarial variational autoencoder approach. Compared with traditional
methods, this method can obtain a low-dimensional representation of scRNA-seq more
accurately. Jiang et al. [30] introduced a novel GAN framework for predicting disease
genes from RNA-seq data. Compared to state-of-the-art methods, the model improves the
identification accuracy of disease genes.

In this paper, we propose a novel deep Self Attention Variational Autoencoder Cox
Survival Analysis Model (SAVAE-Cox). This model takes advantages of adversarial trans-
fer learning strategy. In the adversarial pretraining stage, the generator was a variational
autoencoder (VAE), which is jointly trained with the discriminator. Meanwhile, we in-
troduce a novel self-attention mechanism [31] to enhance semantically relevant features
extraction of the encoder from high-dimensional data. After the pretraining stage, the
generator was able to learn the common features of 33 cancer transcriptome data. Next,
the encoder of the generator was used to learn survival analysis on 16 cancers. By com-
parison with state-of-the-art models such as Cox-nnet and VAECox, our model achieved
the highest concordance index on 10 TCGA cancer datasets. Finally, we performed fea-
ture analysis of SAVAE-Cox. We select oncogenes and compute correlations with hidden
layer nodes in which we find that our hidden layer nodes are highly correlated with onco-
genes. We used these nodes to draw Kaplan-Meier plots, and found that these nodes
significantly affected the survival of patients. Based on the correlation of hidden layer
nodes with genes, we selected leader genes, which we found enriched on cancer-related
pathways. According to our experiments, we conclude that our proposed SAVAE-Cox
model has significant cancer prognostic ability. Our source code of SAVAE-Cox is available
at https://github.com/menggerSherry /SAVAE-Cox (Last visited on 21 March 2022).

2. Materials and Methods
2.1. Dataset Preparation

In this work we used 17 datasets from the TCGA database. These 17 datasets are
bladder carcinoma (BLCA), breast carcinoma (BRCA), head and neck squamous cell car-
cinoma (HNSC), kidney renal cell carcinoma (KIRC), brain lower-grade glioma (LGG),
liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), lung squamous cell
carcinoma (LUSC), ovarian carcinoma (OV), stomach adenocarcinoma (STAD), cervical
squamous cell carcinoma and endocervical adenocarcinoma (CESC), colon adenocarci-
noma (COAD), sarcoma (SARC), uterine corpus endometrial carcinoma (UCEC), prostate
adenocarcinoma (PRAD), skin cutaneous melanoma (SKCM) and pan-cancer (PANCAN).
The detailed description of the dataset and download way were in Appendix A.1. Since
there are a large number of empty genes and noise genes, it is necessary to perform some


https://github.com/menggerSherry/SAVAE-Cox

Cells 2022, 11, 1421 40f18

preprocessing options to exclude some redundant noise genes. In Table 1, we present the
statistics of the 17 datasets used in this work, including the number of samples in each
dataset and the clinical information of 16 cancer types.

Table 1. Statistics of RNA-seq datasets (Pan-Cancer and 16 cancer types) used to train SAVAE-cox.

Data Attribute
Cancer Type
Total Samples Censored Samples Time Range
PANCAN 9895 # #
BLCA 397 227 13-5050
BRCA 1031 896 1-8605
HNSC 489 302 1-6417
KIRC 504 347 2-4537
LGG 491 302 1-6423
LIHC 359 183 1-3765
LUAD 491 290 4-7248
LUSC 463 327 1-5287
ov 351 95 8-5481
STAD 345 227 1-3720
CESC 283 215 2-6408
COAD 415 239 1-4270
SARC 253 116 15-5723
UCEC 524 404 1-6859
PRAD 477 289 23-5024
SKCM 312 239 14-1785

#: Not measured in this experiment.

We use the PANCAN dataset to draw scatter plots of 56,716 genes and observe the
statistical distribution. Figure 1 shows the distribution of mean and standard deviation of
RNA-seq data. From the standard deviation distribution of Figure 1, we observe that there
is a valley between 0.278-0.403, and plenty of genes are with zero variance. Therefore, we
defined gene expression with a standard deviation in the range (0, 0.4) as noise genes, and
removed those noise genes whose standard deviation satisfies this range. At the same time,
in order to eliminate the influence of empty data, we removed the RNA-seq genes whose
mean value satisfies (0, 0.8). We processed each RNA-seq dataset following these two
strategies described above and selected 20,034 intersection genes of 16 cancer types. Before
feeding the genes into our module, we performed feature wise min-max normalization of
each gene of 16 cancer types.

Distribution of Statistic in Pan-Cancer Dataset

mean = 2.951

stdev- — -

Statistics

mean = 7.379

Mean |

0 5 10 15
Value of Statistics

Figure 1. Scatter plot of Pan-Cancer data statistics distribution. The width of the scatter plot represents
the number of patient samples. The solid black line represents the mean of the statistic.
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2.2. Dimensionality Reduction Pretraining Using GAN

We adopted the strategy of a generative adversarial network (GAN) [27] to design
the pre-training stage. The pre-training process is shown in Figure 2a. The generator G
takes the genes x;,, as input and generates the reconstructed genes x;... The discriminator
D takes the x;, or x,. as the input and outputs a value which reflects the authenticity of
the gene. Through adversarial training with the D, the encoding module E of G gradually
improves the feature extraction ability to generate a low-dimensional feature z for xe.
generation. After training, E can be used for dimensionality reduction of x;,. Compared
with computational dimensionality reduction methods, our dimensionality reduction
based E was a data-driven method and can be adaptively adjusted according to different
data characteristics.

Input RNA-seq Data

-

PANCAN(9895%20,034) !
I i i

Real
Fake

(b)

Sample

Input RNA-seq Data
16 Cancers(nx20,034)

Gene Expression

) Hazard Ratio

o "'OOOO:

Figure 2. Overview of the SAVAE module. (a) Dimensionality reduction pretraining stage using
GAN. (b) Survival analysis based on transfer learning.

The network structure of the G is a self-attention VAE(SAVAE) framework. For each
X;in, SVAE is described as:

#(xin) = wu (LY (6(wpXin + by))) + by 1

o (xin)® = exp(wy (L (8 (wyxin + by))) + by) 2
z=ul+0,{~N(0,1) 3)

Xree = WpZ + by, 4)

where p(x;,) and o (x;n)* are the mean and the variance of the Gaussian disribution. 6 is
the activate function. { is randomly sampled from the standard Gaussian distribution.
We introduce a residual self-attention module (Figure 3) in the hidden layer of the
encoder to enhance the fitting ability of VAE [32]. The self-attention mechanism [31] can
effectively learn the semantic correlation of high-dimensional features. It is denoted as:

L(x) =sa(x) +a X x. (5)

In Equation (5), « represents a learnable parameter, which can adaptively adjust the
weight of the residual connection. sa stands for Self-Attention Module [31]. It is denoted as:

sa(x) = softmax(Q(x)T X K(x)) x V(x), (6)



Cells 2022, 11, 1421 60of 18

where Q, K, and V represent the query, key and value obtained by performing three Dense
layers on the input x.
D is a simple binary classification network whose framework is represented as follows:

D(x)=Li,oLiofd o oL(x), @)

where the £ : RN — RY maps high-dimensional features to low-dimensional features
through linear transformation. Finally, the output feature of £? was fed to a classifica-

. N s . .
tion layer £¢,: Rz — R. The classification layer generates a numerical value, which

represents the judgment of the input gene.

KI\SA:BN

Matmul:B(NN x NT)

Softmax

Matmul:B(N x NT)

(0000~ 0) (0O0O0~ O] (0000~ O]
Q:BN K:BN V:BN

606060~ oF———

X:BN

Figure 3. Network framework of residual self-attention module. This network structure can learn the
latent semantic correlation of genes.

We introduce the Wasserstein loss [33] to train G and discriminator D jointly. For G,
the goal is to synthesize more similar reconstructions x,. so that the discriminator cannot
describe whether it is real or fake. For D, the goal is to distinguish between true genes x;,
and reconstructed genes x;,. synthesized by G. The loss of G and D is computed as:

Lgan = By~ Pt (xin) [D(xin)] = B~ Paata (i) [D(G(xin))] = ApExnx [[[V2D(x)]]2 — 1] ? ®)

where A, represents the hyper parameter for setting the gradient penalty, and X’ represents
the overall Sample Space of x;, and xy... The Wasserstein loss was calculated to minimize
the Wasserstein distance between x;, and G(x;,,) by the D, which made the overall sample
distribution of x;;, and G(x;;,) more similar. Furthermore, we introduce the Kullback-Leibler
divergence [32] used in training the VAE. Given the input Genes x;,. it is denoted as:

Lt = Y () + (a3 — fog (e (xn)?) = 1), ©)

i=0

where 7 represents the dim of z. This error measures the distance between the real latent
code z under standard Gaussian distribution and the posterior latent variable P(z|x;,)
generated by encoder. The introduction of Kullback-Leibler divergence into the generator
can guarantee the similarity between low-dimensional latent variables, which significantly
improves the authenticity of the distribution of x;, and G(x;,). At the same time, we
introduce L1 loss to measure the similarity of each sample. The L1 loss is computed as:

Lr11 =||xrec — Xin|1- (10)
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Unlike the Wasserstein loss and KL divergence, the L1 loss focuses on making G learn
to synthesize x;,. more similar to x;;, on genes-wise. Therefore, the overall loss function for
G can be expressed as:

Liotar = »Cgan + MLkL+ AL, 11)

where A and A, represent the hyper parameters. We therefore aim to solve:

05 = i Liotal- 12
& = argminmaxLioi (12)

2.3. Survival Analysis Based on Transfer Learning

After the pre-training stage, we transfer the weights learned by the encoder in the
pre-training stage to the survival analysis stage as shown in Figure 2b. At the same time, we
set an additional classification module to learn the hazard ratio. The hazard ratio measures
the likelihood a patient has of dying, and a higher hazard ratio indicates a higher likelihood
that a patient will die.

We adopt the training strategy of Cox-ph [2] to train our module, which is denoted as:

h(t|x;) = ho(t)exp(wx;), (13)

where hg(t) was baseline hazard function, w was the trainable parameters of the module,
and x; represents the risk factors of patients. At this stage, x; is the low-dimensional feature
#(xjy) that output by SAVE encoder. We aim to solve:

6" = argrrbin Z (wx; —longxj), (14)
C(i)=1 tj>t;

where ¢ is the the survival time of patient sample, C(i) indicates whether the patient sample
i is censored.

2.4. Experiment Settings

We implemented our model using the PyTorch framework. We train and validate our
model using an Nvidia Tesla V100 (32GB) GPU. We first pre-train SAVAE using the pan-
cancer database. To validate the pre-trained reconstruction results, we randomly divide the
training dataset and the test dataset with a ratio of 9:1. For survival analysis on 16 cancer
datasets, we trained our model by dividing the dataset into five-fold cross-validation. Both
stages are trained using the Adam optimizer. In the pre-training stage, the learning rate of
the optimizer is 0.0001, the total epochs are 300, and the batch size is 256. At the same time,
since the loss fluctuation problem often occurs in the training process of GAN, it is necessary
to set the learning rate decay strategy. Therefore, we stipulate that the learning rate remains
constant for the first 150 epochs, and decays linearly to 0 for the last 150 epochs. In the
SAVAE-Cox training phase, the learning rate of the optimizer is 0.001, the total training
epochs are 20, and the batch size is 512. Note that there are some hyperparameters such as
learning rate, Ap, A1 and A,. The specific selection methods and optimal parameter settings
are in Appendix A.2. To ensure the fairness of training, we use the same dataset settings to
train and evaluate Cox-nnet, Cox-lasso, Cox-ridge and VAE-Cox.

2.5. Evaluation Metric

In this work, the evaluation method we mainly use is the concordance index [34],
which is widely used in survival analysis models. It ranges from 0 to 1. When the concor-
dance index < 0.5 means that the model has completed an ineffective survival analysis
prediction. When the concordance index > 0.5 and higher this indicates that the prediction
effect of the model is better.
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3. Results
3.1. Performance of Dimensionality Reduction

In Section 3.1, we evaluated the generator performance in the pre-training stage. All
990 samples in the pan-cancer test dataset were used in this section. We fed the test set of the
pan-cancer dataset to the generator, and the generator synthesized the reconstruction results.
We then use UMap to perform visualization of the real genes and the reconstructed genes.
Figure 4 is the visualization using UMap. We found that the distribution of reconstructed
genes closely coincided with the distribution of real genes, which shows that:

1.  Generator can reconstruct x,.. that are consistent with x;,,;

2. The reconstruction of the generator is based on the latent encoding z, indicating that
the encoder of the generator can effectively generate z, which retains rich features that
can represent X;;,.

» real expresson
-~ }
18 reconstruct expression
104 o 7’
. L -
B . . -
5 4
LS
S 3 7’
o '. v.’
L L % - r
5 >
+
-10 4
_15 K '
-5 0 5 10 15 20 25

Figure 4. UMap plot of real genes and reconstructed genes. The reconstructed genes and the real
genes are highly coincident under low dimension.

To further verify the superiority of our proposed dimensionality reduction method, we
compare the performance with other dimensionality reduction methods. The comparison
results were shown in Table 2 and the optimal hyperparameter settings were shown in
Table Al. First, we choose Autoencoder (AE) and denoising Autoencoder (denoise-AE) to
compare with our model. At the same time, we also compare some classical dimensionality
reduction methods based on feature selection such as Chi2, Pearson, mutual information
and maximal information coefficient (MIC) and principal component analysis (PCA). Note
that unlike data-driven dimensionality reduction methods, the feature selection method
does not use pan-cancer data for pre-training but directly applies statistical methods on
16 cancer types to select high-correlation features. We used five-fold cross-validation on
16 types of data to train these models and calculated the mean concordance index.

By comparing these six methods on 16 cancer types, our dimensionality reduction
method performed best in nine of them. Interestingly, using the Chi2 feature selection-based
dimensionality reduction method outperforms data-driven methods in LUSC, CESC, and
SKCM datasets. As shown in Table 2, the samples in the CESC and SKCM datasets are small.
Meanwhile, we found significant overfitting problems that emerged while training used the
data-driven dimensionality reduction methods on the LUSC dataset. These characteristics
reflect the shortcomings of data-driven dimensionality reduction methods that are highly
dependent on data.
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Table 2. Mean Concordance Index on 16 cancer types using different dimensionality reduction methods.

Dimensionality Reduction Method

Cancer Type
AE Denoise-AE Chi2 Pearson MIC PCA SAVAE
BLCA 0.642 0.643 0.582 0.552 0.624 0.545 0.654
BRCA 0.704 0.709 0.651 0.500 0.492 0.488 0.724
HNSC 0.649 0.642 0.522 0.590 0.531 0.489 0.651
KIRC 0.725 0.731 0.620 0.698 0.673 0.547 0.723
LGG 0.844 0.843 0.712 0.820 0.786 0.673 0.857
LIHC 0.704 0.696 0.467 0.627 0.401 0.423 0.713
LUAD 0.617 0.635 0.627 0.595 0.571 0.570 0.647
LUSC 0.552 0.559 0.605 0.534 0.529 0.496 0.575
ov 0.608 0.621 0.550 0.512 0.517 0.471 0.620
STAD 0.602 0.616 0.556 0.572 0.531 0.476 0.610
CESC 0.690 0.722 0.724 0.565 0.598 0.398 0.663
COAD 0.631 0.638 0.489 0.533 0.521 0.496 0.728
SARC 0.698 0.700 0.558 0.647 0.637 0.511 0.720
UCEC 0.677 0.701 0.640 0.591 0.611 0.472 0.698
PRAD 0.724 0.649 0.687 0.751 0.586 0.606 0.774
SKCM 0.684 0.655 0.863 0.652 0.531 0.512 0.734
3.2. Performance of Survival Analysis
We use the concordance index to evaluate the performance of SAVAE-cox models.
Figure 5 shows the comparisons of performance on 16 cancer datasets. In Figure 5, we
selected four models to compare with SAVAE-Cox, which include the classic model like Cox-
lasso and Cox-ridge methods, as well as some state-of-the-art methods such as Cox-nnet
and VAECox. Each model chooses the optimal parameter settings to ensure the fairness
of the experiment. Table A1 shows the optimal parameters of these models. Then we
divided the 16 cancer types into train and validation datasets by five-fold cross-validation.
For each cancer type, we compute the mean concordance index for the validation set.
Finally, we draw boxplots according to the concordance index of the five models. From the
experimental results we can see that the predicted concordance index using our model on
12 cancer types is significantly higher than the other four models.
Concordance Index for 16 TCGA datasets
| ] | B Cox-lasso
0.9 1L B Cox-idge [
0 B Cox-nnet
O VAE-cox
0.8 B SAVAE-Cox
" 1
o
£
(0]
e
@
el
S
g
Q
o

0.4

I T T T T T T T T T T T T T I T
BLCA BRCA HNSC KIRC LGG LIHC LUAD LUSC ov PRAD SARC SKCM CESC STAD COAD UCEC

Cancer Types

Figure 5. Performance comparison of survival analysis on 16 cancer types. The “+” of each box plot
denotes the mean concordance index. The mean concordance index of hazard ratios predicted using
our model was best on 12 cancer types.
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We performed further survival analysis on 12 cancer types. Based on the hazard
ratios of patient samples predicted by SAVAE-Cox, we can calculate the mean reference
hazard ratios for 12 cancer types. For each cancer type, we defined patients with predicted
hazard ratios above the average to be in the high-risk group, and patients with predicted
hazard ratios below the average to be in the low-risk group. In this way, we divided
patient samples into high-risk and low-risk groups for each cancer type. Therefore, we
draw Kaplan-Meier (KM) survival curves for different cancer types according to these
two groups. At the same time, we adopted the same strategy to plot the KM survival
curve of the Cox-nnet prediction results. Figure 6 shows the comparison of KM survival
curves of SAVAE-Cox and Cox-nnet on 12 cancer types. Based on the results in Figure 6, we
found that the hazard ratio predicted by SAVAE-Cox significantly affected patient survival.
At the same time, by analyzing the p-value, we can find that the hazard ratios predicted
by SAVAE-Cox have a more significant impact on patient survival than that predicted
by Cox-nnet.
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Figure 6. Kaplan—-Meier survival curves using SAVE-Cox and Cox-nnet on 12 cancer types. The
smaller the p-value, the more significant the risk difference between the two groups predicted by
the model.
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3.3. Feature Analysis of SAVAE-Cox

The incidence of BRCA is very high, so there were a lot of related studies on this
malignancy. At the same time, benefiting from the professionalism of the TCGA project,
the researchers collected abundant samples. Choosing BRCA for survival analysis can
obtain the most stable survival analysis results and conclusions. Therefore, we take BRCA
as an example to conduct experiments for further correlation analysis between model
features and genes. All of the 1031 patient samples in the BRCA dataset were tested in this
study. First, we analyzed the hidden layer nodes that contribute the most to the prognosis
according to the mean and variance. After analysis, we selected the top 20 key prognostic
hidden layer nodes. Finally, we calculated a Pearson correlations matrix for each node and
gene expression across the patient samples. According to the calculated correlation matrix,
we can analyze the correlation between hidden layer nodes and different genes.

We selected 34 cancer-related genes from DISEASE (https:/ /diseases.jensenlab.org/,
Last visited on 21 March 2022) and plotted them in Figure 7. These genes have high correla-
tion scores in DISEASE, and some genes are oncogenes in ovarian cancer and significantly
affect patient survival. The meta-analysis strongly supports the prognostic role of BCL2
as assessed by immunohistochemistry in breast cancer [35]. Germline variation NEK10
is associated with breast cancer incidence [36]. The progesterone receptor (PgR) is one of
the most important prognostic and predictive immunohistochemical markers in breast
cancer [37]. The CCDC170 gene affects both breast cancer risk and progression [38]. ESR1
amplification may be a common mechanism in proliferative breast disease and a very early
genetic alteration in a large subset of breast cancers [39]. The SLC4A7 variant rs4973768
is associated with breast cancer risk [40]. ATM mutations that cause ataxia-telangiectasia
are breast cancer susceptibility alleles [41]. RAD51 is a potential biomarker and attractive
drug target for metastatic triple negative breast cancer [42]. CTLA-4 was expressed and
functional on human breast cancer cells through influencing maturation and function of
DCs in vitro [43]. MYC deregulation contributes to breast cancer development and progres-
sion and is associated with poor outcomes [44]. The CDH1 mutation frequency affecting
exclusively lobular breast cancer [45]. Inherited mutations of BRCA1 are responsible for
about 40-45% of hereditary breast cancers [46]. EGFR is an oncogene in breast cancer [47].
ERBB?2 is an oncogene in breast cancer [48]. Six different germline mutations in breast
cancer families are likely to be due to BRCA2 [49]. Rare mutations in XRCC2 increase the
risk of breast cancer [50]. Amino acid substitution variants of XRCC1 and XRCC3 genes
may contribute to breast cancer susceptibility [51]. Overexpression of an ectopic H19 gene
enhances the tumorigenic properties of breast cancer cells [52]. CYP19A1 genetic variants
in relation to breast cancer survival in a large cohort of patients [53]. BARD1 mutations may
be regarded as cancer risk alleles [54]. Master regulators of FGFR2 signalling and breast
cancer risk [55]. Interestingly, from Figure 7 we can see that 20 key nodes are significantly
associated with these oncogenes, which suggests that exploring patient survival using our
proposed model could serve as a new avenue for the discovery of oncogenes.

To further explore the contribution of hidden layer nodes to patient survival, we plot
Kaplan-Meier survival curves with 20 key nodes. In this experiment, we also selected all
patient samples in BRCA for evaluation. By analyzing the variation of each node in the
overall patient sample, we divided them into two groups according to the mean value of
nodes. Finally, we calculated the log-rank p-value for each node and drew the Kaplan—
Meier survival curves. Figure 8 shows the survival curves of the first four key nodes. From
the survival curve, we found that patient samples can be significantly divided into risk
groups and safety groups according to key nodes, and the larger the value of the node, the
lower the survival probability of the patient, which proves that our hidden layer nodes can
be used as a key prognostic factor.
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Figure 7. Pearson correlation heatmap of 34 cancer-related genes and 20 key nodes in the BRCA
study. All of the 34 genes are highly associated with breast cancer.
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Figure 8. Kaplan-Meier survival curves for four key nodes in a hidden layer. The smaller the p-value,
the more significant the effect of the node on the survival of the patient.
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3.4. Biological Function Analysis of Hidden Nodes

To further explore the biological relevance of hidden layer nodes, we performed a gene
set enrichment analysis (GSEA) using the KEGG pathway. We ranked genes according to
the Pearson correlation and selected the leader gene for each key node. Based on the leader
genes, we created the pathway association network (Figure 9). In Figure 9, each point
represents a pathway, and the size of the point represents the number of genes enriched in
this pathway, which indicates that the hidden layers of our module can effectively learn
the biological functions associated with diseases.
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Figure 9. Pathway association network of leader genes. Each point represents a pathway signal, and
the gray solid represents the association between pathways. The size of points represents the number
of genes enriched in this pathway.

3.5. Ablation Study for SAVAE-Cox

To verify the contribution of our proposed model to the effect of survival prognosis,
we performed ablation experiments on SAVAE-Cox. Briefly, we divided the model into
four groups: Cox-nnet, SAVAE-Cox without pretrain, SAVAE-Cox without attention, and
SAVAE-Cox. We trained four models on 16 cancer types and divided ranks 1, 2, 3, and 4
in descending order according to the performance of the four models in each cancer and
plotted Figure 10. Note that optimal parameter settings were selected for all four models in
the ablation study. In Table A1 we listed the parameter settings of these four models.

By comparing SAVAE-Cox and SAVAE-Cox without attention, we find that using
the self-attention module can significantly improve the model prognosis accuracy. This
result shows that there is a potential feature semantic correlation in high-dimensional
gene expression, and this correlation cannot be effectively learned using traditional fully
connected layers. This latent relationship can be found to a large extent using attention-
based methods. By comparing SAVAE-Cox and SAVAE-Cox without pretrain, we find it
interesting that the module that used transfer learning on the five datasets HNSC, KIRC,
LUAD, LUSC, and OV fails to improve the model’s prognostic results. In general, using
the transfer learning strategy improves the C-index of the model.
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Figure 10. Ablation study on 16 cancer types. The performance results of four models were divided
toranks 1, 2, 3, 4 in descending order.

4. Discussion

In this work, we introduced a novel survival analysis model for different cancer
types, which is the first attempt to improve the overall survival analysis accuracy with
the help of the self-attention mechanism. At the same time, we designed a data-driven
dimensionality reduction method regarding the idea of transfer learning and GAN [27]
to further improve the prediction effect. Our results in Figure 5 suggest that the best
performance can be achieved using SAVAE-Cox in the prediction of survival analysis for
12 cancer types including BLCA, BRCA, HNSC, KIRC, LGG, LIHC, LUAD, LUSC, SARC,
SKCM, STAD, and UCEC. There are multiple factors or complex genetic associations in
most of these 12 cancer types that potentially influence patient survival, which shows
that the SAVAE-Cox can effectively discover such latent semantic correlations. However,
for some small sample datasets like CESC, our model still cannot achieve optimal results.
Using transfer learning can indeed alleviate the overfitting problem to a certain extent.
However, due to the deepening of the network, it is not comparable to some classical
methods in the cancer dataset with sparse samples. Besides, for some cancer datasets
like PRAD with an extremely uneven number of positive and negative samples, using
SAVAE-Cox for survival analysis is also not the best choice. We analyze that the cause for
this problem is also that the complexity of the network increases, which leads to a larger
differentiation of the fitting to the two samples, resulting in a loss of accuracy.

We proposed an adversarial VAE-based [32] pre-training method for dimensionality
reduction of high-dimensional genes. Unlike classical feature selection methods, our
proposed dimensionality reduction method is data-driven. SAVAE-Cox can adaptively
extract useful features from high-dimensional genes based on this novel method. This
dimensionality reduction method is applicable to any type of data distribution. From
Table 2, we found that using the data-driven method showed the best mean concordance
index on 13 cancer types, and the effect of using the data-driven dimensionality reduction
method was more significant. However, in some aspects, traditional feature selection
dimensionality reduction methods may be more effective. For example, in dimensionality
reduction tasks for small sample datasets, data-driven methods cannot predict the whole
low-dimensional latent space based on a small number of sample distributions. According
to the results in Table 2, we can find that using the Chi2 method for dimensionality
reduction achieved the best results on two datasets with small sample sized datasets such
as LUSC, CESC and SKCM. Meanwhile, we combine GAN [27] and VAE [32] to design
a more powerful data-driven dimensionality reduction strategy. This method introduces
distribution constraints in GAN, which improves the stability of dimensionality reduction
under the condition of ensuring strong generation and fitting capabilities. By comparing the
state-of-the-art data-driven dimensionality reduction methods in Table 2, the performance
using our method is better.

Through the analysis of BRCA, our model can discover cancer-related genes and reveal
biological functions. From Figures 7 and 8 we find that each key node of the hidden layer
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of the SAVAE-Cox model is a prognostic features affecting patient survival. Furthermore,
our model helps to explain and discover new cancer-related genes. Meanwhile, according
to Figure 9, numerous node-related genes are enriched in cancer pathways such as the
breast cancer pathway, the PI3K-Atk signaling pathway, the Rap1 signaling pathway, and
the MPKA signaling pathway, in which we confirmed that the hidden layer of the model is
highly related to biological functions and reveal rich biological function signals.

However, we found that the overfitting of the SAVAE-Cox is still a very serious
problem. At the same time, the performance of the model is not good enough on datasets
with an imbalanced number of positive and negative samples. In future work, we will
study some data augmentation methods to solve these problems and explore some novel
multi-head attention-based survival analysis frameworks.

5. Conclusions

We introduced a brand new survival analysis model and performed survival prognosis
on 16 cancer types. The prognosis was significantly improved when self-attention and
transfer learning was integrated to the SAVAE-Cox. With the further analysis of the hidden
layer features of SAVAE-Cox, we confirmed that the hidden layer features of this model
play a significant role in cancer prognosis and the revealing of biological function. In
conclusion, the SAVAE-Cox combines a self-attention mechanism with transfer learning,
and feature selection provides a new prospect for future deep cancer prognosis.
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Appendix A
Appendix A.1. Descriptions and Download Details of the Datasets

In this work, we used TCGA mRNA expression and clinical datasets of 16 cancer
types. The 16 cancer types of data are: bladder carcinoma (BLCA), breast carcinoma
(BRCA), head and neck squamous cell carcinoma (HNSC), kidney renal cell carcinoma
(KIRC), brain lower-grade glioma (LGG), liver hepatocellular carcinoma carcinoma (LIHC),
lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), ovarian carcinoma
(OV), stomach adenocarcinoma (STAD), cervical squamous cell carcinoma and endocer-
vical adenocarcinoma (CESC), colon adenocarcinoma (COAD), sarcoma (SARC), uterine
corpus endometrial carcinoma (UCEC), prostate adenocarcinoma (PRAD), and skin cuta-
neous melanoma (SKCM). At the same time, the TCGA Pan-Cancer (PANCAN) dataset
covering 33 cancer types was used in this study. The Pan-Cancer dataset is from the Pan-
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Cancer Atlas project. Thirty-three cancer types from the TCGA database were analyzed
in this program. The GDC mRNA quantification analysis pipeline measures gene-level
expression with STAR as raw read counts. Subsequently, the counts are augmented with
several transformations including fragments per kilobase of transcript per million mapped
reads (FPKM), upper quartile normalized FPKM (FPKM-UQ), and transcripts per million
(TPM). The main purpose of using this normalization is to remove technical bias from dif-
ferent sequencing data. More information on the GDC pipeline used to generate this data is
at: https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/
(Last visited on 21 March 2022). In this work, we mainly use the data normalized by FPKM-
uq. UCSC Xena did some preliminary preprocessing on the TCGA dataset, all of which
was open access, which can save a lot of preprocessing work. All the datasets used by
our work can be download at https://xenabrowser.net/datapages/ (Last visited on 21
March 2022). The mRNA dataset obtained by Xena includes 56,716 genes was normalized
by log(FPKM + 1), many of which are empty. So further preprocessing work is required.

Appendix A.2. Hyperparameter Selection

In this work, we mainly chose the optimal hyperparameters based on empirical
knowledge and Bayesian optimization methods. In the training process of SAVAE, the
optimal hyperparameters were: Ir = 0.0001, A, = 10, A; = 10, A, = 10, epoch = 300,
batch_size = 256. In training SAVAE-Cox, the optimal hyperparameter in survival analysis
was shown in Table A1.
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Cox-dnoiseAE 0.0005 15 1024
Cox-lasso 0.0005 15 1024
Comparative Cox-ridge 0.001 15 1024
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