
Article

A Fast Image Alignment Approach for 2D Classification of
Cryo-EM Images Using Spectral Clustering

Xiangwen Wang 1,2 , Yonggang Lu 1,* and Jiaxuan Liu 1

����������
�������

Citation: Wang, X.; Lu, Y.; Liu, J. A

Fast Image Alignment Approach for

2D Classification of Cryo-EM Images

Using Spectral Clustering. Curr.

Issues Mol. Biol. 2021, 43, 1652–1668.

https://doi.org/10.3390/cimb43030117

Academic Editor: Hidayat Hussain

Received: 29 September 2021

Accepted: 14 October 2021

Published: 18 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China;
wangxw2018@lzu.edu.cn (X.W.); jxliu2013@lzu.edu.cn (J.L.)

2 College of Computer Science and Engineering, Northwest Normal University, Lanzhou 730070, China
* Correspondence: ylu@lzu.edu.cn

Abstract: Three-dimensional (3D) reconstruction in single-particle cryo-electron microscopy (cryo-
EM) is a significant technique for recovering the 3D structure of proteins or other biological macro-
molecules from their two-dimensional (2D) noisy projection images taken from unknown random
directions. Class averaging in single-particle cryo-EM is an important procedure for producing high-
quality initial 3D structures, where image alignment is a fundamental step. In this paper, an efficient
image alignment algorithm using 2D interpolation in the frequency domain of images is proposed
to improve the estimation accuracy of alignment parameters of rotation angles and translational
shifts between the two projection images, which can obtain subpixel and subangle accuracy. The
proposed algorithm firstly uses the Fourier transform of two projection images to calculate a discrete
cross-correlation matrix and then performs the 2D interpolation around the maximum value in the
cross-correlation matrix. The alignment parameters are directly determined according to the position
of the maximum value in the cross-correlation matrix after interpolation. Furthermore, the proposed
image alignment algorithm and a spectral clustering algorithm are used to compute class averages for
single-particle 3D reconstruction. The proposed image alignment algorithm is firstly tested on a Lena
image and two cryo-EM datasets. Results show that the proposed image alignment algorithm can
estimate the alignment parameters accurately and efficiently. The proposed method is also used to
reconstruct preliminary 3D structures from a simulated cryo-EM dataset and a real cryo-EM dataset
and to compare them with RELION. Experimental results show that the proposed method can obtain
more high-quality class averages than RELION and can obtain higher reconstruction resolution than
RELION even without iteration.

Keywords: cryo-electron microscopy; single-particle reconstruction; class averaging; image align-
ment; 2D interpolation; spectral clustering

1. Introduction

Cryo-electron microscopy (cryo-EM) has become a recognized powerful technique in struc-
tural biology for three-dimensional (3D) structure determination of biological macromolecules,
supramolecular complexes, and subcellular structures [1–3]. It does not need crystallization
and has been widely used to study large macromolecular complexes that are difficult to be crys-
tallized. The goal of cryo-EM 3D reconstruction is to reconstruct a high-resolution estimation
of the 3D structure of the molecule from a set of micrographs [4–6]. Cryo-EM can be used to
investigate complete and fully functional macromolecular complexes in different functional
states, providing a richness of biological insight [7,8]. Cryo-EM has made tremendous
progress in the past few years [9,10]. Owing to these exciting new developments, cryo-EM
was selected by Nature Methods as the “Method of the Year 2015”, and the Nobel Prize in
Chemistry 2017 was awarded to Jacques Dubochet, Joachim Frank, and Richard Henderson
“for developing cryo-electron microscopy for the high-resolution structure determination
of biomolecules in solution” [5].
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As one of the major cryo-EM techniques, single-particle reconstruction has become one
of the most successful techniques for structural biology [11–13]. Single-particle reconstruc-
tion using cryo-EM has been undergoing fast transformations, leading to an abundance
of new high-resolution structures and reaching close to atomic resolution [14,15]. In the
single-particle reconstruction, the same macromolecule is projected from various unknown
directions, and the final 3D structure of the macromolecule can be reconstructed from the
two-dimensional (2D) projection images using the estimated projection directions in 3D
space [16,17]. One of the major challenges to be overcome in the single-particle recon-
struction of biological samples is to estimate the projection directions of the projection
images [18,19]. However, due to the very low signal-to-noise ratio (SNR) of the projection
images caused by low-dose electron radiation, it is usually difficult to obtain the correct
estimation of the projection directions. Consequently, the single-particle 3D reconstruction
of cryo-EM is a very challenging task [20,21].

Class averaging in single-particle cryo-EM is an important procedure for producing
high-quality initial 3D structures and discarding invalid particles or contaminants [22]. It
organizes a dataset by grouping together the particles corresponding to the same (or quite
similar) projection directions. Each group of cryo-EM projection images is regarded as a
class and is averaged to produce an averaged image called a class average. By averaging,
the random noise in the background tends to be canceled, and the features of interest in the
projection images are reinforced by each other as the number of superimposed projection
images becomes large [23,24]. Class averages can be used to improve ab initio modeling in
cryo-EM. They can also be applied for discovering heterogeneity or symmetricity as well
as for separating particles into subgroups for additional analysis [25].

Different solutions have been proposed for solving the 2D class averaging problem
in cryo-EM [26–31]. Some popular cryo-EM software packages, such as cryoSPARC [32]
and RELION [33–35] have implemented 2D class averaging. RELION uses a maximum
likelihood expectation maximization (ML-EM) 2D classification procedure to infer parame-
ters for a statistical model from the data. The ML-EM scheme has suffered less from initial
reference bias, but it is computationally expensive. The iterative stable alignment and
clustering (ISAC) algorithm [36] is another famous 2D class averaging method. ISAC relies
on a modified k-means clustering method and the concepts of stability and reproducibility,
which can extract validated, homogeneous subsets of projection images. ISAC is also time
consuming.

Image alignment is a fundamental step in the class averaging procedure [37,38].
The cryo-EM projection images are required to be identified and rotationally and trans-
lationally aligned to distinguish among different classes. After alignment, the cryo-EM
projection images with nearly the same projection directions are grouped in the 2D clas-
sification step. Well-aligned cryo-EM projection images with correct in-plane rotations
and translational shifts in the x-axis and y-axis directions can improve the accuracy of the
2D classification [39]. Correctly classifying the cryo-EM projection images into homoge-
neous groups renders the satisfactory determination of the preliminary 3D structures [40].
Although translational invariant and rotational invariant image representation methods
have been used in cryo-EM, they usually are not powerful enough to discover subtle differ-
ences between projection images [41]. It is necessary to design efficient image alignment
algorithms to find the best alignment parameters and generate high-quality class averages.

Image alignment is aimed at estimating three alignment parameters: a rotation angle
and two translational shifts in the x-axis and y-axis directions. Image rotational align-
ment and translational alignment in real space need too many iterations to compute the
alignment parameters, and the calculated alignment parameters are integers. In Fourier
space, alignment parameters can be computed directly without enumeration. In this paper,
an efficient image alignment algorithm using the 2D interpolation in the frequency domain
of images is proposed to improve the estimation accuracy of alignment parameters, which
can obtain subpixel and subangle accuracy. Specifically: (1) for image rotational alignment,
two images are transformed by polar fast Fourier transform (PFFT) to calculate a discrete
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cross-correlation matrix, and then the 2D interpolation is performed around the maximum
value in the cross-correlation matrix. The rotation angle between the two images is directly
determined according to the position of the maximum value in the cross-correlation matrix
after interpolation. (2) For image translational alignment, all operation steps are consis-
tent with image rotational alignment, where fast Fourier transform (FFT) is used instead
of PFFT. (3) For image alignment with rotation and translation, only a few iterations of
combined rotational and translational alignment are needed to align images. Furthermore,
the proposed algorithm and a spectral clustering algorithm [42] are used to compute class
averages for single-particle 3D reconstruction. The main contributions of this paper are
summarized as follows:

• 2D interpolation in the frequency domain is used to improve the estimation accuracy
of the alignment parameters, which can obtain subpixel and subangle accuracy.

• The alignment parameters of rotation angles and translational shifts in the x-axis and
y-axis directions can be computed directly in Fourier space without enumeration,
which is very fast.

• A spectral clustering algorithm is used for the unsupervised 2D classification of
single-particle cryo-EM projection images.

The rest of this paper is organized as follows: In Section 2, the proposed image align-
ment algorithm is described in detail, including the image rotational alignment, the image
translational alignment, and image alignment with rotation and translation. The unsu-
pervised 2D classification of cryo-EM projection images performed by using a spectral
clustering algorithm is also introduced. In Section 3, the flexibility and performance of the
proposed image alignment algorithm are demonstrated through three datasets, including
a Lena image, a simulated dataset of cryo-EM projection images, and a real dataset of
cryo-EM projection images. The single-particle 3D reconstruction using produced class
averages is also performed and compared with RELION. Finally, this paper is concluded
in Section 4.

2. Materials and Methods

In this section, the proposed image alignment algorithm is demonstrated in detail,
including (1) image rotational alignment; (2) image translational alignment; and (3) image
alignment with rotation and translation. The diagrams of the proposed image rotational
and translational alignment algorithms using 2D interpolation in the frequency domain
of images are shown in Figure 1. Then the proposed algorithm and a spectral clustering
algorithm are used to compute class averages.

2.1. Image Rotational Alignment

Image rotational alignment is one of the basic operations in image processing. The ro-
tation angle between two images can be estimated either in real space or in Fourier space.
In real space, image rotational alignment is a rotation-matching process, that is, an exhaus-
tive search. An image is rotated in a certain step size, and the similarity between the rotated
image and the reference image is calculated. When the image is rotated for one circle,
the index corresponding to the maximum similarity is the final estimated rotation angle
between the two images. This method is simple, but it is time consuming and inaccurate.
Assuming the search step size is p, image rotational alignment in real space requires 360/p
rotation-matching calculations. Although the coarse-to-fine search method can be used, it
still needs to be calculated many times.

In this paper, the image rotational alignment is implemented in Fourier space without
rotation-matching iteration, which is a direct calculation method. In general, the cryo-EM
projection images are square; therefore, only the rotational alignment of the square image
is considered. For two images Mi and Mj of size m × m, the proposed image rotational
alignment method is illustrated in Figure 1a. In the rest of this paper, the proposed image
rotational alignment algorithm is represented as function rotAlign(·, ·). There are three
key steps in the image rotational alignment algorithm:
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Figure 1. The diagrams of the proposed image rotational and translational alignment algorithms
using 2D interpolation in the frequency domain of images. (a) Image rotational alignment. (b) Image
translational alignment.

• Step 1: Calculate a cross-correlation matrix using PFFT. Firstly, images Mi and Mj are
transformed by PFFT to obtain two corresponding spectrum maps Fi and Fj with the
size of bm/2c × 360. Then, the cross-correlation matrix C is calculated according to:

C = abs(i f f t2(Fi × conj(Fj))) (1)

where abs(·) is an absolute value function, i f f t2(·) is a 2D inverse fast Fourier trans-
form function, and conj(·) is a complex conjugate function. These functions have been
implemented in MATLAB. The values in matrix C need to be circularly shifted by
bm/4c positions to exchange rows to horizontally center the large values in matrix C,
where the function circshi f t implemented in MATLAB can be used. The size of the
cross-correlation matrix C is bm/2c × 360.

• Step 2: 2D interpolation around the maximum value in the cross-correlation matrix
C. The rotation angle δθ of the image Mj relative to the image Mi can be roughly
determined according to the position of the maximum value in the cross-correlation
matrix C on the x-axis. The rotation angle calculated by this method is an integer.
In order to calculate the rotation angle more accurately, the 2D interpolation is per-
formed around the maximum value in the cross-correlation matrix C. Specifically,
an 11 × 11 matrix Ĉ centered on the maximum value in the matrix C is extracted
from the matrix C (see the dotted box in Figure 1a), and then the 2D interpolation is
performed in the matrix Ĉ. Theoretically, any interpolation method can be used in
the proposed algorithm. In this paper, the spline interpolation is used to perform the
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2D interpolation, which has been implemented in MATLAB as function interp2 with
parameter ‘spline’. After 2D interpolation, the size of the matrix Ĉ becomes 101 × 101.

• Step 3: Calculate the rotation angle. The rotation angle δθ can be directly calculated
according to the position of the maximum value in the matrix Ĉ after interpolation on
the x-axis. Generally, the rotation angle δθ of an image is in the range of [−180◦, 180◦],
so δθ needs to be corrected according to:

δθ =

{
δθ, i f 0◦ ≤ δθ ≤ 180◦

δθ − 360◦, i f 180◦ < δθ < 360◦
(2)

2.2. Image Translational Alignment

Image translational alignment can also be realized in real space or Fourier space. In real
space, image translational alignment is also an exhaustive search, and it is more complex
than image rotational alignment. For two images Mi and Mj of size m × m, it needs to
compute the similarity between each row (column) of Mi and each row (column) of Mj
and then determines the translational shift δx in the x-axis direction and the translational
shift δy in the y-axis direction according to the maximum similarity. Therefore, the image
translational alignment in real space requires 2× m× m similarity calculations. In addition,
the translational shifts estimated in real space are integers, which are not accurate enough.

Similar to image rotational alignment, in this paper, the image translational alignment
is implemented in Fourier space. It is a direct calculation method without enumeration.
For two images Mi and Mj of size m × m, the proposed image translational alignment
method is illustrated in Figure 1b. In the rest of this paper, the proposed image translational
alignment algorithm is represented as function shi f tAlign(·, ·). There are three key steps
in the image translational alignment algorithm:

• Step 1: Calculate a cross-correlation matrix using FFT. Firstly, images Mi and Mj are
transformed by FFT to obtain two corresponding spectrum maps Fi and Fj with size
of m × m. Then, the cross-correlation matrix C is calculated according to:

C = i f f t2(Fi × conj(Fj)) (3)

The values in matrix C need to be shifted to center the large values in matrix C,
where the function f f tshi f t implemented in MATLAB can be used. The size of the
cross-correlation matrix C is m × m.

• Step 2: Two-dimensional interpolation around the maximum value in the cross-
correlation matrix C. The translational shifts δx and δy of the image Mj relative to the
image Mi in the x-axis and y-axis directions can be roughly determined according
to the position (x, y) of the maximum value in the cross-correlation matrix C on the
x-axis and y-axis, respectively. The translational shifts calculated by this method
are integers. In order to calculate the translational shifts more accurately, just as
with the image rotational alignment described in Section 2.1, the 2D interpolation
is performed around the maximum value in the cross-correlation matrix C, where
the spline interpolation is used. Specifically, an 11 × 11 matrix Ĉ centered on the
maximum value in the matrix C is extracted from the matrix C (see the dotted box
in Figure 1b), and then the 2D interpolation is performed in the matrix Ĉ. After 2D
interpolation, the size of the matrix Ĉ becomes 101 × 101.

• Step 3: Calculate the translational shifts. The translational shifts δx and δy of the
image Mj relative to the image Mi are directly calculated according to the position
(x, y) of the maximum value in the matrix Ĉ after interpolation on the x-axis and
y-axis, respectively: {

δx = bm/2c − x + 1
δy = bm/2c − y + 1

(4)
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2.3. Image Alignment with Rotation and Translation

Image alignment with rotation and translation is a fundamental but challenging step
in class averaging. It is the coupling of image rotational alignment and image translational
alignment and generally requires iterations. In this paper, an efficient image alignment
algorithm using the 2D interpolation in the frequency domain of images is proposed, which
is listed in Algorithm 1. The functions rotAlign(·, ·) and shi f tAlign(·, ·) represent the
image rotational alignment algorithm described in Section 2.1 and the image translational
alignment algorithm described in Section 2.2, respectively. The functions imrotate(·, ·)
and imshi f t(·, ·) represent the image rotation operation and image translation operation,
respectively. For each iteration, the test image M is first rotationally aligned and then
translationally aligned to calculate the three alignment parameters. The final alignment
parameters ∆θ, ∆x, ∆y, and the original test image M are used to calculate the final
aligned image MA, reducing the error accumulation caused by interpolation calculation
in image rotation and translation. When the alignment parameters δθ, δx, and δy during
the iteration remain unchanged, the iteration can be terminated ahead of time. According
to our experience, the program converges within ten iterations in the majority of cases.
In addition, there is no complicated operation in the algorithm. It can efficiently and
effectively align two images. Therefore, the proposed algorithm can be used to align a large
number of cryo-EM projection images.

2.4. Class Averaging

In this paper, the proposed image alignment algorithm and a spectral clustering
algorithm [42] are used to implement class averaging. The calculation process of the class
averaging is shown in Figure 2. First of all, all the cryo-EM projection images are aligned by
the proposed image alignment algorithm to calculate the similarity matrix S between them.
As in many studies [5,25], the 2D correlation coefficient is used to compute the similarity:

S(i, j) =
∑m

x=1 ∑m
y=1(Mi(x, y)− M̄i)

(
Mj(x, y)− M̄j

)√(
∑m

x=1 ∑m
y=1(Mi(x, y)− M̄i)

2
)(

∑m
x ∑m

y
(

Mj(x, y)− M̄j
)2
) (5)

where Mi(x, y) and Mj(x, y) are the pixel values of images Mi and Mj, respectively. M̄i
and M̄j are the mean values of the pixel values of images Mi and Mj, respectively. m is the
size of the projection image in one dimension.

Afterward, the similarity matrix S is converted into an adjacency matrix AM using
a k-nearest neighbor (kNN) algorithm [43] and a shared nearest neighbor (SNN) algo-
rithm [44]. Specifically, the matrix SNN, which is used to represent the number of shared
near neighbors between projection images Mi and Mj, is calculated as follows:

SNN(i, j) = |KNN(i) ∩ KNN(j)| (6)

where KNN(i) and KNN(j) are the sets of k nearest neighbors of projection images Mi and
Mj, respectively, which can be found according to the similarity matrix S. The matrix SNN
is converted into an adjacency matrix AM by binarization:

AM(i, j) =

{
1, SNN(i, j) > NS

0, otherwise
(7)

where NS = 5 is the threshold parameter used to represent at least NS shared nearest
neighbors between projection images Mi and Mj. The empirical value of parameter k in the
kNN algorithm can be calculated adaptively according to the total number of projection
images N:

k =
√

N + NS (8)
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Algorithm 1: Image alignment algorithm using 2D interpolation in the fre-
quency domain.

Input: test image M, reference image MR, maximum iteration T
Output: alignment parameters ∆θ, ∆x, ∆y and the aligned image MA

MA ← M;
m← size(M);
for i← 1 to T do

δθ(i)← rotAlign(MR, MA);
MRA ← imrotate(MA,−δθ(i));
[δx(i), δy(i)]← shi f tAlign(MR, MRA);
∆θ ← ∑i

j←1 δθ(j) mod 360;
if ∆θ > 180 then

∆θ ← ∆θ − 360;
end
∆x ← ∑i

j←1 δx(j) mod m;

∆y← ∑i
j←1 δy(j) mod m;

if ∆x > m/2 then
∆x ← ∆x−m;

end
if ∆y > m/2 then

∆y← ∆y−m;
end
MA ← imrotate(M,−∆θ);
MA ← imshi f t(MA, [−∆x,−∆y]);
if i > 1 then

if δθ(i) = δθ(i− 1) & δx(i) = δx(i− 1) & δy(i) = δy(i− 1) then
break;

end
end

end
return ∆θ, ∆x, ∆y, MA;

Finally, the adjacency matrix AM is used as the input of the normalized spectral
clustering algorithm [45] to perform unsupervised classification. Projection images grouped
in a class are aligned and weighted averaged to produce a class average. Assuming that
the jth class contains Nj projection images, the class average MAVG

j can be calculated as:

MAVG
j =

1

∑
Nj
i=1 S(i, j)

Nj

∑
i=1

(
MiS(i, j) + Mj

)
(9)

where S(i, j) is the similarity between the projection image Mj that is closest to the cluster
center of the jth class and the projection image Mi that is aligned with Mj in the jth class.
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Figure 2. A diagram of the calculation process of the class averaging.

3. Results and Discussion

In this section, some experiments are performed to demonstrate the performance of
the proposed image alignment algorithm. Firstly, the proposed image alignment algorithm
is used to estimate alignment parameters. Secondly, the proposed image alignment algo-
rithm and the normalized spectral clustering algorithm with adjacency matrix are used to
produce class averages for reconstructing the preliminary 3D structure. The performance
of the image alignment algorithm in Fourier space with and without 2D interpolation is
compared. The running time of image alignment in Fourier space and real space is also
compared. The reconstruction results are compared with RELION [35]. For the convenience
of description, in the rest of this paper, the image alignment algorithm in Fourier space
using the 2D interpolation is named IAFI; the image alignment algorithm in Fourier space
without interpolation is named IAF; and the image alignment algorithm in real space is
named IAR. The search step in IAR is 1.

3.1. Feasibility of the Image Alignment Algorithm

The proposed image alignment algorithm was performed on three datasets to estimate
alignment parameters of rotation angles and translational shifts in the x-axis and y-axis
directions. The first dataset contains a Lena image of size 256 × 256 pixels. The second
dataset contains 100 clean simulated cryo-EM projection images of size 128 × 128 pixels
projected from the published cryo-EM structure EMD5787 [46] with random projection
directions. The third dataset contains 100 real cryo-EM projection images selected randomly
from the picked particles of EMPIAR10028 [47], which were down sampled to 180 × 180
pixels. Three simulations were designed to test the performance of the proposed image
alignment algorithm: (1) test images were only rotated; (2) test images were only shifted;
and (3) test images were firstly shifted and then rotated. Figure 3 shows some test images
used in the simulations. All simulations in this subsection were run on MATLAB R2018b
on a six-core system with 16 GB RAM in a Windows 10 environment.
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The first simulation estimates the rotation angles between the reference images and
the test images. For the first dataset, the Lena image is rotated 100 times randomly in the
range of [−180◦, 180◦] to generate 100 test images. For other datasets, each projection image
is rotated randomly in the range of [−180◦, 180◦] to generate a test image. The ground-truth
rotation angles were set to only one decimal place. The rotation angles between images
were estimated using the image rotational alignment algorithm described in Section 2.1.
Table 1 shows the frequency distribution of the absolute error in degrees between the
estimated and the ground-truth rotation angles for different datasets. It can be seen that
both the IAFI algorithm and the IAF algorithm can estimate the rotation angles with small
errors. The errors of the IAFI algorithm are less than 0.5◦ for all datasets while the errors of
the IAF algorithm are greater than 0.5◦ but less than 1◦ in a few cases. The total error of
the IAFI algorithm is smaller than that of the IAF algorithm for all datasets. It indicates
that the proposed image rotational alignment algorithm can estimate the rotation angles
between images with high accuracy.

Table 1. The frequency distribution of the absolute error in degrees between the estimated and the
ground-truth rotation angles for different test images that were only rotated.

Error
Lena EMD5787 EMPIAR10028

IAFI IAF IAFI IAF IAFI IAF

[0, 0.5) 100 91 100 84 100 94
[0.5, 1] 0 9 0 16 0 6

total error 6.0 24.2 11.3 27.8 4.4 23.0

Table 2 shows the running time in seconds for different image rotational alignment
algorithms to run 100 times. It can be seen that image rotational alignment in Fourier
space is much faster than that in real space. In addition, for all of these three algorithms,
the larger the image size, the more time they take to rotationally align images. The 2D
interpolation calculation in IAFI is very fast, and the estimated rotation angles using IAFI
are more accurate than using IAF. This shows that the proposed image rotational alignment
algorithm is very efficient.
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Table 2. The average running time in seconds for different image rotational alignment algorithms to
run 100 times for different test images that were only rotated.

Datasets Image Size IAFI IAF IAR

Lena 256 × 256 0.6161 0.5435 377.4849
EMD5787 128 × 128 0.3941 0.3172 89.0824

EMPIAR10028 180 × 180 0.5218 0.4318 159.9434

The second simulation estimates the translational shifts in the x-axis and y-axis di-
rections between the reference image and the test image. For the first dataset, the Lena
image was shifted 100 times randomly in the range of [−m/10, m/10] in the x-axis and
y-axis directions to generate 100 test images. For other datasets, each projection image was
shifted randomly in the range of [−m/10, m/10] to generate a test image. The ground-truth
translational shifts were set to only one decimal place. The translational shifts between
images were estimated using the image translational alignment algorithm described in
Section 2.2. Tables 3 and 4 show the frequency distribution of the absolute error in pixels
between the estimated and the ground-truth translational shifts in the x-axis and y-axis
directions, respectively, for different test images. It can be seen that the absolute errors for
both the IAFI algorithm and the IAF algorithm are within 1 pixel. In particular, the IAFI
algorithm can estimate the translational shifts almost exactly for all of these three datasets.
It indicates that the proposed image translational alignment algorithm can accurately
estimate translational shifts between images.

Table 3. The frequency distribution of the absolute error in pixels between the estimated and the
ground-truth translational shifts in the x-axis direction for different test images that were only shifted.

Error
Lena EMD5787 EMPIAR10028

IAFI IAF IAFI IAF IAFI IAF

[0, 0.5) 100 87 100 86 100 87
[0.5, 1] 0 13 0 14 0 13

total error 0.5 28.0 0.0 23.8 4.2 24.8

Table 4. The frequency distribution of the absolute error in pixels between the estimated and the
ground-truth translational shifts in the y-axis direction for different test images that were only shifted.

Error
Lena EMD5787 EMPIAR10028

IAFI IAF IAFI IAF IAFI IAF

[0, 0.5) 100 94 100 91 100 89
[0.5, 1] 0 6 0 9 0 11

total error 0.5 25.2 0.0 26.0 3.9 26.2

Table 5 shows the running time in seconds for different image translational alignment
algorithms to run 100 times. It can be seen that image translational alignment in Fourier
space is much faster than that in real space. In addition, for all of these three algorithms,
the larger the image size, the more time they take to translationally align images. This
shows that the proposed image translational alignment algorithm is very efficient.

Image alignment with both rotation and translation is more difficult than only rotation
or translation. The third simulation estimates the alignment parameters including rotation
angles and translational shifts in the x-axis and y-axis directions between the reference
image and the test image. In the single-particle 3D reconstruction, most particles were
almost centered in the particle picking procedure, which means only a small number of
translational shifts are required. So, a small number of translational shifts were set on
the test images in this simulation. For the first dataset, the Lena image was firstly shifted
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100 times randomly in the range of [−m/20, m/20] in the x-axis and y-axis directions and
then rotated randomly in the range of [−180◦, 180◦] to generate 100 test images. For other
datasets, each projection image was firstly shifted randomly in the range of [−m/20, m/20]
in the x-axis and y-axis directions and then rotated randomly in the range of [−180◦, 180◦]
to generate a test image. The ground-truth rotation angle and translational shifts were set
to only one decimal place. The maximum iteration was set as 10.

Table 5. The running time in seconds for different image translational alignment algorithms to run
100 times for different test images that were only shifted.

Datasets Image Size IAFI IAF IAR

Lena 256 × 256 0.8403 0.7820 1102.3793
EMD5787 128 × 128 0.2545 0.2057 193.7869

EMPIAR10028 180 × 180 0.3979 0.3579 726.7303

Table 6 shows the frequency distribution of the absolute error in degrees between the
estimated and the ground-truth rotation angles for different test images. It can be seen that
both the IAFI algorithm and the IAF algorithm can estimate the rotation angle with small
errors, and the total error of the IAFI algorithm is smaller than that of the IAF algorithm
for all test images. The frequency distribution of the absolute error in pixels between the
estimated and the ground-truth translational shifts in the x-axis and y-axis directions for
different test images are shown in Tables 7 and 8, respectively. It can be seen that the IAFI
algorithm can estimate the translational shifts with smaller errors than the IAF algorithm.
It should be noted that for the EMPIAR10028 dataset, in rare cases, the estimated rotation
angle is wrong (the error greater than 5◦), resulting in the estimated translational shifts
also being wrong (the error greater than 5 pixels). This indicates that the proposed image
alignment algorithm is very effective for estimating alignment parameters between images.

Table 6. The frequency distribution of the absolute error in degrees between the estimated and the
ground-truth rotation angles for different test images that were firstly shifted and then rotated.

Error
Lena EMD5787 EMPIAR10028

IAFI IAF IAFI IAF IAFI IAF

[0, 0.5) 100 87 99 89 86 73
[0.5, 1] 0 13 1 11 3 14
(1, 5] 0 0 0 0 0 0
≥5 0 0 0 0 11 13

total error 12.4 23.7 6.0 25.1 831.7 1031.3

Table 7. The frequency distribution of the absolute error in pixels between the estimated and the
ground-truth translational shifts in the x-axis direction for different test images that were firstly
shifted and then rotated.

Error
Lena EMD5787 EMPIAR10028

IAFI IAF IAFI IAF IAFI IAF

[0, 0.5) 100 86 100 93 88 77
[0.5, 1] 0 14 0 7 1 10
(1, 5] 0 0 0 0 2 2
≥5 0 0 0 0 9 11

total error 1.6 27.0 0.0 24.0 304.4 449.5
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Table 8. The frequency distribution of the absolute error in pixels between the estimated and the
ground-truth translational shifts in the y-axis direction for different test images that were firstly
shifted and then rotated.

Error
Lena EMD5787 EMPIAR10028

IAFI IAF IAFI IAF IAFI IAF

[0, 0.5) 100 84 100 91 88 81
[0.5, 1] 0 16 0 9 1 5
(1, 5] 0 0 0 0 0 1
≥5 0 0 0 0 11 13

total error 2.9 26.8 0.0 24.8 285.9 533.3

Table 9 shows the distribution of the number of the final iterations. It can be seen
that both the IAFI algorithm and the IAF algorithm converge within 10 iterations for all
test images in most cases. Generally, the IAFI algorithm and the IAF algorithm require
five iterations. On the whole, the proposed image alignment algorithm can accurately align
images within 10 iterations.

Table 9. The distribution of the number of final iterations.

Iteration
Lena EMD5787 EMPIAR10028

IAFI IAF IAFI IAF IAFI IAF

3 4 8 11 10 6 14
4 6 36 10 46 12 37
5 57 51 59 33 31 26
6 26 4 12 10 28 11
7 7 0 8 1 10 2
8 0 1 0 0 2 0
9 0 0 0 0 1 1

10 0 0 0 0 10 9

mean iteration 5.26 4.55 4.96 4.46 5.84 4.99

3.2. Single-Particle 3D Reconstruction

The proposed image alignment algorithm and the normalized spectral clustering
algorithm [45] with adjacency matrix were used to produce class averages, which were
later used for reconstructing the preliminary 3D structure. The simulated single-particle
cryo-EM projection images of EMD5787 [46] and the real cryo-EM projection images of
EMPIAR10028 [47] were used in this experiment. The projection images are aligned using
the proposed image alignment algorithm. The reconstruction results using the image align-
ment algorithms IAFI and IAF were compared with RELION [35], which was embedded
in the SCIPION software framework [48,49]. This experiment was performed using the
ASPIRE software package (http://spr.math.princeton.edu/, accessed on 18 August 2021).
The preliminary 3D structure was reconstructed from the generated class averages using
the common-lines-based angular reconstruction method [50], which was implemented
as the function “cryo_estimate_mean” in the ASPIRE software package. The projection
direction of cryo-EM projection images was estimated using the synchronization algo-
rithm [51], where the common lines between class averages were estimated using our
proposed weighted voting algorithm [52]. All cryo-EM 3D structures were visualized by
the UCSF ChimeraX software [53,54].

Firstly, 10,000 clean centered EMD5787 projection images with the size of 128 × 128
pixels were generated through random rotation matrices corresponding to random projec-
tion directions that were uniformly distributed over the rotation group SO(3). The clean
centered projection images are shifted randomly in the range of [−m/20, m/20] in the
x-axis and y-axis directions. The additive Gaussian white noise with the fixed SNR = 0.1

http://spr.math.princeton.edu/
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was added to the clean shifted projection images to generate the final noisy projection
images. The SNR is defined as follows:

SNR =
var(signal)
var(noise)

(10)

where var is the variance (energy), signal is the clean projection image, and noise is the
noise realization of that projection image. Meanwhile, 10,000 real cryo-EM projection
images were selected randomly from the picked particles of EMPIAR10028 and were down-
sampled to 180 × 180 pixels. The projection images in EMPIAR10028 were globally phase
flipped so that the molecule corresponds brighter pixels and the background corresponded
to darker pixels. Figure 4 shows some projection images in the cryo-EM datasets of
EMD5787 and EMPIAR10028.

EMPIAR
10028

EMD
5787

Figure 4. Samples of projection images in the cryo-EM datasets of EMD5787 and EMPIAR10028.

Then, the cryo-EM projection images were aligned using the image alignment algo-
rithms IAFI and IAF. The similarity matrix between the aligned projection images was
converted into an adjacency matrix using the kNN and SNN algorithms, which was input
into the normalized spectral clustering algorithm for 2D classification. The 10,000 aligned
projection images were classified into 100 classes. The projections classified into the same
class were aligned and weighted averaged to produce a class average. Figure 5 shows
some class averages produced by different methods for the cryo-EM datasets of EMD5787
and EMPIAR10028. Not all the 100 class averages for each dataset were usable for 3D
reconstruction, and some bad class averages needed to be excluded. Table 10 shows the
number of good class averages that were manually selected for 3D reconstruction.

EMD
5787

EMPIAR
10028

IAFI IAF RELION

Figure 5. Samples of the class averages were produced by different methods for the cryo-EM datasets
of EMD5787 and EMPIAR10028.
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Table 10. The number of good class averages for 3D reconstruction.

Datasets IAFI IAF RELION

EMD5787 100 100 47
EMPIAR10028 88 83 25

Finally, the preliminary 3D structure was reconstructed from the selected good class av-
erages. Figure 6 shows the published cryo-EM structures (EMD5787 [46] and EMD2660 [47])
and the reconstructed preliminary 3D structures using different methods for the cryo-EM
datasets of EMD5787 and EMPIAR10028. The voxel dimensions of 3D structures for
these two datasets are 2.54× 2.54× 2.54 Å and 2.68× 2.68× 2.68 Å, respectively. These
reconstructed 3D structures were masked with the radius m ∗ 0.4 and aligned with the
corresponding published structures. The reconstruction results of RELION were achieved
after 25 iterations, while the reconstruction results of IAFI and IAF were directly computed
without iteration. It can be seen that the reconstructed 3D structures are similar to the
corresponding published structures. This indicates that the calculated class averages were
effective in the single-particle 3D reconstruction of cryo-EM, and have certain advantages
in comparison with RELION.

EMPIAR
10028

EMD
5787

Published IAFI IAF RELION

Figure 6. The published cryo-EM structures (EMD5787 [46] and EMD2660 [47]) and the recon-
structed preliminary 3D structures using different methods for the cryo-EM datasets of EMD5787
and EMPIAR10028.

Figure 7 shows the corresponding Fourier shell correlation (FSC) curves [55] of the
reconstructed preliminary 3D structures from different datasets. Figure 7a shows the
FSC curves of the reconstructed EMD5787 structures, which were computed against the
published cryo-EM structure of EMD5787 [46] shown in Figure 6. Figure 7b shows the
FSC curves of the reconstructed 3D structures from EMPIAR10028, which were computed
against the published cryo-EM structure of EMD2660 [47] shown in Figure 6. It can be
seen that using the IAFI algorithm can obtain a higher reconstruction resolution than
using the IAF algorithm. This is because the IAFI algorithm can estimate the alignment
parameters between projection images more accurately than the IFA algorithm, so that the
projection images can be aligned and classified more accurately and finally produce higher
quality class averages for 3D reconstruction. In addition, the reconstruction accuracy of the
proposed 2D classification method using the image alignment algorithms IAFI and IAF is
higher than that of RELION. This is because the proposed 2D classification method can
produce more high-quality class averages than RELION. This further indicates that the
proposed 2D classification method is practicable in the single-particle 3D reconstruction of
cryo-EM and can achieve satisfactory results. In summary, the proposed 2D classification
method is effective for the single-particle 3D reconstruction of cryo-EM, and the well-
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aligned cryo-EM projection images can improve the accuracy of the 2D classification and
further improve the accuracy of 3D reconstruction.

Figure 7. FSC curves of the preliminary 3D structures were reconstructed from the cryo-EM datasets
of EMD5787 (a) and EMPIAR10028 (b) using different methods.

4. Conclusions

The class averaging technique is useful for the 2D analysis of electron micrographs as
well as in single-particle cryo-EM 3D reconstruction. Image alignment is a fundamental
step in the class averaging procedure. In this paper, an efficient image alignment algo-
rithm using the 2D interpolation in the frequency domain is proposed. The proposed
image alignment algorithm was tested on a Lena image and two datasets of cryo-EM
projection images for estimating alignment parameters. The simulation results show that
the image alignment algorithm in Fourier space using the 2D interpolation can achieve
higher estimation accuracy for alignment parameters than the image alignment algorithm
in Fourier space without interpolation. It is also found that image alignment in Fourier
space is faster than that in real space. In addition, the proposed image alignment algorithm
and the normalized spectral clustering algorithm were used to produce class averages
for reconstructing preliminary 3D structures. Results on datasets of simulated and real
cryo-EM projection images indicate that the proposed method can be used to improve the
resolution of the reconstructed preliminary structure. The main drawback of this study
is that the contrast transfer function (CTF) parameters were not considered during the
class averaging, which may limit the potential benefits of using the proposed method.
In future work, we will integrate the CTF parameters into the class averaging procedure
and apply the proposed method to large-scale datasets of cryo-EM projection images for
high-resolution cryo-EM 3D reconstruction.
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