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Abstract 

Background Cholangiocarcinoma (CCA) poses a significant public health challenge in Thailand, with notably high 
incidence rates. This study aimed to compare the performance of spatial prediction models using Machine Learning 
techniques to analyze the occurrence of CCA across Thailand.

Methods This retrospective cohort study analyzed CCA cases from four population‑based cancer registries in Thai‑
land, diagnosed between January 1, 2012, and December 31, 2021. The study employed Machine Learning models 
(Linear Regression, Random Forest, Neural Network, and Extreme Gradient Boosting (XGBoost)) to predict Age‑Stand‑
ardized Rates (ASR) of CCA based on spatial variables. Model performance was evaluated using Root Mean Square 
Error (RMSE) and  R2 with 70:30 train‑test validation.

Results The study included 6,379 CCA cases, with a male predominance (4,075 cases; 63.9%) and a mean age 
of 66.2 years (standard deviation = 11.1 years). The northeastern region accounted for most of the cases (3,898 cases; 
61.1%). The overall ASR of CCA was 8.9 per 100,000 person‑years (95% CI: 8.7 to 9.2), with the northeastern region 
showing the highest incidence (ASR = 13.4 per 100,000 person‑years; 95% CI: 12.9 to 13.8). In the overall dataset, 
the Random Forest model demonstrated better prediction performance in both the training  (R2 = 72.07%) and test‑
ing datasets  (R2 = 71.66%). Regional variations in model performance were observed, with Random Forest performing 
best in the northern, northeastern regions, while XGBoost excelled in the central and southern regions. The most 
important spatial predictors for CCA were elevation and distance from water sources.

Conclusion The Random Forest model demonstrated the highest efficiency in predicting CCA incidence rates 
in Thailand, though predictive performance varied across regions. Spatial factors effectively predicted ASR of CCA, pro‑
viding valuable insights for national‑level disease surveillance and targeted public health interventions. These findings 
support the development of region‑specific approaches for CCA control using spatial epidemiology and machine 
learning techniques.
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Background
Cholangiocarcinoma (CCA), a malignant tumor originat-
ing from the biliary epithelium, represents a public health 
challenge in Thailand [1]. While relatively rare world-
wide, CCA exhibits an exceptionally high incidence in 
Southeast Asia, with the northeastern region of Thailand 
reporting the highest global rates (85 per 100,000 person-
years) [2]. This striking geographic disparity is primarily 
attributed to the prevalence of the Opisthorchis viverrine 
(O. viverrini) infection, although other risk factors such 
as hepatolithiasis, primary sclerosing cholangitis, prazi-
quantel treatment for O. viverrini [3–6], and hepatitis B 
and C [7–9] also contribute to the disease burden [8]. The 
unique distribution of CCA in Thailand underscores the 
need for sophisticated spatial analysis to better under-
stand and address this critical health issue.

Spatial epidemiology plays a crucial role in elucidat-
ing disease patterns and their underlying causes [10]. In 
the context of CCA in Thailand, spatial prediction mod-
els offer valuable insights into the complex interplay of 
environmental (particularly proximity to water source) 
[11–13] and biological factors that influence disease 
distribution. These models can significantly enhance 
resource allocation for screening and treatment, enable 
targeted public health interventions, and deepen our 
understanding of risk factors [14].

Traditional statistical approaches to spatial epidemiol-
ogy, while valuable, often struggle to capture the complex 
non-linear relationships and interactions between multi-
ple environmental, demographic, and social factors that 
influence disease distribution. In recent years, Machine 
Learning has emerged as a powerful alternative for ana-
lyzing complex health data patterns [15]. Unlike conven-
tional statistical methods, Machine Learning algorithms 
can identify intricate, non-linear relationships with-
out requiring pre-specified model structures, making 
them particularly well-suited for spatial epidemiological 
research where relationships between variables may be 
complex and multifaceted. [16, 17].

The Machine Learning models demonstrate several 
advantages for on spatial epidemiology compared to tra-
ditional approaches. They offer superior predictive accu-
racy when analyzing complex, non-linear relationships 
in health data [18]. Algorithms such as Random Forests 
and Neural Networks can integrate diverse data sources, 
including satellite imagery, census data and environmen-
tal measurements, creating more comprehensive spa-
tial predictions [19, 20]. These techniques also excel at 
handling large datasets with multiple variables and can 
identify patterns that might be missed by conventional 
statistical methods [21].

Our study aligns with Thailand’s National Artificial 
Intelligence Strategy (NAIS) Action Plan for 2022–2027, 

with consists of five strategies aimed at national devel-
opment through Artificial Intelligence (AI) applications. 
Strategy 4 specifically focuses on advancing intelligent 
technology systems using AI to create novel computa-
tional learning and reasoning approaches. The NAIS 
Action Plan leverages these intelligent systems across 
various sectors and supports research for the National 
Artificial Intelligence as a Service (AIaaS) Platform [22].

Previous studies on CCA in Thailand have been lim-
ited to short-term retrospective analyses covering only 
selected provinces or regions, without nationwide assess-
ment. Additionally, most existing research has relied on 
traditional statistical prediction methods rather than 
advanced machine learning techniques. Therefore, this 
study aims to compare the performance of spatial pre-
diction models using Machine Learning approaches to 
analyze CCA occurrence throughout Thailand. By con-
ducting a comprehensive spatial analysis focus on demo-
graphic, environmental, and climatic variables, we can 
identify high-risk areas and potential causative factors. 
This mapping initiative can inform local public health 
strategies and provide valuable recommendations for 
CCA management and prevention, while contributing to 
the broader fields of spatial epidemiology and Machine 
Learning applications in public health.

Materials and methods
Data collection and study area
The retrospective cohort analytical study examined 554 
sub-districts across four regions of Thailand (northern, 
central, northeastern, southern). We collected data from 
two main sources:

CCA case data
Information from four Population-Based Cancer Reg-
istries (PBCRs): northern (Lampang Cancer Hospital), 
central (Lop Buri Cancer Hospital), northeastern (Khon 
Kaen Provincial Cancer Registry), and southern region 
(Surat Thani Cancer Hospital) [23]. All the CCA cases 
were diagnosed between January 1, 2012, and Decem-
ber 31, 2021, based on the International Classification 
of Diseases for Oncology, 3rd Edition (ICD-O-3), with 
the specific codes: C22.1 (Intrahepatic bile duct), C24.0 
(Extrahepatic bile duct), C24.8 (Overlapping lesion of 
biliary), and C24.9 (Biliary tract, NOS) (excluding C24.1, 
Ampulla of Vater) [24, 25]. Key variables included sex, 
age at diagnosis, birth date, ICD-O-3 code, address, and 
basis of diagnosis. Population data from the Office of the 
National Economic and Social Development Board [26] 
was used to calculate the age-standardized rates (ASR) 
by sex and age groups every five years between 2012 and 
2021 (Table 1).
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Spatial variables
First, environment data (elevation, water source coor-
dinates, and the size and extent of areas) from the 
Central Geoinformatics System and Services Project, 
Department of Water Resources, Ministry of Natural 
Resources and Environment [27]. Second, climatic data 
(average rainfall, average temperature, and coordinates 
for all meteorological stations) were obtained from the 
Thailand Meteorological Department using a statisti-
cal data request system [28]. All spatial variables were 
aggregated at the sub-district level (Table 1).

Study areas
The study covered four provinces representing the four 
main region of Thailand respective sizes and geographi-
cal coordinates (latitudes and longitudes): (i) Lampang 
province (Northern): 12,533.96  km2, 17.2°−19.5°N, 
98.9°−100.2°E; (ii) Lop Buri province (Central): 6,208.70 
 km2, 14.6°−15.8°N, 100.3°−101.5°E; (iii) Khon Kaen 
province (Northeastern): 10,885.99  km2, 15.6°−17.1°N, 
101.6°−103.3°E; and (iv) Surat Thani province (South-
ern): 12,891.4  km2, 8.3°−10.2°N, 98.5°−100.2°E, for each 
provinces representing the regions, respective [23].

Variables and measurement
ASR, Age-Standardized Rates; CCA, cholangiocar-
cinoma; IACR, International Association of Cancer 
Registries.

Statistical analysis
Incidence rate of CCA 
The ASR was calculated for each sex and standardized 
using the Segi World standard population estimates 
[29]. The International Association of Cancer Registries 

(IACR) guidelines [30] were used to calculate the ASR 
of CCA cases in each sub-district.

Machine learning models
We implemented four different machine learning mod-
els to predict CCA incidence based on spatial variables. 
In our data management process, residential address 
codes were utilized as the key identifier for linking CCA 
cases data with all spatial factors. Prior to analysis, dis-
tribution testing was conducted for all variables. In cases 
where data exhibited abnormal distribution patterns 
(left or right skewness), variable transformation through 
logarithmic conversion was performed on all affected 
variables before proceeding with into machine learn-
ing models. Each model represents a different approach 
to predictive modeling, selected to provide a compre-
hensive comparison of techniques applicable to spatial 
epidemiology:

Linear regression
A statistical model that examines the linear relationship 
between the dependent variable (ASR of CCA) and mul-
tiple independent variables (spatial factors). We selected 
this model as a baseline comparison since it represents 
traditional statistical approaches and assumes linear rela-
tionships between variables.

Random Forest
An ensemble learning method that constructs multiple 
decision trees during training and outputs the average 
prediction of individual trees. Random Forests are well-
suited for spatial epidemiology because they can capture 
non-linear relationships, handle interactions between 
variables, and are robust against overfitting. The algo-
rithm works by bootstrapping samples of observations 
and variables to build diverse decision trees, with each 
tree contributing a vote toward the final prediction [31]. 

Table 1 Descript of dependent and independent variables used in the study

Variable Type Variable Name Description Unit Data Source

Dependent Variable ASR of CCA Incidence rate of CCA adjusted 
for age distribution using the Segi 
World standard population

Cases 
per 100,000 
person‑years

Calculated from cancer registry data 
using IACR guidelines

Independent Variables Elevation Average height above sea level 
in each sub‑district

Meters Department of Water Resources

Distance from water sources Average distance from population 
centers to nearest water body

Meters Department of Water Resources

Population density Number of people per unit area Persons/km2 National Economic and Social Devel‑
opment Board

Average rainfall Mean annual precipitation Millimeters/year Thailand Meteorological Department

Average temperature Mean annual temperature °C/year Thailand Meteorological Department
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The Random Forest model was configured with the fol-
lowing specifications: number of trees = 500; variables 
randomly sampled at each split (mtry) = 2; minimum 
node size = 5; and Gini criterion was employed as the 
splitting criterion.

Neural Network
A computational model inspired by the human brain’s 
neural structure, designed to recognize complex patterns 
through interconnected layers of nodes (neurons). Neu-
ral Networks process information through three main 
components: an input layer (receiving spatial variables), 
hidden layers (processing information through weighted 
connections), and an output layer (producing CCA inci-
dence predictions). This architecture allows Neural Net-
works to model highly complex, non-linear relationships 
between spatial factors and disease incidence [32, 33]. 
The Neural Network utilized a 5 → 15 → 10 → 1 archi-
tecture with ReLU activation for hidden layers and linear 
activation for the output layer. Training employed a 0.01 
learning rate with Adam optimizer, L2 regularization 
(weight decay = 0.0001), batch size of 32, and 200 epochs 
with early stopping to optimize performance.

Extreme Gradient Boosting (XGBoost)
An advanced implementation of gradient boosting that 
builds models sequentially, with each new model cor-
recting errors made by previous ones. XGBoost has three 
key components: (i) a loss function to evaluate model 
accuracy, (ii) weak learners (typically decision trees) that 
perform slightly better than random guessing, and (iii) 
an additive model that combines weak learners into a 
strong predictive system. XGBoost includes regulariza-
tion techniques to prevent overfitting, making it poten-
tially valuable for spatial prediction with limited data 
[34]. The XGBoost model was configured with a learn-
ing rate of 0.05, maximum tree depth of 6, and minimum 
child weight of 3. Both subsample and column sample 
ratios were set at 0.8. For regularization purposes, alpha 
and lambda parameters were established at 0.2 and 0.1, 
respectively. The model was trained using 1000 boost-
ing rounds with an early stopping mechanism to prevent 
overfitting and optimize performance.

Model training and validation
For model development and evaluation, we randomly 
split the dataset into training (70%) and testing (30%) 
subsets. This ratio was selected to balance the need for 
adequate training data while ensuring sufficient test data 
for reliable performance evaluation, given our sample 
size constraints. The 70:30 split is widely used in machine 
learning applications and provides a good compromise 
between these competing needs.

While we considered alternative splitting ratios (80:20, 
90:10) by evaluating the same model as all real analy-
ses, our preliminary analyses showed that the 70:30 split 
offered the optimal balance between model learning and 
validation for our dataset size. With approximately 554 
sub-districts in our study, this split provided 388 sub-dis-
tricts (4,465 cases) for training and 166 for testing (1,914 
cases)—sufficient numbers for both robust model train-
ing and meaningful validation without risking overfitting.

Table  1 illustrates our complete research methodol-
ogy from data collection through model evaluation. The 
process began with gathering CCA case data from four 
regional cancer registries and spatial data from govern-
ment databases. After preprocessing, which included 
calculating ASR values and standardizing spatial vari-
ables, we implemented the 70:30 random split strati-
fied by region to maintain proportional representation. 
Each model was trained using identical training data and 
hyperparameter optimization techniques, then evalu-
ated on the common test set using RMSE,  R2, and visual 
assessment via scatter plots.

Model evaluations
We implemented a comprehensive evaluation framework 
using three complementary approaches to ensure robust 
assessment of model performance:

Root Mean Square Error (RMSE)
RMSE quantifies prediction errors in the same units as 
the dependent variable, giving greater weight to large 
errors—critical in health applications where significant 
errors can have serious consequences. This metric calcu-
lates the square root of the average squared differences 
between predicted and actual CCA incidence values:

Lower RMSE values indicate better model performance 
with less prediction error. We selected RMSE over alter-
native metrics like Mean Absolute Error (MAE) because 
RMSE gives greater weight to large errors through the 
squaring mechanism, making it particularly valuable for 
health applications where large prediction errors could 
have significant consequences for resource allocation and 
intervention planning. This sensitivity to outliers helps 
identify models that might perform well on average but 
produce concerning errors in certain regions or inci-
dence ranges.

R‑squared  (R2)
This coefficient of determination measures the pro-
portion of variance in the dependent variable (ASR 
of CCA) that is explained by the model’s independent 

RMSE = [ (predicted − actual)2/n]
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variables (spatial factors). By providing a straight-
forward scale from 0 to 1, it allows us to measure the 
proportion of variance explained in CCA incidence 
and facilitates meaningful comparisons with previous 
research findings:

R2 = 1 - (Sum of Squared Residuals/Total Sum of 
Squares)

R2 values range from 0 to 1, with values closer to 1 indi-
cating that the model explains a greater proportion of the 
variance in CCA incidence, suggesting better predictive 
performance. For each model, we calculated 95% confi-
dence intervals for  R2 values using bootstrap resampling 
with 1000 iterations to quantify the uncertainty in our 
performance estimates and allow for more rigorous sta-
tistical comparison between models.

Scatter plots
We created scatter plots to visualize the relationship 
between predicted and actual CCA incidence values for 
each model. These visual representations serve multiple 
analytical purposes:

– Identifying patterns in prediction accuracy across 
different incidence levels.

– Revealing potential systematic biases (such as con-
sistent over-prediction in high-incidence areas).

– Detecting heteroscedasticity in prediction errors.
– Identifying regional clusters or outliers that might 

require special attention.

We enhanced these scatter plots with a 45-degree ref-
erence line representing perfect prediction, regression 
lines showing actual trends, and color-coding by region 
to enable deeper visual analysis of model performance.

After comprehensive comparison of these models, we 
conducted variable importance analysis using the best-
performing model (Random Forest) to identify the key 
spatial predictors of CCA incidence. This analysis quanti-
fies the mean decrease in prediction accuracy when each 
variable is excluded from the model while keeping all 
others constant. The approach involved:

1. Training the optimal Random Forest model on the 
complete dataset

2. Permuting each predictor variable one at a time 
(effectively removing its information while maintain-
ing the same data structure)

3. Measuring the resulting decrease in prediction accu-
racy

4. Ranking variables by their impact on model perfor-
mance

This permutation-based approach offers advantages 
over alternative variable importance methods as it 
directly measures the impact on the model’s predictive 
performance rather than changes in node purity, provid-
ing more interpretable results that directly relate to our 
prediction goals.

For model implementation, we used the Random For-
est, Nural Network, XGBoost, and stats packages in R. 
We performed all analyses and visualizations using R 
software version 4.2.1 (R Core Team) [35] with RStu-
dio software version 1.4.1 [36]. Spatial data processing 
utilized the sf and raster packages, while visualization 
employed ggplot2 with custom themes for optimal clar-
ity. Statistical validation, including confidence interval 
calculation, was implemented using the resamples.

Results
Demographic and spatial characteristics
From all the 6,379 CCA cases, most were males (4,075 
cases; 63.9%) with a mean age of 66.2 years (stand-
ard deviation = 11.07 years) The northeastern region 
accounted for the majority of cases (3,898 cases; 61.1%), 
followed by the northern (1,695 cases; 26.6%), central 
(624 cases; 9.8%), and southern regions (162 cases; 2.5%), 
respectively (Table 2).

CCA incidence by region and sex
The overall ASR of CCA was 8.9 per 100,000 person-
years (95% CI: 8.7 to 9.2), with males having a substan-
tially higher incidence (12.5 per 100,000 person-years, 
95% CI: 12.1 to 12.9) than females (5.9 per 100,000 per-
son-years, 95% CI: 5.6 to 6.1). The northeastern region 
showed the highest incidence rates for both sexes (ASR 
= 13.4 per 100,000 person-years, 95% CI: 12.9 to 13.8), 
followed by the northern (ASR = 11.2 per 100,000 per-
son-years, 95% CI: 10.6 to 11.7), central (ASR = 4.8 per 
100,000 person-years, 95% CI: 4.5 to 5.2), and southern 
regions (ASR = 1.1 per 100,000 person-years, 95% CI: 0.9 
to 1.3) (Table 3).

Table  4 and Fig.  1 (a-e) show the comparative perfor-
mance of the four machine learning models across differ-
ent regions. For the overall dataset, the Random Forest 
model demonstrated superior performance with the 
highest  R2 values in both training (72.07%) and testing 
datasets (71.66%), and the lowest RMSE values (training 
= 8.991, testing = 9.022). The XGBoost model showed the 
second-best performance overall (training  R2 = 70.57%, 
RMSE = 9.719 & testing  R2 = 68.30%, RMSE = 0.904), fol-
lowed by Neural Network (training  R2 = 57.25%, RMSE 
= 11.044 & testing  R2 = 56.81%, RMSE = 11.076) and Lin-
ear Regression (training  R2 = 9.88%, RMSE = 16.034 & 
testing  R2 = 8.52%, RMSE = 16.078).
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Model performance varied substantially across regions. 
In the northern region, all models achieved higher  R2 
values than in other regions, with Random Forest show-
ing the best performance (testing  R2 = 87.30%). The 
central region showed moderate performance across 
models, with Random Forest again performing best (test-
ing  R2 = 77.17%). In the northeastern region, Random 

Forest maintained the highest performance (testing  R2 = 
76.81%). The southern region showed more variability in 
model performance, with XGBoost achieving the highest 
testing  R2 (63.04%) (Table 4).

The southern region displayed a distinct pattern, with 
XGBoost achieving the highest testing  R2 (63.04%), sig-
nificantly outperforming Random Forest (41.08%). This 
region also showed the largest gaps between training and 
testing performance across all models, suggesting poten-
tial overfitting challenges in this region with the smallest 
sample size (Table 4, Fig. 1e).

Analysis of the scatter plots confirmed these quanti-
tative findings, showing tighter clustering around the 
diagonal line of perfect prediction for Random Forest 
and XGBoost models, particularly in the northern and 
northeastern regions. Linear Regression consistently 
showed poor alignment with the diagonal, especially at 
higher ASR values, highlighting its inability to capture 
the non-linear relationships that characterize CCA’s spa-
tial epidemiology.

Variable importance analysis
The variable importance analysis of the Random Forest 
model identified elevation as the most important pre-
dictor, with a mean decrease in accuracy of 32.4% when 
removed from the model. Distance from water sources 
ranked second in importance, followed by population 
density and average temperature. Average rainfall showed 
the least influence on prediction accuracy (Fig. 2).

Discussion
The study presented compared the prediction perfor-
mance of various Machine Learning approaches for spa-
tial modeling of CCA incidence in Thailand. Our findings 
revealed complex patterns in model performance across 
different regions and identified key environmental deter-
minants of CCA distribution.

The Random Forest model demonstrated superior 
overall predictive capability (testing  R2 = 71.66%), con-
sistently outperforming other approaches across most 
regions. This exceptional performance can be attributed 
to several advantages that make Random Forest particu-
larly suitable for spatial epidemiological data: its ability to 
capture non-linear relationships, robustness to outliers, 
capacity to handle interactions between variables with-
out explicit specification, and effective balance between 
model complexity and generalizability. In regions with 
larger sample sizes, Random Forest maintained minimal 
differences between training and testing performance, 
indicating excellent generalizability. These findings align 
with previous research by Tsilimigras et  al. [16], who 
demonstrated that Random Forest models achieved 85% 
accuracy in predicting CCA phenotypes and patient 

Table 2 Demographic characteristics of CCA in Thailand 
between 2012 and 2021

Characteristics Number Percentage

Sex
 Male 4,075 63.9

 Female 2,304 36.1

Age of diagnosis (years)
 15–19 2 0.1

 20–24 6 0.1

 25–29 7 0.1

 30–34 12 0.2

 35–39 42 0.6

 40–44 121 1.9

 45–49 273 4.3

 50–54 464 7.3

 55–59 800 12.5

 60–64 1,017 15.9

 65–69 1,064 16.7

 70–74 1,027 16.1

 75 + 1,544 24.2

 Mean (standard deviation) 66.2 (11.07)

 Median (Min: Max) 67.0 (19: 98)

Elevation (meters)
 Mean (standard deviation) 187.4 (164.37)

 Median (Min: Max) 179 (5: 915)

Distance from water sources 
(meters)
 Mean (standard deviation) 107.1 (1565.57)

 Median (Min: Max) 0 (0: 35,986.3)

Population density (person/km2)
 Mean (standard deviation) 213.1 (573.56)

 Median (Min: Max) 118.8 (3.1: 9251.2)

Average rainfall (millimeter/year)
 Mean (standard deviation) 117.7 (31.24)

 Median (Min: Max) 109.4 (48.4: 240.7)

Average temperature (°C/year)
 Mean (standard deviation) 28.4 (0.69)

 Median (Min: Max) 28.3 (26.9: 30.3)

Regions
 Northern 1,695 26.6

 Central 624 9.8

 Northeastern 3,898 61.1

 Southern 162 2.5
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outcomes. Similarly, Liu et  al. [37] found Random For-
est achieved superior performance (AUC = 0.86) in spa-
tial cancer risk prediction studies. Our results parallel 
to those of Thongpeth et  al. [38], who compared vari-
ous modeling approaches for healthcare predictions in 
Thailand and found Random Forest consistently outper-
formed other Machine Learning methods.

XGBoost showed strong performance overall (test-
ing  R2 = 68.30%) and performed exceptionally well in 
the southern region (testing  R2 = 63.04%). However, 
it demonstrated greater inconsistency between train-
ing and testing performance, particularly in regions 
with smaller sample sizes. This pattern suggests poten-
tial overfitting issues—a known limitation of boosting 
methods when applied to smaller datasets. This find-
ing differs from results reported by Wu et al. [39], who 
found XGBoost achieved the highest accuracy (AUC 
= 0.892) in predicting CCA outcome, and Chaudhary 
et  al. [40], who reported XGBoost outperforming tra-
ditional methods with 89.2% accuracy. This discrepancy 
likely reflects differences between clinical prediction 
contexts (featuring individual-level variables) and our 
spatial analysis (using aggregated environmental factors 
at the sub-district level).

Neural Networks showed moderate but consist-
ent performance across regions (overall testing  R2 = 
56.81%), with the smallest gap between training and 
testing metrics. This finding contrasts with Zhang et al. 
[41], who found Neural Networks achieved superior 
performance in cancer prediction. However, our results 
align with Wang et  al.’s findings [42] that tree-based 
models often outperform Neural Networks in spatial 
disease prediction, particularly in environments with 
complex ecological interactions.

The striking performance gap between machine 
learning models and Linear Regression (testing  R2 = 
8.52%) confirms that CCA’s spatial distribution follows 
complex, non-linear patterns that cannot be adequately 
captured by traditional statistical approaches. This 
finding has important methodological implications for 
future spatial epidemiology studies, suggesting that 
machine learning approaches should be preferred for 
similar complex spatial health phenomena. The dra-
matic performance differential stems from fundamen-
tal advances that machine learning brings to spatial 
epidemiology: superior ability to capture geographic 
variations in disease-environment relationships, better 

Table 3 Incidence of CCA by sex in each region of Thailand between 2012 and 2021

ASR Age-Standardized Rates; CI Confidence Interval

Region Male Female Both sexes Both sexes

ASR 95% CI ASR 95% CI ASR 95% CI

Northern 14.7 13.8 to 15.6 7.9 7.3 to 8.6 11.2 10.6 to 11.7

Center 6.6 5.9 to 7.3 3.4 2.9 to 3.8 4.8 4.5 to 5.2

Northeastern 19.2 18.4 to 19.9 8.5 8.0 to 8.9 13.4 12.9 to 13.8

Southern 1.5 1.2 to 1.8 0.8 0.6 to 1.0 1.1 0.9 to 1.3

Total 12.5 12.1 to 12.9 5.9 5.6 to 6.1 8.9 8.7 to 9.2

Table 4 The Machine Learning models for predictions CCA in 
Thailand

RMSE Root Means Square Error; R2 R-squared Extreme Gradient Boosting

Region/Model Training Testing
RMSE R2 (%) RMSE R2 (%)

Overall
 Linear Regression 16.034 9.88 16.078 8.52

 Random Forest 8.991 72.07 9.022 71.66
 Neural Network 11.044 57.25 11.076 56.81

 XGBoost 9.719 70.57 0.904 68.30

Northern
 Linear Regression 18.955 13.40 19.708 10.41

 Random Forest 7.011 88.19 7.422 87.30
 Neural Network 8.169 83.93 8.554 83.10

 XGBoost 7.927 87.08 8.456 86.16

Central
 Linear Regression 4.278 8.20 4.326 7.05

 Random Forest 2.147 79.25 2.296 77.17
 Neural Network 3.105 51.67 3.190 49.60

 XGBoost 2.074 83.28 2.350 77.52

Northeastern
 Linear Regression 12.896 10.36 13.380 10.06

 Random Forest 6.673 77.95 7.131 76.81
 Neural Network 9.613 50.19 10.127 48.52

 XGBoost 7.360 76.24 7.852 75.14

Southern
 Linear Regression 2.358 5.87 2.477 3.77

 Random Forest 1.209 76.65 1.884 41.08

 Neural Network 1.563 56.72 1.664 53.59

 XGBoost 1.057 80.81 1.462 63.04
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handling of spatial dependencies that violate independ-
ence assumptions in traditional models, and effective 
integration of multi-scale spatial interactions without 
requiring explicit hierarchical modeling.

Our analysis revealed substantial regional variations in 
both CCA incidence and model performance. All mod-
els performed best in the northern region (testing  R2 up 
to 87.30%), followed by northeastern (76.81%) and cen-
tral regions (77.52%), with more modest performance in 

the southern region (63.04%). These patterns align with 
findings from Kaewpitoon et al. [13], who observed vary-
ing prediction accuracies across different Thai regions 
using GIS-based analysis. The exceptional performance 
in the northern region suggests that environmental fac-
tors strongly and consistently influence CCA risk in this 
area. By contrast, the more moderate performance in 
the southern region, despite using identical predictors, 
indicates that different etiological factors may be at play 

Fig. 1 Scatter plots comparing predicted versus observed CCA rates across Thailand by Machine Learning models. LR, Linear Regression; RF, 
Random Forest; NN, Neural Network; XGBoost, Extreme Gradient Boosting, b Scatter plots comparing predicted versus observed CCA rates 
in Northern Thailand by Machine Learning models. LR, Linear Regression; RF, Random Forest; NN, Neural Network; XGBoost, Extreme Gradient 
Boosting. c Scatter plots comparing predicted versus observed CCA rates in Central Thailand by Machine Learning models. LR, Linear Regression; 
RF, Random Forest; NN, Neural Network; XGBoost, Extreme Gradient Boosting. d Scatter plots comparing predicted versus observed CCA rates 
in Northeastern Thailand by Machine Learning models. LR, Linear Regression; RF, Random Forest; NN, Neural Network; XGBoost, Extreme Gradient 
Boosting. e Scatter plots comparing predicted versus observed CCA rates in Southern Thailand by Machine Learning models. LR, Linear Regression; 
RF, Random Forest; NN, Neural Network; XGBoost, Extreme Gradient Boosting
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or that environmental relationships are more complex 
in this region. This regional heterogeneity in model per-
formance highlights the importance of region-specific 
approaches to both disease modeling and public health 
intervention.

Our variable importance analysis identified elevation as 
the most significant predictor of CCA incidence, followed 
by population density, distance from water sources, and 
average rainfall. Elevation likely serves as a proxy for 
multiple ecological factors: it influences water flow pat-
terns and drainage characteristics critical for O. viver-
rini’s lifecycle, affects agricultural practices (particularly 
rice cultivation associated with increased human-water 
contact), and historically shaped settlement patterns in 
ways that overlap with endemic zones. The importance 
of water-related variables aligns with the established 
understanding of O. viverrini’s lifecycle, which requires 
freshwater environments for transmission through inter-
mediate snail hosts and fish. These environmental deter-
minants help explain the pronounced regional disparities 
in CCA incidence observed in our study. The northeast-
ern region’s high rates (13.4 per 100,000 person-years) 
[43] correspond with previous studies documenting high 
O. viverrini prevalence in this area, while the southern 
region’s low rates (1.1 per 100,000 person-years) reflect 
minimal O. viverrini endemicity. The topographical and 
hydrological conditions of northeastern Thailand—char-
acterized by low-elevation plateaus with numerous water 
bodies—create ideal conditions for parasite transmission, 
which our models effectively captured through environ-
mental predictors [2].The implementation of Machine 
Learning for spatial epidemiology of cancer aligns with 
similar initiatives in other countries. Qiao et al. [44] suc-
cessfully implemented Machine Learning models for 
cancer prediction in China, achieving accuracy rates 

of 87.5% using ensemble methods similar to our Ran-
dom Forest approach. Similarly, Kim et  al. [45] demon-
strated the effectiveness of spatial Machine Learning in 
predicting cancer patterns in South Korea, with Random 
Forest models showing high accuracy (AUC 0.89). The 
comparable performance of our models (particularly in 
the northern region with  R2 = 87.30%) suggests that our 
methodological approach represents current interna-
tional best practices in spatial health modeling. How-
ever, our southern region results (maximum  R2 = 63.04%) 
highlight an important limitation: machine learning 
approaches remain sensitive to sample size constraints. 
The southern region’s substantially lower CCA incidence 
resulted in fewer cases for model training, potentially 
limiting predictive accuracy.

The ability to predict CCA incidence with high accu-
racy has significant implications for public health plan-
ning in Thailand. Our findings can transform CCA 
control efforts in several crucial ways. Rather than 
implementing uniform screening programs, health 
authorities can use our predictive models to identify 
high-risk communities based on environmental factors. 
This approach would enable more efficient allocation of 
screening resources to areas with the highest predicted 
CCA risk, potentially improving early detection rates in 
a cost-effective manner. Understanding the relationship 
between environmental factors and CCA risk can guide 
targeted interventions addressing specific risk factors. 
For example, communities in low-elevation areas near 
water sources might benefit from enhanced water treat-
ment initiatives, while education programs about proper 
fish cooking practices could be prioritized in areas with 
high predicted risk. The varying performance of models 
across regions suggests that a"one-size-fits-all"approach 
may not be optimal. In the northeastern and northern 
regions, where environmental factors strongly predict 
CCA risk, targeted interventions based on spatial risk 
factors are likely to be effective. The southern region, 
with its distinct epidemiological profile, may require dif-
ferent approaches.

Given the importance of elevation and water-related 
variables, climate change could potentially alter CCA 
risk patterns through changes in precipitation, tempera-
ture, and water body characteristics. Rising temperatures 
and changing precipitation patterns could shift the geo-
graphic distribution of suitable habitats for O. viverrini’s 
intermediate hosts. Our predictive framework provides 
a baseline for modeling future scenarios under different 
climate projections. The translation of our findings into 
practical public health applications aligns with Thai-
land’s National Artificial Intelligence Strategy (NAIS) 
Action Plan for 2022–2027 [22]. Our machine learning 
approach to disease prediction represents a concrete 

Fig. 2 Variable importance analysis showing relative impact of spatial 
predictors on CCA incidence
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implementation of Strategy 4, which focuses on devel-
oping intelligent technologies to address national chal-
lenges. By demonstrating the superior performance of 
advanced analytical methods over traditional approaches, 
we provide evidence-based support for broader adoption 
of AI-driven approaches in public health planning across 
Thailand.

Our study features several methodological strengths 
that enhance the reliability and applicability of our find-
ings. The comprehensive inclusion of 6,379 CCA cases 
from four population-based cancer registries provides 
a robust epidemiological foundation rarely achieved in 
spatial modeling studies. Our comparative evaluation 
of multiple machine learning approaches offers meth-
odological insights beyond single-model studies, while 
the variable importance analysis provides a quantitative 
hierarchy of environmental determinants that advances 
epidemiological understanding beyond traditional asso-
ciation studies. Nevertheless, several limitations war-
rant acknowledgment. Despite our large overall sample, 
the regional distribution was uneven, with relatively 
few cases in the southern region (162 cases; 2.5%). This 
imbalance likely contributed to the lower model perfor-
mance in that region and highlights a common challenge 
in modeling rare diseases across heterogeneous geogra-
phies. Our analysis relied on spatial variables available 
at the sub-district level, potentially missing finer-scale 
variations that could influence local CCA risk patterns. 
While our models effectively captured spatial patterns, 
they did not incorporate temporal dynamics of CCA 
development—a significant consideration given the often 
decades-long lag between O. viverrini exposure and can-
cer development. Future research should address these 
limitations through several approaches. Incorporating 
village-level socioeconomic indicators, local food con-
sumption patterns, and sanitation infrastructure data 
could enhance prediction accuracy by capturing behav-
ioral determinants of O. viverrini exposure. Studies by 
Songserm et  al. [6] suggest these factors might explain 
15–20% of the variance currently not captured by envi-
ronmental variables alone. Developing models that incor-
porate both spatial patterns and temporal trends could 
provide insights into how CCA incidence evolves over 
time in response to environmental changes and public 
health interventions. Using more detailed environmental 
data, including high-resolution remote sensing of sur-
face water characteristics and land use patterns, could 
improve prediction accuracy by better capturing habitat 
suitability for intermediate hosts. Building on our iden-
tified environmental predictors, future research should 
model how climate change might alter CCA risk distri-
bution through changes in temperature, precipitation, 
and hydrological patterns. The methodological advances 

demonstrated in our study—particularly the superior 
performance of machine learning approaches compared 
to traditional statistical methods—should inform future 
spatial epidemiology research for other environmentally-
mediated diseases in Thailand and beyond.

Conclusions
The incidence of CCA in Thailand presented in this study, 
found that most of the CCA cases occur in the North-
eastern, Northern, Central, Southern region, respectively. 
In analyzing predictive models for CCA incidence in 
Thailand using  R2 and RMSE, the Random Forest model 
has emerged as the most effective approach with 71.66% 
prediction, followed by the XGBoost model (68.30% pre-
diction), and the Neural Network model (56.81% pre-
diction), respectively. In each region different Machine 
Learning models with regional variations highlighted the 
complexity of cholangiocarcinoma epidemiology across 
different parts of Thailand. Furthermore, spatial factors 
demonstrated the predictive capabilities for ASR of CCA. 
This national finding has pioneered the CCA distribution 
in Thailand and has developed a spatial-based approach 
to support disease control. The research presented in this 
paper has pointed to opportunities for examining addi-
tional geographical variables in future studies.
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