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Abstract: Eggshell quality is economically important for table eggs and functionally indispensable for
hatching eggs. During the formation of eggshell in the uterus, organic matrixes in uterine fluid can
control and modify the formation of calcified eggshell. At present, there are limited studies focusing
on the effect of uterine organic metabolites on eggshell quality. In this study, an LC-MS-based
metabolomic technology was performed to identify the crucial uterine metabolites that differently
presented in hens producing eggs with divergent eggshell quality (eggshell strength, thickness, and
weight). More than 1000 metabolites were identified in uterine fluid, and six putative metabolites,
including phosphatidylcholine, diacylglycerol, verapamil, risedronate, coproporphyrinogen III, and
biliverdin, were screened to play crucial roles in eggshell calcification. Then, two trials for oral
administration and in vitro calcite crystal growth were conducted to verify the effect of potential
different metabolites on the eggshell quality. Verapamil has a temporary effect on decreasing eggshell
strength and eggshell thickness. Coproporphyrinogen III could induce smaller calcite crystals to
improve eggshell strength while biliverdin could modify crystal morphology by forming rougher
faces and rounder edges to strengthen the eggshell. The present study gives us new insight to
understand the role of uterine fluid matrixes in eggshell calcification.

Keywords: chicken; uterine fluid; eggshell quality; metabolomics; metabolites

1. Introduction

Eggshells perfectly separate the internal contents of the egg from the external environ-
ment and provide a natural barrier, aiding the storage of table eggs and the development
of embryos. Eggshells can guarantee the physical integrity of the egg and protect the egg
from contamination with microorganisms. Numerous pores on the surface of eggshells act
as gas exchange channels during the growth of avian embryos, and the eggshell provides a
calcium source for developing embryos [1,2]. Most notably, eggshell quality plays a crucial
economic role in egg production, accounting for 8~10% of total egg production losses from
eggshell breakage, causing economic harm [3]. Therefore, it is economically important to
improve eggshell quality for the production of eggs for consumption and hatching.

It takes a fairly long time, approximately 18~19 h, to form a highly organized and cal-
cific eggshell with a special bioceramic structure during the entire egg forming cycle. As the
developing egg reaches the isthmus and uterus five hours after ovulation, the dilated uterus
secretes large quantities of calcium and bicarbonate as well as small amounts of proteins
and other chemicals into the uterine fluid [3–5]. These secretions form highly organized
deposits constituting the main components of eggshells. In general, eggshells are com-
posed of 95% inorganic minerals, 3.3–3.5% organic matrix, and 1.6% water. Additionally,
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calcium carbonate is the main component of the eggshell and accounts for approximately
94% [6]. According to the deposition order and morphology of these materials, the eggshell
is divided into six visible layers from the inside out: the inner shell membrane, outer shell
membrane, mammillary layer, palisade layer, vertical crystal layer, and cuticle [6]. Similarly,
the whole calcification process is known to consist of three stages [1,7], i.e., the initiation
of mineralization (lasting approximately 5 h), the growth phase (taking approximately
12 h), and the termination of calcification (lasting approximately 1.5 h). In particular, the
composition of the uterine fluid varies with different stages of eggshell formation and
influences the morphology of calcite in the different zones of the eggshell [1].

Recently, how organic matrixes change in the uterine fluid during eggshell calcifi-
cation and how these organic matrixes affect eggshell quality have attracted increasing
attention. Gautron et al. (1997) observed the precursors of the eggshell matrix present in
the uterine fluid and involved in the process of eggshell calcification [8]. Marine et al. (2015)
identified different dominant proteins present during different stages of shell calcifica-
tion and found that ovocleidin-17 (OC-17) is mainly present at the initiation of calcifi-
cation [9]. Sun et al. (2013) reported that several eggshell matrix, calcium binding and
transport, bone development, or disease-related proteins are closely associated with strong
eggshell formation [10]. Certain proteins, such as osteopontin, ovalbumin, lysozyme,
ovotransferrin -, OC-17, and ovocleidin-116, have been demonstrated to influence cal-
cite crystal morphology in vitro [11–18] and further affect eggshell quality or mechanical
properties. However, with the exception of eggshell matrix proteins, it remains unknown
whether other organic substances in the uterine fluid, such as the end products of cellular
processes—metabolites—function in eggshell calcification, calcite crystal growth, and
eggshell quality.

Metabolomics makes it possible to systematically and comprehensively identify the
changes in cellular or organismal metabolites, offering a direct readout of biochemical
activity that can result from genetic perturbation or environmental changes. Thus, in this
study, we aimed to investigate the differential metabolites in uterine fluids collected from
hens with divergent eggshell quality and to decipher the precise roles of these metabolites
in eggshell quality through verification assays, enabling us to gain new insight into the
crucial functions of these metabolites in eggshell quality and calcification.

2. Results
2.1. Comparisons of Eggshell Quality Traits

In general, a thicker or heavier eggshell often means a stronger egg. However, in some
cases, eggshell strength varies greatly even if these eggs have similar eggshell thickness
and weight. Hence, three groups of hens (6 for each group) were selected from a population
of 183 individual chickens. The first group of hens produced eggs with strong, thick, and
heavy eggshells (STH). To emphasize the eggshell strength trait, the second group of hens
produced eggs with thick and heavy but weak eggshells (WTH). The third group of hens
produced eggs with thin, light, and weak eggshells (WtL). Table 1 shows the comparisons
of eggshell thickness, weight, and strength among these three groups. Compared to the
WTH group, the STH group had a 1.67-fold higher shell strength (3.53 vs. 2.11 kg/cm2,
p < 0.05) but equivalent shell thickness (0.327 vs. 0.314 mm) and weight (6.12 vs. 5.78 g,
p > 0.05), while the WtL group had thinner shell thickness (0.257 vs. 0.314 mm, p < 0.05)
and lighter eggshell weight (4.73 vs. 5.78 g, p < 0.05) but similar eggshell strength (1.69 vs.
2.11 kg/cm2, p > 0.05). The comparison of uterine metabolites among these three groups
could reveal the key molecules that regulate eggshell formation and strength. In addition,
the eggshells of these three groups had similar egg weights and shape indices (p > 0.05),
which could minimize the error.
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Table 1. Comparison of eggshell quality traits of eggs laid by selected hens from the 3 groups.

Eggs with Strong,
Thick, Heavy Shells
(3 eggs/hen, 6 hens)

Eggs with Weak,
Thick, Heavy Shells
(3 eggs/hen, 6 hens)

Eggs with Weak, Thin,
Light Shells

(3 eggs/hen, 6 hens)

Population
(3 eggs/hen, 183

hens)

Eggshell strength (kg/cm2) 3.531 ± 0.045 a 2.114 ± 0.141 c 1.692 ± 0.473 c 2.826 ± 0.585 b

Eggshell thickness (mm) 0.327 ± 0.004 a 0.314 ± 0.021 ab 0.257 ± 0.020 c 0.311 ± 0.027 b

Eggshell weight (g) 6.12 ± 0.270 a 5.78 ± 0.485 a 4.73 ± 0.369 b 5.87 ± 0.598 a

Egg weight (g) 61.29 ± 3.201 59.51 ± 3.175 57.68 ± 3.593 61.29 ± 4.101
Shape index

(length/width) 1.31 ± 0.016 1.29 ± 0.032 1.28 ± 0.004 1.30 ± 0.040

a–c Mean values with no common superscripts within each row differ significantly (p < 0.05). All values are shown as the mean ± SD.

2.2. Metabolite Profiles of Uterine Fluid

During the rapid growth phase of avian eggshell calcification, the type and quantity
of organic and inorganic components in the uterine fluid affect the precipitation of calcium
carbonate and further affect eggshell quality. To understand the role or function of small
molecule metabolites in eggshell calcification, Liquid chromatography–mass spectrometry
(LC–MS) was performed to detect these small molecule metabolites in hen uterine fluid in
both positive and negative modes. More than 1000 metabolites were identified in the uterine
fluid of the 3 groups of hens. Then, the results of Partial least squares-discriminant analysis
(PLS-DA) showed strong separations (Figure 1), i.e., the samples in ellipsoids are obviously
far away from each other, indicating that the uterine fluid samples had strong repeatability
and consistency in the same group and great differences in the divergent group. Volcano
plots suggested that 21 and 57 metabolites were significantly upregulated in the STH and
WTH groups, respectively, in positive mode (Figure 2a). When the metabolites of uterine
fluids in the STH group were compared with those in the WtL group, 125 metabolites were
significantly upregulated, while 90 metabolites were obviously downregulated (Figure 2b).
There was also a significant difference between the WTH group with 168 overrepresented
metabolites and the WtL group, with 44 metabolites being highly represented (Figure 2c).
In addition, in negative ion mode, the three groups also exhibited visible divergence
(Figure 2d–f).
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2.3. Identification of Differentially Present Metabolites

The metabolites detected in both the positive and negative ion modes were used for
the differential analysis according to the criteria of a fold change > 2 and p-value < 0.05.
After matching their names with those in the PubChem database, 23 differential metabolites
were identified between the STH and WTH groups (see Table S1), 42 differential metabolites
between the STH group and WtL group (see Table S2), and 52 differential metabolites
between the WTH and WtL groups (see Table S3). Then, the related metabolic pathways
were further searched in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway,
and only several differential metabolites identified in the positive ion mode were enriched
in the glycerophospholipid metabolism and linoleic acid metabolism pathways (Table 2).
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Table 2. KEGG pathway analysis of metabolites identified in positive ion mode 1.

Pathway Raw p KEGG Hits Enriched Differential Metabolites

alpha-Linolenic acid
metabolism 0.0385 C06427, C00157 PC(16:1(9Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)),

PC(15:0/P-16:0), PC(20:2(11Z,14Z)/P-18:1(11Z))

Glycerophospholipid
metabolism 0.0445 C00157, C00350, C04230

PC(16:1(9Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)),
PC(15:0/P-16:0), PE(16:0/P-18:1(11Z)),

PC(20:2(11Z,14Z)/P-18:1(11Z))
1 The metabolites detected in positive ion mode were not significantly enriched in certain KEGG pathways.

2.4. Putative Metabolites Potentially Participating in Eggshell Calcification

According to the results of the KEGG pathway analysis and the literature search,
six metabolites were screened as candidate molecules affecting eggshell calcification and
quality (Table 3). In both positive and negative modes, phosphatidylcholine (PC), involved
in glycerophospholipid metabolism and alpha-linoleic acid metabolism, was detected.
In positive ion mode, diacylglycerol (DG), which primarily functions to activate protein
kinase C (PKC), was identified, and two eggshell pigment molecules, biliverdin and co-
proporphyrinogen III (CpgenIII), associated with eggshell mineralization, were observed.
The concentrations of biliverdin and CpgenIII in the STH group were 3.088 and 2.656 times
higher than those in the WtL group, respectively. This suggests a potential relationship
between these two pigment molecules and eggshell quality. In addition, verapamil and
risedronate were detected in negative ion mode, and both of them had higher concentra-
tions in the WTH uterine fluid, indicating that verapamil facilitated the formation of thick
and heavy eggshells, while risedronate could prevent eggshell strengthening.

Table 3. Description of metabolite molecules potentially contributing to eggshell quality.

Metabolites Molecular
Weight

Comparison
Group 1 Fold Change p Value Ion Mode 2

DG(14:0/20:3(5Z,8Z,11Z)/0:0) 591.4 STH, WTH 2.014 0.0032 +
DG(18:4(6Z,9Z,12Z,15Z)/24:1(15Z)/0:0) 699.5 STH, WtL 0.317 0.0004 +
PC(16:1(9Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) 804.5 STH, WTH 0.497 0.0111 +, −

PC(15:0/P-16:0) 704.5 STH, WtL 0.275 0.0003 +, −
PC(20:2(11Z,14Z)/P-18:1(11Z)) 796.6 WTH, WtL 2.516 2.79 × 10−5 +, −

Verapamil 453.3 WTH, WtL 4.167 0.0333 −
Risedronate 282.1 STH, WTH 0.472 0.0186 −

Coproporphyrinogen III 661.2 STH, WtL 3.088 0.0001 +
Biliverdin 583.2 STH, WtL 2.656 0.0001 +

1 STH, hens with strong, thick, and heavy eggshells; WTH, hens with weak, thick, and heavy eggshells; and WtL, hens with weak, thin, and
light eggshells. 2 In the ion mode column, “+” indicates that the metabolites were only detected in positive mode, “−” means that the
metabolites were only detected in negative mode, and “+, −” means the metabolites were detected both in the positive and negative modes.

2.5. Verification of the Effects of Verapamil and Risedronate on Eggshell Quality

Both verapamil and risedronate had higher concentrations in the WTH group than
in the WtL and STH groups, respectively. The metabolites verapamil and risedronate
cannot be synthesized in chickens and can only be gained through feed intake or injection.
It is hypothesized that exogenous verapamil and risedronate could decrease eggshell
strength, thickness, and weight. To confirm this hypothesis, these two metabolites were
fed to hens by capsules, and then the three eggshell quality traits of the subsequently
produced eggs were measured. The results showed that on the first day after feeding, hens
fed verapamil produced eggs with a significantly lower eggshell strength (decreased by
30.4%, p < 0.05) and thickness (decreased by 14.3%, p < 0.05) (Figure 3). From the second
day, both eggshell strength and thickness recovered to their levels on the feeding day,
indicating that verapamil is likely to be mobile in hens’ bodies for only a short time and
has a temporary effect, decreasing eggshell strength and thickness. Therefore, it could be
speculated that verapamil maintains higher levels in the uterine fluid of WTH hens due
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to its larger number of residues. Additionally, there were no significant differences in the
eggshell strength, thickness, or weight of eggs produced by hens fed risedronate capsules
or empty capsules (control group). Hence, risedronate has no effect on eggshell quality
under normal rearing conditions.
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Figure 3. Effect of oral administration of verapamil and risedronate on eggshell quality, including (a) strength, (b) thickness,
and (c) weight. The White Leghorn hens were fed verapamil hydrochloride (8 mg/hen), sodium risedronate (1.75 mg/hen),
and empty capsules, respectively. Eggs were collected on the day capsules were fed and on the successive 3 days after oral
administration, and then eggshell quality was measured. Data are represented as means ± SEM (n = 10 hens per group).
Statistical significance of mean differences was tested by one-way ANOVA. p < 0.05 (a,b).

2.6. Verification of the Effects of cpgenIII and Biliverdin on Calcite Crystal Morphology

Two major eggshell pigments, cpgenIII (the precursor of protoporphyrin IX (PPIX))
and biliverdin, had a higher content in the STH group than in the WtL group. Given that
certain components in the uterine fluid, especially eggshell matrix proteins [11–18], change
the calcite morphology and growth rate in different ways, it was hypothesized that these
two pigments may also have affected the calcite structure. Hence, an in vitro crystallization
assay was conducted to study whether these two pigments affect calcite crystal morphology.
In the control group (containing only CaCl2 solution), all calcite crystals with a size of 10 to
20 µm displayed a characteristic cleaved <104> rhombohedra. Both the aggregated and sin-
gle calcites displayed sharp edges and smooth faces, as shown in Figure 4a,b and Figure 5a,b.
Then, CpgenIII and biliverdin were added to a constant concentration of calcium chloride
(CaCl2) solution to observe the change in calcite precipitation, especially as is it related to
crystal morphology. The addition of CpgenIII resulted in rhombohedral <104> faces, but
the size of the calcite crystals decreased by approximately 10 µm (Figure 4c,d). Most of the
calcite existed as single separated crystals rather than aggregated crystals. The introduction
of biliverdin resulted in crystals with the same size but clearly different morphology com-
pared to the control. The faces became rough and uneven, and the corners became rounder.
Moreover, all the edges of the rhombohedra became inclined, not vertical or horizontal
(Figure 5c,d).
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3. Discussion

Eggshell calcification takes place in the uterus of hens. There is no doubt that the
components of uterine fluid provide the dominant sources of eggshell matrix and play
an important role in the formation of eggshell. Although the uterine fluid components of
hens, especially matrix proteins, have been universally studied, the precise composition
and crucial metabolites in the uterine fluid relating to eggshell formation remain unknown.
These metabolites are likely to regulate the deposition and metabolization of calcium
carbonate and then further affect eggshell quality. The current study was therefore carried
out with a divergent eggshell quality model, and a metabolomics approach based on
LC-MS was used to detect the differential metabolites in the uterine fluid of hens with eggs
with divergent eggshell quality.

The eggshells in the STH group had a higher strength than those in the WTH group,
which was probably caused by the different types and amounts of small molecule metabo-
lites in the uterine fluid. When the WTH group was compared to the WtL group, the
eggshell strength and eggshell weight differed significantly, possibly due to the deposition
of calcium carbonate. The STH group and the WtL group had obvious differences in
eggshell strength, thickness, and weight, which was likely due to the comprehensive effect
of calcium carbonate deposition, small molecule type, and amount. The hens used in
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our experiments were under the same conditions but had divergent eggshell quality, so
detecting the differential metabolites in the uterine fluid of these three groups of hens could
be of significance to screen some potential small molecules that affect eggshell quality.

Our results showed that the PC and DG contents in the STH group were significantly
higher than those in both the WTH and WtL groups. In fact, the relationship between
PC and eggshell strength was clearly demonstrated late in the last century. Castaldo and
Maurice (1988, 1989, 1997) observed that hens with strong shells tend to have a greater
concentration of PC in their uterine fluid and a higher calcium adenosine triphosphatase
(Ca2+-ATPase) activity in their uterine mucosa than hens producing weak shells, which
agrees with our results and confirms that PC is crucial to eggshell calcification and may
exert its role by altering the Ca2+-ATPase activity of the uterine fluid [19–21].

It is well known that DG functions primarily in activating PKC, and sustained gen-
eration of DG could easily achieve the postulated prolongation of PKC activation [22].
The PKC family, consisting of 10 structurally related serine/threonine protein kinases [23],
plays an important role in the process of phosphorylation in cells of a range of organisms.
In chickens, some eggshell matrix proteins are phosphoproteins that are considered to
control and regulate calcium carbonate precipitation during eggshell calcification, mainly
including osteopontin and the eggshell-specific proteins ovocleidin-17, ovocleidin-116,
and ovocalyxin-32 [24]. Osteopontin has been revealed to be associated with eggshell
thickness [25] and fracture toughness [26] and to be expressed at a reduced or absent level
in specific regions of the uterine epithelium of hens producing pimpled or corrugated
shells [27]. From the perspective of the eggshell microstructure, uterine osteopontin could
guide calcite orientation and alter crystal morphology by inhibiting calcite growth at char-
acteristic rhombohedral <104> faces [11]. Dephosphorylation of the serine residues of
osteopontin abolishes its ability to inhibit calcium carbonate precipitation [28]; therefore, it
can be speculated that phosphorylation of osteopontin enables its ability to modify calcite
crystals and then affect eggshell quality. In addition, phosphate-induced osteopontin ex-
pression specifically requires a PKC-dependent signaling pathway [29]. Hence, it is highly
likely that high levels of DG ensure the sustained activation of PKC and further facilitate the
functioning of osteopontin. Furthermore, there is no evidence that other phosphorylated
eggshell matrix proteins require the participation of the PKC signaling pathway, and the
case of osteopontin suggests that this possibility should be further explored.

In our study, verapamil and risedronate were detected in the uterine fluid. It is clear
that hens are unable to synthesize these two chemicals on their own, which can only be
deposited into hens’ bodies through dietary supplementation or medicine injection. In the
poultry industry, enrofloxacin is applied most frequently to treat colibacillosis, a common
disease in poultry. Oral administration of verapamil could significantly improve the absorp-
tion of enrofloxacin in both healthy and infected broilers [30]. In addition, it is noted that
verapamil is a well-known calcium channel blocker. In our study, verapamil was found to
have a higher content in the WTH group than in the WtL group, suggesting that verapamil
may play a positive role in regulating the deposition of calcium carbonate. In contrast,
during oral verapamil treatment, the eggshell strength and thickness obviously declined
first and then recovered to the same level as that at the day of feeding. Verapamil can inhibit
calcium influx through the slow channels of vascular smooth muscle and decrease calcium
contents in the plasma of rats [31]. Therefore, in chickens, it is hypothesized that a high
dose of verapamil will reduce the level of plasma calcium. Since calcium in uterine fluid
is supplied continuously by blood plasma via transepithelial transport during eggshell
formation [32,33], calcium in uterine fluid is reduced, and the deposition of calcium car-
bonate in eggshell further decreases. This approach resulted in a decrease in eggshell
thickness after verapamil capsules were fed to hens. Kibala et al. (2015) found a genetic
correlation between eggshell strength and thickness of approximately 0.8 [34]; therefore, a
decrease in eggshell thickness after oral verapamil administration was related to a decline
in eggshell strength. Notably, eggshell thickness and strength rapidly returned to normal,
indicating that verapamil is metabolized in a short time. Early studies focused on the effects
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of verapamil on chicken biventer-cervicis muscle [35], atherosclerotic chickens [36,37], and
shifts in drug–drug interactions when broilers were treated with the specific P-glycoprotein
inhibitor verapamil [38]. It is uncommon to add verapamil to the chicken’s diet during
egg production, and few studies have focused on the effects of verapamil on layers and
chicken egg quality although verapamil could attenuate lipopolysaccharide [39] and col-
ibacillosis [30] in broilers when treated with oral enrofloxacin. Hence, our results first
showed verapamil has a temporary effect on declining eggshell thickness and strength. It
is unknown whether verapamil could be deposited in egg yolk or egg white, which needs
further study.

In commercial caged egg-laying hens, approximately 20% of hens suffer from bone
breakage and mortality, with osteoporosis accounting for up to one-third of the total
mortality [40,41]. Risedronate, a pyridinyl bisphosphonate, has been reported to be an
ideal therapy option in the prevention and treatment of osteoporosis in humans [42–45] and
to improve bone architecture and quality in rats [46]. Hence, in some farms, ridedronate
dietary supplementation is likely to be considered to improve bone breaking strength
and relieve osteoporosis in laying hens, whereas it is unclear whether risedronate could
accumulate in the egg content. In the current study, we found that the concentration
of risedronate in the uterine fluid of WTH hens with poor eggshell quality was greater
than that of STH hens with good eggshell quality. Therefore, risedronate may have some
impact on eggshell strength. Oral administration to White Leghorn chickens resulted in
no differences in the eggshell strength, thickness, or weight of eggs produced by hens
fed 1.75 mg of risedronate, suggesting that risedronate is not the main factor that affects
eggshell strength.

Interestingly, eggshell pigments have a higher concentration in the uterine fluid of
relatively strong, thick, and heavy eggshell. The eggshell is mainly composed of calcite,
a colorless and transparent crystal under natural conditions. However, in the last 5 h
before oviposition, approximately 50% to 74% of pigments are deposited on shells [47],
so eggshells are usually colored white, brown, blue, or other colors. Large amounts of
PPIX and trace amounts of biliverdin IX are the predominant components of eggshell
pigments [48–50] and are synthesized in the uterus of the hen’s oviduct [51–54]. In this
study, it was observed that in the uterus, the STH group had higher contents of biliverdin
and cpgenIII than the WtL group, indicating that these two pigments may play a key role in
improving eggshell quality. However, for chickens, several studies have been more focused
on the relationships between eggshell darkness and eggshell quality, not eggshell pigment
and eggshell quality. Godfery (1949) observed that darker brown eggs have a higher
eggshell strength and thickness than lighter brown eggs, and eggshell color positively
correlated with eggshell quality [55]. Later, Aygun (2014) similarly concluded that eggshell
strength increased as the darkness of eggshells increased [56], and Sekeroglu et al. (2011)
showed that the shell color of brown eggs is significantly affected by eggshell thickness [57].
It has been proposed that eggshell color could be used as an indicator to assess some
eggshell quality parameters, such as strength, thickness, and weight, according to their
close correlation [58,59], although some conflicting evidence exists. Since eggshell color
is determined by pigment concentrations and types, all of these studies suggested that
eggshell pigments can affect shell quality. Fortunately, other studies using wild avian
eggs to explore relationships between eggshell pigment and eggshell quality can support
this theory.

CpgenIII is transported into the mitochondrial intermembrane space and then is
converted to PPIX by coproporphyrinogen oxidase and protoporphyrinogen oxidase [60].
The structure of PPIX is close to that of phthalocyanines, solid-state lubricants used in
engineering, so it has been proposed that PPIX may function as a lubricant in the shell
matrix and may improve eggshell strength [61,62]. For speckled eggs, protoporphyrin is
reported to compensate for reduced eggshell thickness, with spots specifically demarcating
thinner areas of shell [63,64]. Gosler et al. (2011) confirmed that protoporphyrin serves
as a substitute for calcium to strengthen thinner areas of eggshell and has a localized
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strengthening effect on the eggshell’s toughness, which might be achieved by a shock
absorption effect within the eggshell [65]. According to the abovementioned results, it is
hypothesized that for brown eggs, a greater amount of cpgenIII is eventually converted
into more PPIX on the eggshell with a relatively uniform distribution during the last 5 h
after oviposition, so the eggshell thickness is increased followed by reinforcement of the
eggshell. However, the relationship of another pigment, biliverdin, with eggshell quality
remains controversial. Jagannath et al. (2008) showed that biliverdin, which produces a
bluish-green color, has no significant association with eggshell thickness [64]. Butler and
Waiter (2016) reported that biliverdin concentration increased with decreased eggshell
thickness using European starling (Sturnus vulgaris) eggs [66]. Hence, whether biliverdin
plays an important biomechanical role remains to be further studied.

Because eggshell microstructure (including the size, shape, and orientation of crystals)
influences eggshell mechanical properties and the quantity and composition of shell matrix
components are associated with changes in the microstructure, it is hypothesized that
cpgenIII and biliverdin could influence the modification of calcite crystals. In the in vitro
assay of calcite crystal growth, the control group exhibited characteristic rhombohedral
phases <104>, indicating that the methods were reliable and that the results were accurate.
Crystal morphology is the consequence of the interaction between specific calcite crystal
faces and biological molecules [67]. In the current study, the precise roles of pigments in
eggshell microstructure can therefore be inferred according to the mediated morphological
modifications of the rhombohedric crystals; a smaller crystal size and lower heterogeneity
of crystal size were caused by cpgenIII additives. Previous studies have reported that
chicken eggshells are much stronger and consist of smaller crystals [68,69], and our study
has shown that the content of cpgenIII in the STH group was more than three times that in
the WtL group. Therefore, cpgenIII could improve eggshell strength by forming smaller
crystals. This inference can be clarified by the increased boundary areas of the crystals
as the crystal size decreases, making it more difficult for eggs to crack [70]. In addition,
biliverdin additives resulted in rough and uneven rhombohedral <104> crystals. Similarly,
biliverdin had a higher content in the STH group, so it is highly likely that biliverdin could
make calcite crystal faces rougher to strengthen eggshells. It is not surprising that the
rougher the material surface is, the slower cracks spread [71], i.e., the roughness of the
material surface inhibits the spread of cracks. Thus, a crack takes more external energy
to spread through rough and uneven crystals than between smoother crystals. Overall,
by inducing smaller or rougher calcite crystals, higher concentrations of cpgenIII and
biliverdin in the uterine fluid could enhance the eggshell mechanical properties.

4. Materials and Methods
4.1. Bird Management

In this experiment, 200 340-day-old White Leghorn hens kept on our experimental
farm at China Agricultural University were used. All birds were caged individually
and were subjected to a 16-h light and 8-h dark cycle (16L: 8D). These birds were fed as
recommended by the National Poultry Performance Test Center (Table 4) and the whole
experimental procedure was strictly performed according to the protocol approved by the
Animal Welfare Committee of China Agricultural University (AW62801202-1-1).
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Table 4. Diet composition and nutrition level of laying hens.

Ingredients Content (%) Nutritional
Parameters Levels

Soybean meal (43% CP) 24.56 AME (MJ/kg) 11.37
Corn 63.42 Crude protein (%) 17.28

Soybean oil 0.5 Calcium (%) 3.14
Coarse limestone 8.5 Total phosphorus (%) 0.33

Premix 1 3 L-Lysine (%) 0.886
Antioxidants 0.02 DL-Methionine (%) 0.281

Total 100
1 Premix (provided per kilogram of feed) the following substances: vitamin A, 12,500 IU; vitamin D3, 2500 IU;
vitamin K3, 2.65 mg; vitamin B1, 2 mg; vitamin B2, 6 mg; vitamin B12, 0.025 mg; vitamin E, 30 IU; biotin. 0.0325
mg; folic acid, 1.25 mg; pantothenic acid, 12 mg; niacin, 50 mg; Cu 8 mg; Zn, 75 mg; Fe 80 mg; Mn, 100 mg; Se,
0.15 mg, I, 0.35 mg.

4.2. Measurements of Egg Traits and Selection of Hens

Fresh eggs were collected from 183 hens of experiment flock (91.5% of laying hens)
for 3 successive days, and egg quality traits were measured on the day of sampling. Egg
weight was measured using an electronic scale with an accuracy of 0.1 g. The length and
width of eggs were measured with an Egg Shape Index Gauge (FHK, Tokyo, Japan, 1 mm;
shape = length/width). Then eggshell strength was measured vertically with the blunt
end of each egg up using the Eggshell Force Gauge (Model-II, Robotmation, Tokyo, Japan).
Subsequently, each egg was cracked, the eggshell with membrane was dried with paper
towel to remove residual egg white, and then it was weighed using an electronic scale.
After, eggshell thickness was calculated averagely by the thickness of the blunt, middle,
and sharp end of the eggshell without membrane and measured using a Coolant Proof
Micrometer (Mitutoyo, Kawasaki, Japan). Finally, 18 hens were eventually selected and
divided into 3 groups (STH, hens with strong, thick, and heavy eggshell; WTH, hens with
weak, thick, and heavy eggshell; WtL, hens with weak, thin, and light eggshell) for their
divergent eggshell weight, eggshell strength, and eggshell thickness (Table 1).

4.3. Uterine Fluid Sampling

The selected 18 hens were kept individually in adjacent cages and were observed for
several days from 5:00 am to 6:00 pm to record the precise laying time of each hen. Therefore,
we were able to precisely predict the ovulation time within a laying sequence for each hen.
During the phase of eggshell mineralization in hens 18 h after previous oviposition, uterine
fluid was collected after the hen was injected with 0.3 mL of cloprostenol (0.16 mg/mL;
Dandong Ludan Hehua Animal Pharmaceutical Co., Ltd., Dandong, China) in the wing
vein, which induced oviposition with concurrent uterine fluid loss from the oviduct. Then,
a plastic tube was placed at the entrance of the everted vagina immediately after the
egg was produced. Uterine fluid was diluted in Tris-HCl buffer (0.0625 M, pH 6.8, the
volume ratio of sample to buffer was 1:1, 10 mM Roche protein inhibitor-Aprotinin was
included), and then rapidly frozen in liquid nitrogen to limit any spontaneous precipitation
of calcium carbonate and proteins and finally stored at −80 ◦C for the subsequent liquid
chromatography–mass spectrometry (LC–MS) analysis.

4.4. Sample Preparation for MS Analysis

Prior to analysis, 300 µL of acetonitrile were added to 100 µL of each uterine fluid
sample in a clean 1.5-mL Eppendorf tube. The mixtures were vortexed vigorously for
1~3 min, placed at 4 ◦C for 10 min, and then centrifuged at 13,000 rpm for 10 min. The
supernatant was transferred into a new 1.5-mL Eppendorf tube and dried in a vacuum dryer.
Then, the dried samples were reconstituted with 100 µL of acetonitrile for further analysis.



Metabolites 2021, 11, 575 12 of 16

4.5. LC-MS Analysis

LC-MS metabolomics analysis was performed on an ultra-high-performance liquid
chromatograph (Nexera X2 system, Shimadzu, Kyoto, Japan) and high-resolution mass
spectrometer (Triple TOF 5600+, AB SCIEX, Redwood City, CA USA) equipped with a
dual electrospray ionization (ESI) source. An Agilent ZORBAX Eclipse Plus C18 column,
2.1 mm × 100 mm, 3.5 µm was used for the chromatographic separations of uterine fluid
samples with the column temperature maintained at 60 ◦C and the flow rate at 0.5 mL/min.
Mobile phase A, consisting of 0.1% formic acid in water, and mobile phase B, consisting of
0.1% formic acid in acetonitrile, were used for gradient elution (see Table S4). The injected
sample volume was 3 µL.

MS data acquisition was performed in both the positive and negative ion modes. The
parameters used included source temperature (120 ◦C), desolvation temperature (500 ◦C),
nitrogen gas flow rate (600 L/h), and cone gas flow rate (50 L/h). For the positive ion
mode, the capillary, sampling cone, and extraction cone voltages were 3.0 kV, 27 eV, and
4 eV, respectively. For the negative ion mode, the capillary, sampling cone, and extraction
cone voltages were 4.5 kV, 27 eV, and 4 eV, respectively. The full range mass scan was from
50~1500 m/z.

4.6. Identification of Metabolites and Statistical Analysis of Data

After obtaining the spectrogram of 18 uterine fluid samples through LC-MS, the
raw mass spectrometry data were processed using Marker View software (Marker View
1.2.1, AB SCIEX, Redwood City, CA USA) to identify, filter, alignment, m/z value, and
peak area were obtained by two-dimensional matrices and data were normalized by
MetaboAnalyst 5.0 software. PLS-DA, volcano plot analysis (fold change ≥2 or ≤0.5,
and p < 0.05), and variable importance in projection (VIP ≥ 1.0) analysis were performed
using the MetaboAnalyst (https://www.metaboanalyst.ca/, accessed on 25 June 2020)
online analysis platform and R project. Metabolites with FC≥2 or ≤0.5, p < 0.05, and
VIP ≥1.0 were first annotated based on their exact mass data corresponding to m/z peaks
by searching them against the Metlin and Human Metabolome Database databases to
obtain their accession numbers, and then their names were identified by alignment to
the PubChem database. Finally, the metabolites were subjected to - -KEGG- pathway
enrichment analysis using the MBRole platform (http://csbg.cnb.csic.cs/mbrole, accessed
on 28 June 2020). Combining statistical analysis and relevant literature on the functions of
these differential metabolites, candidate metabolites affecting eggshell calcification were
screened in our study.

4.7. Verification of Differential Metabolites Potentially Associated with Eggshell Quality
4.7.1. Oral Administration

Among the potential metabolites related to eggshell calcification, two metabolites
could only be deposited in chickens’ bodies through feed intake. Therefore, these two
organics were fed to hens, and eggshell quality parameters were measured to verify
whether the organics affected eggshell quality.

Two tablets of verapamil hydrochloride (40 mg/tablet, the Central Pharmaceutical
Co., Ltd., Tianjin, China) and 3.5 tablets of sodium risedronate (5 mg/tablet, Kunming
JiDa Pharmaceutical Co., Ltd., Kunming, China) were ground into powder, and then these
powders were evenly filled in empty plant-based capsules; that is, an average of 8 mg of
verapamil hydrochloride power or an average of 1.75 mg of sodium risedronate power
was loaded into each capsule. Thirty 66-week-old White Leghorn hens (egg-laying rate
>77%) kept on our experimental farm at China Agricultural University were randomly
selected and divided into three groups (10 hens per group). After eggs were collected,
hens of these three groups were fed verapamil hydrochloride capsules (1 capsule/hen,
treatment group), sodium risedronate capsules (1 capsule/hen, treatment group), or empty
capsules (1 capsule/hen, control group) at 11:00 am on the same day. Eggs produced
by experimental hens on the day capsules were fed and on the successive 3 days after

https://www.metaboanalyst.ca/
http://csbg.cnb.csic.cs/mbrole
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capsule administration were collected and used to measure eggshell strength, thickness,
and weight. The eggshell quality traits were examined by one-way ANOVA using SAS 9.0
(SAS Institute, Cary, NC, USA).

4.7.2. In Vitro Calcite Crystal Growth Assay

Two types of pigment molecules, CpgenIII and biliverdin, are considered to play an
important role in improving eggshell quality. To better verify whether these molecules affect
eggshell quality and understand how they affect the mechanical properties of eggshells,
an in vitro calcite growth assay was developed to observe calcite crystal morphological
changes and investigate the relationship between these two pigments and eggshell quality.

The crystallization method was performed by using gas diffusion according to a
previous study [67] with some modifications (Figure 6). A small container was filled with
60 µL of CaCl2 solution (0.2 M) with or without either CpgenIII or biliverdin, and a single-
side polishing silicon wafer <111> was totally immersed into CaCl2 solution. Every four
small adjacent containers with the same solution were treated as an experimental group.
Small containers were placed on a Petri dish with a center hole 2 cm in diameter on the
bottom part. A 50-mL glass beaker containing 15 mL of ammonium carbonate solution
(0.5 M) was covered by Parafilm with several pinholes for carbon dioxide diffusion. Then,
the dish was placed over the glass beaker, and this closed system was sealed by thermal
grease. The single-sided polished silicon wafers were collected after 2 h, rinsed with
absolute ethanol and ultrapure water, dried at room temperature and then coated with
gold, and the calcite crystal size and shape were observed by scanning electron microscopy.
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5. Conclusions

For the first time, the current study screened the potential uterine fluid metabolites
involved in eggshell calcification and eggshell quality with LC-MS-based metabolomics
technology. Six crucial metabolites, phosphatidylcholine, diacylglycerol, verapamil, rise-
dronate, coproporphyrinogen III, and biliverdin, were screened as potential matrixes
affecting eggshell quality. According to a previous study and verification test, it can be con-
cluded that high concentrations of uterine phosphatidylcholine are associated with higher
eggshell strength. Verapamil decreased eggshell strength and thickness. The pigments
coproporphyrinogen III and biliverdin could alter calcite crystal size and morphology and
then strengthen eggshells. Our study provides a new perception of the function of uterine
organic matrixes during eggshell calcification.



Metabolites 2021, 11, 575 14 of 16

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/metabo11090575/s1, Table S1: Differential metabolites between the STH and WTH groups
in positive and negative ion modes, Table S2: Differential metabolites between the STH and WtL
groups in positive and negative ion modes, Table S3: Differential metabolites between the WTH
and WtL groups in positive and negative ion modes, Table S4: The procedure of chromatographic
gradient elution.

Author Contributions: C.S., X.W. and P.Z. were involved in the conception of the study as well as
the study design. X.W. and P.Z. carried out the experiments. All authors participated in sample
collection and egg quality measurement. X.W., P.Z. and C.S. conducted statistical and bioinformatics
analysis, P.Z. performed verification experiment including oral deministration and in vitro calcite
crystal growth assay. X.W. and P.Z. designed all of the figures and X.W. wrote the manuscript. C.S.
were responsible for critical revisions of the manuscripts. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by China Agriculture Research System of MOF and MARA,
grant number CARS-40.

Institutional Review Board Statement: This study was carried out obeying the Guidelines for
Experiment Animals established by the Animal Care and Use Committee of China Agricultural
University (AW62801202-1-1).

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in Supplementary Materials.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Nys, Y.; Gautron, J.; García-Ruiz, J.M.; Hincke, M.T. Avian eggshell mineralization: Biochemical and functional characterization

of matrix proteins. Comptes Rendus Palevol 2004, 3, 549–562. [CrossRef]
2. Hincke, M.T.; Nys, Y.; Gautron, J.; Mann, K.; Rodriguez-Navarro, A.B.; McKee, M.D. The eggshell: Structure, composition and

mineralization. Front. Biosci. 2012, 17, 1266–1280. [CrossRef]
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