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Climate change affects the phenology of annual life cycle events of organisms,
such as reproduction and migration. Shifts in the timing of these events
could have important population implications directly, or provide information
about the mechanisms driving population trajectories, especially if they
differ between life cycle event. We examine if such shifts occur in a declining
migratory passerine bird (willow warbler, Phylloscopus trochilus), which
exhibits latitudinally diverging population trajectories. We find evidence
of phenological shifts in breeding initiation, breeding progression and moult
that differ across geographic and spring temperature gradients. Moult
initiation following warmer springs advances faster in the south than in the
north, resulting in proportionally shorter breeding seasons, reflecting higher
nest failure rates in the south and in warmer years. Tracking shifts in multiple
life cycle events allowed us to identify points of failure in the breeding cycle in
regionswhere the species has negative population trends, thereby demonstrat-
ing the utility of phenology analyses for illuminating mechanistic pathways
underlying observed population trajectories.
1. Introduction
Recent climate change has affected ecological systems in many different ways [1].
Changes in the timing and duration of key life cycle events such as migration and
breeding have occurred in birds and other taxa [2–4], which in turn may alter
the timing of related ecological processes such as intertrophic relationships or
competitive interactions [5]. In particular, if the phenology of events changes at
different rates relative to each other, conflict may arise between them, leading
to population impacts [6]. Such phenological changes may also not be uniform
within a population’s range leading to not only differential shifts between
life cycle events overall but potentially also to heterogeneity in phenological
shifts within different parts of species populations, creating differential drivers
of population change.

Alongside breeding and migration, feather replacement (moult) is an
energetically costly event in the annual cycle of birds [7,8]. In many species,
moult occurs almost immediately following the cessation of breeding and
is linked to the regression of gonads [9]. Although both breeding and moult are
affected byphotoperiod [10,11], increased temperatures have also been implicated
in phenological changes in both processes [12,13]. If these life cycle events shift
differentially under the same conditions, vital rates such as productivity or
survival could be impacted [5,14]. If the timing of breeding advances more, the
impact could beneficially lengthen the potential breeding season and increase
productivity [15], while a greater advance in timing of moult shortens the
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Table 1. Parameter estimates (mean and 95% confidence interval from a linear mixed-effects model and an Underhill–Zucchini moult model) for willow
warbler life cycle events. Asterisk (*) indicates an interaction.

life cycle event intercept (female) Ts (°C) latitude (standardized) Ts * latitude sex (Male)

clutch initiation date 133.6 −1.3 2.2 0.1

(132.8–134.3) (−2.5 – −0.5) (1.4–3.0) (−1.0–1.1)
moult duration 37.3 2.7 −0.9 0.9

(36.1–38.6) (1.5–3.9) (−2.2–0.4) (−0.6–2.3)
moult initiation date 182.2 −1.0 1.6 0.4 −7.0

(181.6–183.8) (−1.5 – −0.5) (1.2–2.0) (−0.1–0.9) (−7.7 – −6.3)
standard deviation in moult

initiation date

14.0 −3.4
(10.6–17.5) (−6.0–−0.9)
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potential breeding window and/or increases parent–offspring
conflict leading to lower productivity [8,16]. Alternatively, as
breeding failure can trigger early moult [7], differential pheno-
logical shifts could reflect regional changes in reproductive
success [17] due to differential warming in relation to latitude
and/or photoperiod [10,11]. Therefore, a better understanding
of phenological sensitivities of breeding and post-breeding
moult may help us understand the potential implications of
climate change in the future.

Willow warblers (Phylloscopus trochilus) are an ideal model
species for exploring differential phenological shifts. One of
Europe’s most abundant Afro-Palaearctic breeding migrants,
willow warbler populations are in long-term decline across
Europe [18] although trends are regionally heterogeneous
[19]. Within Great Britain, the population (ssp. trochilus)
shares a common migratory strategy, but is growing in the
north (ca 30% increase 2000–2018) and declining in the south
(ca 35% decline; electronic supplementary material, figure S6)
[20,21]. Climate change has been identified as a potential
driver of their differing regional population trends, most
likely by affecting breeding success [17]. As in many species,
the timing of life cycle events differs between the sexes. The
female incubates and broods the young alone and, although
both parents contribute to provisioning [22], males initiate
moult earlier than females [23,24]. Understanding regional
variation in phenological shifts in breeding and moult
under climate change could help us further understand
where in the annual cycle present and future impacts of
climate change impact population dynamics in this and other
species. We explore the relationship between the timing of
two breeding season events (egg laying and incubation) and
a post-breeding event (moult) across gradients of both temp-
erature change and latitude as a potential proxy for current
and future climate change.

We hypothesize that the timing of each life cycle event will
advance both in warmer years and at more southerly latitudes
and quantify the extent to which these advances may differ
between events. Further, given the regionally divergent popu-
lation trajectories, we expect any differences to be greater
towards the south, where population trends are more negative.
2. Methods
We combine observations of three life cycle events (egg laying,
brood patch re-feathering, primary feather moult) from two large-
scale citizen science schemes, the UK Nest Record Scheme [25]
and the British and Irish Ringing Scheme [26], collected from
2000 to 2018.Nest recording and ringing occur at volunteer-selected
sites, with good coverage of Great Britain north of 51°N and south
of 57°N and substantial spatial overlap between the schemes
(electronic supplementary material, figures S4 and S5).

(a) Timing of breeding
We determined the laying date of the first egg (hereafter clutch
initiation) from repeated observations of nest contents for 1014
nests where this could be estimated to ± 10 days [25]. Expected
clutch completion dates were calculated by adding the species’
mean clutch size (five eggs, based on laying one egg per day
[22]) to the clutch initiation date.

Brood patch status was recorded in 5268 captured females on a
six-point scale where 0 represents brood patch absence, 3 a fully
engorged patch and 5 a re-feathering patch [27]. We used scores
of 4–5 as an indicator of the start of brood patch re-feathering,
which occurs at the end of incubation or the loss of a clutch [28,29].

(b) Timing of moult
We analysed 14 229 moult records (7175 female and 7054 male)
from adult willow warblers captured after 30 April (day 120)
each year. The presence of a brood patch (females) or cloacal pro-
tuberance (males) was used to assign sex, with a binary classifier
using wing length [30] used for birds lacking sex information
(electronic supplementary material).

Primary feather tract moult status was recorded as a
categorical variable (not started, in progress, completed) with pro-
gression of individual feather growth scored using a six-point scale
where 0 is an old unmoulted feather and 5 a new fully grown
feather [31]. The sum of the 10 primary feather scores for one
wing (a scale of 0–50) was converted into the proportion of new
primary feather mass grown using feather-specific masses [23].

(c) Climatic variables
Gridded annual spring (March–May) mean temperature obser-
vations were sourced from HadUK-Grid [32] for a 5 km buffer
area around the locations of each capture and nest record and con-
verted to local and annualmean spring temperature anomalies (Ts;
[33]), i.e. annual departures from the location-specific 2000–2018
mean spring temperature (in °C).

(d) Statistical analysis
(i) Clutch initiation phenology
We fitted linear mixed-effects models using R package lme4
(1.1-27.1; [34]) to estimate clutch initiation with respect to Ts and
latitude (as a continuous variable, centred and scaled by 1 s.d.)
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and their interaction, with year included as a random factor to
account for any unevenness in sampling effort through time.

(ii) Brood patch phenology
We fitted mixed-effects probit regression models (electronic sup-
plement material; [35]) using R package glmmTMB (1.1.2.3; [36])
to estimate the onset of brood patch re-feathering with respect to
Ts and latitude (as above) and their interaction, with year as a
random factor.

(iii) Moult phenology
Primary moult initiation date, its population variance and moult
duration were estimated using moult phenology models [37] in
R package moult (2.2.0; [38]). As willow warblers commence
migration soon after moult completion, we used type 5 models
which include observations from pre-moult and active moult
only [38,39]. Moult duration and initiation were considered in
respect to Ts and latitude (treated as above) and their interaction
with sex was included as an additive covariate for the latter and
also for the variance in population moult initiation date.

Linear predictor structures for the models of each life cycle
event were selected using AIC model selection ([40]; electronic
supplementary material, tables S1, S3 and S5).
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3. Results
Breeding started (clutch initiation; −1.3 days/°C) and ended
(brood patch re-feathering; −2.6 days/°C) earlier, and birds
moulted earlier (−0.9 days/°C) and more quickly (−0.6
days/°C; all effects given at 54°N; tables 1 and 2, figure 1) in
warmer years. Clutch initiation (1.3 days/°N), brood patch
re-feathering (1.5 days/°N) and moult initiation (0.9 days/°
N) all become later and moult duration was longer (1.6
days/°N; all effects at TS = 0°C) at higher latitudes. Males
initiated moult 7 days earlier than females and were more syn-
chronous in their start date (s.d. of start date 3.4 days shorter;
table 1, figure 1a). Model selection favoured models with a
Ts–latitude interaction (ΔAIC greater than or equal to 4; elec-
tronic supplementary material, tables S1, S3 and S5), the size
and sign of which differed between the life cycle events
(figure 1). It had little effect on clutch initiation but a pro-
nounced effect on the other life cycle events. In the coolest
springs, moult initiation showed little phenological sensitivity
across latitudes, but in thewarmest springs southerly locations
experienced a more pronounced shift in moult initiation com-
pared to the north (figure 1a). Moult duration estimates were
more uncertain overall and similar across latitudes in cool
springs but shortened considerably in the south in warm
springs compared to the north (figure 1b). The mean timing
of brood patch re-feathering showed the opposite trend, with
populations in the south exhibiting little phenological sensi-
tivity to temperature, but more northerly populations
showing an increasing negative effect with Ts (figure 1a,
table 2). This led to the probability of brood patch re-feathering
in an individual increasing more markedly at the time of
clutch completion in warmer years in the north compared to
the south (figure 1c). As the breeding season progressed, the
effect of Ts on brood patch re-feathering reversed in the
south, but not in the north (electronic supplementary material,
figure S7), resulting in a drawn out period of brood patch
re-feathering across southern populations in cold springs,
with some individuals re-feathering earlier than in the north,
but others re-feathering later.
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Figure 1. Willow warbler (a) breeding and moult phenology, (b) moult duration and (c) brood patch re-feathering probability at clutch completion with respect to
spring temperature anomaly size (Ts), latitude and their interaction. Plotted lines show conditional effect estimates at five locations across the studied latitudinal
range with 95% CIs based on the models in tables 1 and 2.
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4. Discussion
Our results show that willow warblers in the south moult
earlier and faster in warm springs compared to cooler springs
and more northerly latitudes, whereas the relationship
between first egg date and local spring temperature remains
much the same across all latitudes. Brood patch re-feathering
occurs earlier in warmer springs with the effect being most
marked in the north. However, with the exception of thewarm-
est springs, overall levels of brood patch re-feathering were
higher in the south early in the breeding season, when they
likely reflected early brood failures or smaller brood sizes
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[41]. Towards the end of the breeding season, the effect of
temperature on brood patch re-feathering was reversed (elec-
tronic supplementary material, figure S7) indicating an
overall later completion of incubation in cold springs, likely a
result of incubating replacement and/or second broods.
There is a similar latitudinal gradient in population trends,
with those in northern Britain (Scotland) increasing (by 25%),
while those in the south (England) have decreased by 45%
[21]. The differential shifts in life cycle-event phenology
detected in this study provide a window into the mechanisms
underlying the observed differences in regional population
trajectories. In particular, we show that both brood patch
re-feathering and moult occur earlier in regions where the
species has negative population trends, pinpointing a source
of poor breeding success early in the breeding season with
increasing warming.

There is abundant evidence for advances in breeding with
increased spring temperatures under climate change in many
species, including willow warbler [12]. Warmer temperatures
have been found to advance gonad regression and moult
initiation experimentally, which could explain earlier cessa-
tion of breeding [9]. For willow warbler, shorter breeding
seasons as a result of temperature-induced earlier moult
would reduce the possibility of replacement (and second)
broods and the extent of post-fledging care [13,16] and so
contribute to a decline in reproductive success in the south.
Changes in breeding season length with climate change
have been identified in a number of temperate/boreal bird
species, with warming correlated to shorter breeding seasons
in single-brooded species, potentially reducing productivity
output [15,42].

Alternatively, differential changes in moult initiation fol-
lowing warmer springs could be a direct consequence of
changes in the reproductive phase. Declines in southern
willow warbler populations have been linked to lower pro-
ductivity in some years, possibly due to increased rates of
nest failure [17]. If nest failure is more likely in warmer
springs, then adults may abandon breeding and start moult-
ing earlier. Our findings indicate that the earlier start to the
breeding season in warmer years has reduced potential
moult–breeding conflict in northern populations, but similar
shifts in the south have not resulted in more positive popu-
lation trends. This is presumably because warming is also
associated with a higher proportion of early nest failures
(indicated by brood patch re-feathering) or smaller broods
[41] in the south, and subsequently earlier primary moult.
Given experimental evidence of earlier moult in warmer con-
ditions [9], it is plausible these effects act together to produce
the observed regional differential shift in moult phenology,
which may become even more pronounced with further cli-
mate change. This is especially important given we find
evidence that warmer northern springs shift brood patch re-
feathering even earlier suggesting recent northern population
gains may be reversed under further warming.

The consequences of the more uncertain concurrent
differential shift observed in willow warbler moult duration,
and by extension moult intensity, under the same conditions
as moult initiation remain unclear. Warmer ambient tempera-
tures and consequently reduced metabolic costs may mean
more energy is available to increase primary moult intensity
[43,44], thus shortening the period of impaired flight and
potentially increasing pre-departure survival [7]. However,
faster moult may also reduce feather quality and thus nega-
tively impact survival during the southward migration
[45,46]. No regional differences in adult survival have been
identified or linked to the observed regional population
trends [17], so the impact of this apparent change in moult
duration appears minimal at present.

Although studies of relative change in phenology
between species are increasingly common, we find that
recording and analysing potentially differential phenological
changes within a species across multiple life cycle events may
shed light on the drivers of population trends. Under climate
change such differential shifts may have important and over-
looked consequences not only in birds but also across other
taxa (e.g. [47]).
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