
RESEARCH ARTICLE

Trajectory-based training enables protein

simulations with accurate folding and

Boltzmann ensembles in cpu-hours

John M. JumperID
1,2¤, Nabil F. FarukID

3, Karl F. Freed2, Tobin R. SosnickID
1,4*

1 Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA,

2 Department of Chemistry, and The James Franck Institute, University of Chicago, Chicago, Illinois, USA,

3 Graduate Program in Biophysical Sciences, University of Chicago, Chicago, Illinois, USA, 4 Institute for

Biophysical Dynamics, University of Chicago, Chicago, Illinois, USA

¤ Current address: DeepMind, 5 New Street Square, London EC4A 3TW, UK

* trsosnic@uchicago.edu

Abstract

An ongoing challenge in protein chemistry is to identify the underlying interaction energies

that capture protein dynamics. The traditional trade-off in biomolecular simulation between

accuracy and computational efficiency is predicated on the assumption that detailed force

fields are typically well-parameterized, obtaining a significant fraction of possible accuracy.

We re-examine this trade-off in the more realistic regime in which parameterization is a

greater source of error than the level of detail in the force field. To address parameterization

of coarse-grained force fields, we use the contrastive divergence technique from machine

learning to train from simulations of 450 proteins. In our procedure, the computational effi-

ciency of the model enables high accuracy through the precise tuning of the Boltzmann

ensemble. This method is applied to our recently developed Upside model, where the free

energy for side chains is rapidly calculated at every time-step, allowing for a smooth energy

landscape without steric rattling of the side chains. After this contrastive divergence training,

the model is able to de novo fold proteins up to 100 residues on a single core in days. This

improved Upside model provides a starting point both for investigation of folding dynamics

and as an inexpensive Bayesian prior for protein physics that can be integrated with addi-

tional experimental or bioinformatic data.

Author Summary

All-atom biomolecular simulations are useful but often take months to simulate biologi-

cally relevant reactions. Coarse-grain folding simulations reduce the computational

requirements; however, they typically have reduced accuracy and knowledge of the native

state is required. Here, we show that a properly formulated coarse-grain model trained

using modern machine learning methods can rival all-atom models for de novo protein

folding and dynamics simulations. The Upside model’s success argues that simpler models

that can be globally parameterized can rival more detailed but slower models whose
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parameterization is more challenging—more complexity does not necessarily equate to

higher accuracy. Upside’s ready generation of Boltzmann ensembles allows for a wide

range of computational studies of protein folding, dynamics and binding. Additionally, in

studies that incorporate experimental or bioinformatics data, including sparse contact

predictions, Upside provides an inexpensive Bayesian prior distribution over protein

structures that may be updated using experimental information.

Introduction

Since Anfinsen’s original demonstration that a protein’s sequence determines its structure,

multiple computational strategies have been developed to predict a protein’s structure from its

sequence. An additional facet of this challenge is to replicate the energy landscape that defines

both the folding process and other dynamical properties. In the absence of other information,

coarse-grained models with one or a few beads per residue are too simplistic for de novo struc-

ture prediction. Cβ level models having authentic protein backbones with ϕ/ψ dihedral angles,

but lacking side chain rotamers, have achieved some success [1–3]. Within the last decade, all-

atom, explicit solvent methods have become successful for the folding of some small proteins,

although the ability to replicate the properties outside the native basin requires substantial

improvement [4]. For the folding process, it is unclear which representation provides the opti-

mal combination of detail and computational expense to replicate protein folding and dynam-

ics. Integral to the choice of representation is which interactions to include, such as hydrogen

bonding, van der Waals interactions and hydrophobic burial.

Another factor is the parameterization of the energy function with the training algorithm

needing to balance the influences of all interactions. Protein thermodynamics reflects a deli-

cate balance between the free energy of the folded and unfolded states. If one interaction is

slightly too large, the entire landscape can be severely distorted. For example, if backbone

hydrogen bonding energies are too large compared to backbone-solvent interactions (which

includes hydrogen bonds between the backbone and water), an excess of hydrogen bonding

ensues and pathways become dominated by unrealistically stable native- and non-native sec-

ondary structures. In an extreme situation, the lowest energy structure may have long helices

involving nearly all residues.

The balancing of these various energies has been a major effort, and the balance is continu-

ally being adjusted as new force field biases are identified [5]. However, the adjustment of

some parameters to correct one deficiency can inadvertently degrade performance of other

quantities. In order to achieve the correct balance, all terms in the model should be trained

together, rather than adjusted with an ad hoc procedure to correct each identified deficit.

To achieve this balance with a detailed interaction model, we use our recently developed,

extremely rapid Upside implicit solvent molecular dynamics program [6]. Each residue In

Upside is represented with a polypeptide backbone and a side chain interaction site or bead

which can adopt up to 6 positions representing up to six different side chain χ1/χ2 states. The

key advance of the model is the smoothing of the energy surface by approximate analytic inte-

gration of free energies for the side chains’ discrete states. When trained to predict side chain

conformations from the Protein Data Bank (PDB), the method can fold a few small proteins

with moderate accuracy in a cpu core-day. The majority of speedup of the procedure is a result

of a unique side chain algorithm which directly calculates the side chain probability distribu-

tion and the free energy. This free energy calculation, performed at every time step, avoids the
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steric rattling of the side chains which can occur in the condensed phase in all-atom simula-

tions, and so allows the backbone to move on a smoother energy landscape.

Here, we demonstrate that we can achieve de novo folding for a diverse collection of pro-

teins by combining our fast-equilibrating Upside model with a contrastive divergence proce-

dure that optimizes the stability of the native well. We demonstrate that gradient descent on

energy terms using only data from sampled trajectories is sufficient to parameterize a protein

model with tens of thousands of parameters. The resulting parameters are sufficiently balanced

and accurate to achieve reversible folding for many proteins in our validation set. In addition,

the resulting model is an excellent starting point for large scale protein simulations using more

detailed models as well as the integration of large quantities of external information (such as

predictions of residue contacts).

Methods

Coarse-grained model

In our recently-developed Upside model, only the N, Cα, and C atoms for each residue undergo

dynamics. This simple representation of the protein allows for molecular dynamics on a

smooth landscape but also makes it challenging to include the entirety of the protein physics.

To address this challenge, we build additional layers of derived coordinates during the energy

computation, much like virtual sites in a traditional force field. These layers include amide

hydrogens, carbonyl oxygens, hydrogen bonding and residue burial scores, and the possible

locations of protein side chains. All of the derivative information required is backpropagated

through these layers of representation during the computation of forces for molecular dynam-

ics. The side chain positions are the most challenging to represent because we must solve a

side chain packing problem in order to determine the distribution of side chain positions for a

given backbone geometry. To pack the side chains probabilistically and obtain a side chain

free energy, we use a rapid self-consistent iteration as described in our recent work [6] (Fig 1).

The major computational steps are:

Step 1. The loop begins (upper left corner) with each residue in the protein being represented

with 3 backbone atoms, the N, Cα and C. Based on the position of these atoms, the car-

bonyl oxygen, O, and amide proton, H, are deterministically placed.

Step 2. Each side chain, represented by a single oriented bead, is assigned an initial probabil-

ity for being in 1–6 states, depending on the residue type and the average frequency

observed in the PDB. The state of the bead is defined by its position and an orienta-

tion, (x,y,z,v), where v is a unit vector, relative to the peptide plane.

Step 3. The pair-wise state probabilities of all side chains are simultaneously and rapidly cal-

culated using belief propagation to produce the lowest system free energy.

Step 4. Forces on the 3 backbone atoms, as well as on the O, H and side chain beads are calcu-

lated from the derivative of the free energy.

Step 5. Forces on the O, H and bead are “pulled back” and added to the forces on the 3 back-

bone atoms by reversing the placement process.

Step 6. Langevin dynamics (implicit solvent with friction) are run on the 3 backbone atoms

using the forces calculated in Steps 4 and 5.

The majority of parameters in Upside define the pairwise interactions between side chains,

where each side chain is represented by a single directional bead. Concretely, each interaction

pair is described by bead positions y1 and y2 and their orientations n1 and n2. From the
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distance r12 = |y1 − y2| and displacement unit vector n12 = (y1 − y2)/r12 are calculated. All of the

pairwise interactions have the functional form

V ¼ kðVradialðr12Þþ

ang
1
ð� n1 � n12Þ ang2

ðn2 � n12ÞVangularðr12ÞÞ;
ð1Þ

where Vradial, ang1, ang2, and Vangular are smooth curves represented by cubic splines for

increased flexibility, rather than fixed functional forms such as a van der Waals 6-12 potential.

The potential for each of the 20

2

� �
þ 20 ¼ 210 types of amino acid pairs are described with 62

spline coefficients per pair, giving 13020 parameters. There are also five interaction sites on the

backbone, roughly representing the H, O, N, Cα, and C atoms, with 54 parameters per interac-

tion due to a smaller cutoff distance (10 versus 8 Å). The total number of side chain-backbone

interaction parameters is 5400.

We add an additional term to capture desolvation effects by computing the approximate

number of side chains Ni within a hemisphere above the Cβ (see S1 Text in Supporting Infor-

mation). High values of Ni correspond to buried residues. The total energy is

Venv ¼
X

i

venvai
ðNiÞ; ð2Þ

Fig 1. Computational inner loop for Upside. The positions of the protein side chains are added during each energy or force computation, then an

approximate Boltzmann distribution is estimated for the side chains, and the free energy of the side chains is computed using the approximate

Boltzmann ensemble. The resulting energy derivatives are pulled back to the backbone coordinates to update the backbone momenta.

https://doi.org/10.1371/journal.pcbi.1006578.g001
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which is the sum of the values from individual venvai
potential curves for each residue i. Although

more sophisticated solvation potentials exist, our implementation is very fast and easily opti-

mized by the contrastive divergence procedure, while remaining flexible enough to represent

many of the solvation effects omitted by the pairwise side chain potential.

The backbone dihedral angle Ramachandran potential is
P

iV
Rama
i ð�i;ciÞ, where VRama

i

depends on the chemical identity of the i − 1, i, and i + 1 residues. The Ramachandran

potentials are based on the turn, coil, or bridge (TCB) Ramachandran probability models

in the NDRD backbone library [7]. We introduce a single parameter controlling extra stabi-

lization of angles consistent with β-sheet geometries to allow training to counteract an

observed tendency for our model to overstabilize helices. The backbone non-bonded inter-

actions are governed by a distance- and angle-dependent hydrogen bonding potential whose

magnitude (but not geometry) is chosen by contrastive divergence. The backbone N, Cα, Cβ,

and C feel a steric repulsive interaction when their internuclear distance is approximately

3.0 Å.

Source code for Upside can be obtained from https://github.com/sosnicklab/upside-

md, and the results of this paper can be reproduced using the version tagged

trajectory_training_paper.

Contrastive divergence

Our implementation of contrastive divergence considers two ensembles, one closely restrained

to the native (crystal) structure and another that is free to diffuse away during simulations (Fig

2). In a perfect model, an unrestrained ensemble would remain close to the native structure.

For an inexact model, differences arise, such as an excess of backbone-backbone hydrogen

bonding in the free ensemble. Reducing the hydrogen bond energy would shift the free ensem-

ble closer to the native ensemble. The parameter modification must be small, however, because

shifting the hydrogen bond energy may adversely affect other features of the ensemble, e.g., by

reducing the burial of hydrophobic residues. Accordingly, after simulations are run on the

first set or “minibatch” of 12 proteins in our 456 protein training set, we modify all the param-

eters with small updates to shift the simulation ensemble to better match the native-restrained

ensemble. Simulations are repeated on the next of the 38 subsets of 12 proteins, and the param-

ters are updated again. The algorithm is converged when no parameter can be altered to shift

the free ensemble closer to the native-restrained ensemble.

The free ensemble is generated using 5000 time units of dynamics (approximately 10 wall-

clock minutes), with the first half being discarded as equilibration. Unless the native state is

particularly unstable, this time is insufficient for exploration of the conformational landscape

much beyond the native basin (RMSD within 6 Å) and so produces only a locally-equilibrated

ensemble.

The native ensemble is traditionally defined as a single conformation. This δ-function dis-

tribution is problematic for proteins because they are dynamical molecules. Additionally, the

solution ensemble may differ from the crystal structure for multiple reasons, including crystal-

lographic packing. To reduce the impact of these issues, we replace the exact ensemble struc-

tures with the ensemble restrained to be near the crystal structure, within approximately 1 Å
Cα-RMSD. This procedure is analogous to the restrained equilibration of crystal structures

required to prepare systems for all-atom molecular dynamics. To account for changing param-

eters, we apply the restrained relaxation at every optimizer step.

After generation of the free and native-restrained ensembles, we change the energy parame-

ters αi, where i is the optimizer step, in proportion to the amount that the change can differen-

tiate the two ensembles. This procedure is a form of gradient descent to reduce the “distance”

Trajectory-based training enables rapid simulations with accurate folding and ensembles
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between the free and native-restrained ensembles,

aiþ1 ¼ ai þ
�

M

XM

a¼1

dV
dai

� �

restrained

�
dV
dai

� �

free

� �

; ð3Þ

where � the step size, M is the number of proteins, and a indexes the simulated proteins. The

quantity dV
dai

D E

restrained
� dV

dai

D E

free
represents a pseudo-derivative of the free energy of restraining

the simulation to be near the crystal structure (see SI for details). In the limit that the simula-

tion duration is infinite, this difference is the exact derivative of the free energy. In practice,

this difference chooses a suitable direction to improve the parameters.

The simulations use temperature replica exchange with eight replicas to enhance barrier

crossing [8], while the temperature intervals of the replicas scale with 1=
ffiffiffiffiffiffiffi
Nres
p

to encourage

efficient replica exchange for proteins of various sizes. The progress of the replica exchange is

Fig 2. Contrastive divergence training. (A) Schematic of the training procedure depicting how the native state is stabilized

relative to other states upon parameter updates. (B)-(E) In all plots, the blue curves indicate larger initial step-size training and

the green plots indicate smaller step-size (fine-tuning). (B) The upper left plot shows the decline in minibatch-averaged RMSD

over the course of the optimization. The remaining plots show (C) the convergence of the hydrogen bonding and side chain-side

chain interaction parameters over the optimization for (D) Met-Met and (E) Val-Val potential. The larger step-size optimization

of the side chain parameters exhibits large oscillations that inhibit convergence.

https://doi.org/10.1371/journal.pcbi.1006578.g002
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monitored by the average RMSD-to-crystal structure over the simulation for each “minibatch”,

the 12 protein subset used for a single gradient-descent step.

Results

Training

The parameters are initially set to those used to optimize side chain (χ1) accuracy [6]. The con-

trastive divergence training rapidly improves the model’s average RMSD over a minibatch

from 6 Å to 3 Å. This decline is accompanied by rapid change in the parameters. To reduce

parameter fluctuations and fine-tune the results, we reduce the optimizer step size by a factor

of four after two full passes through the 38 minibatches.

Although the slope has greatly decreased of RMSD change with respect to the number of

steps over the iterations, there are indications that the parameters have not yet converged. Ear-

lier tests, however, showed that continuing the contrastive divergence until convergence does

not necessarily produce better results, as has been previously observed [9]. When large barriers

surround the native states, minimal relaxation of the conformation occurs, which in turn pro-

vides little new information, and further fine-tuning may even reduce the accuracy of the

model. Potentially the decreased exploration in the native well in the later stages overtrains the

model to distinguish between native and near-native structure at the expense distinguishing

against a more diverse ensemble. Early termination of optimization has been observed to favor

simpler models [10].

The hydrogen bond strength unexpectedly appears to converge to a significantly smaller

value during the late, fine-tuning stage than during the early phase with larger optimizer steps.

We speculate that the extra noise in the side chain interactions during the larger optimizer

steps may in aggregate cause stronger side chain interactions for the protein. This effect would

necessitate a large hydrogen bond energy to balance the increase in side chain interactions.

The final pair-wise energy functions between the side chain beads and either the backbone car-

bonyl oxygen or the amide proton, and the bead-bead interactions are shown in Fig 3.

Accuracy of structure prediction

Contrastive divergence training has been shown to be effective for many machine learning

problems [11], even without having simulations that converge to the Boltzmann ensemble. To

test the accuracy of contrastive divergence on our protein model, we attempt de novo folding

of a benchmark set of small, fast-folding proteins similar to those used in references [12–14] as

well as various CASP11 targets investigated by other physics-based approaches (Figs 4 and 5)

[15, 16]. Before training, we remove homologous proteins from the training set to help ensure

that this would be a true de novo prediction.

Two temperature replica exchange simulations are run for each of the 23 proteins (14 repli-

cas each). The first set is initialized from the native configuration to assess the stability of the

experimental structure for the potential obtained from contrastive divergence training. The

second set is initialized from an unfolded state (random Ramachandran ϕ and ψ angles) to test

Upside’s capability to find the native structure which is reflection of both the accuracy of the

energy function and the method’s ability to search conformational space. Each range of tem-

peratures is chosen to be large enough to cover the unfolding transition for each given protein.

We judge the accuracy and equilibration from the histograms of the Cα-RMSD from the native

structure after discarding the initial third of the simulation as equilibration (Fig 4).

The majority of the proteins show a small number of well-defined basins that represent the

dominant conformations with the current potential. While the simulations often produce sev-

eral conformations quickly, equilibration of their populations takes longer, on the order of

Trajectory-based training enables rapid simulations with accurate folding and ensembles

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006578 December 27, 2018 7 / 18

https://doi.org/10.1371/journal.pcbi.1006578


Fig 3. Representative pair interaction potentials from the contrastive divergence training. (A) Side chain bead-to-

carbonyl oxygen and bead-to-amide proton (blue/red) and (B) side chain bead-to-bead (blue/green). Thin lines

indicate Vradial(r) while thick lines indicate Vradial(r) + Vangular(r) with a plot range of (−6kT, 6kT). The heat maps show

the angular product ang1(θ1) ang2(θ2).

https://doi.org/10.1371/journal.pcbi.1006578.g003
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Fig 4. Predicted structures and Cα-RMSD distributions. After equilibration phase for the lowest temperature of replica exchange simulations (see S1 Text). The

simulations start from either the native (blue) or a random unfolded state (red). For the refolding simulations, the lowest Cα-RMSD to native structures is provided along

with the value for the centroid of largest cluster (in parentheses). RMSD calculations exclude three residues at the amino- and carboxy-termini to account for possible

disorder at the ends. Each replica is run for about three days with one CPU-core.

https://doi.org/10.1371/journal.pcbi.1006578.g004
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CPU-days for some proteins, though still extremely short in comparison to typical molecular

dynamics simulations.

For all 20 proteins below 100 residues, the lowest Cα-RMSD structure obtained starting

from an unfolded state is within 5 Å of the native state (54% within 3 Å). In some cases, the

lowest Cα-RMSD structure is in the largest cluster, while for other proteins, the best structure

Fig 5. Upside, UNRES and MELD’s performance on seven CASP11 Targets. (A) Hubbard plots for the centroid of Upside’s top five clusters are compared to

the UNRES’s and MELD’s five submitted structures. The length and the relevant residue range used in CASP11 analysis for each protein is shown along with

the structure. (B) Upside’s secondary structure predictions for the centroid of the top cluster (Cα-RMSD and secondary structure accuracy provided at top). The

sequences provided by CASP11 organizers can be longer than the sequences used for evaluation due to disorder (e.g., for T0769-D1, simulations are conducted

on 112 residues, but only the 97 folded residues are evaluated). The RMSD values provided are based on the CASP11-defined folded regions, and hence may

differ slightly than those provided in Fig 4.

https://doi.org/10.1371/journal.pcbi.1006578.g005
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is in a minor cluster even when it is within 3 Å (e.g., gpW, NTL9). The designed 3-helix bun-

dle, α3d [17], has a mirror image as a second heavily populated cluster.

When the native-initialized and unfolded-initialized structures have similar Cα-RMSD dis-

tributions, the simulations are likely converged. Half of the proteins are approximately con-

verged by this criterion (e.g., BBA, protein B, homeo domain, α3d and WW), but others are

not, (e.g., protein L and ubiquitin). Convergence is achieved for a variety of proteins with the

native or near-native structure being the dominant conformation (e.g., BBA, homeo domain,

protein B). These proteins represent the ideal scenario in terms of both accuracy and conver-

gence. But, convergence can be achieved even when the native conformation is not the domi-

nant conformation (e.g., BBL, λ-repressor, NuG2). This result indicates that for these proteins,

our energy function is inadequate in regards to identifying the native structure even though

there is adequate sampling. For cspA, a relatively small protein having a complex all β fold,

additional simulations run at constant temperature can find a stable structure having signifi-

cantly lower Cα-RMSD (3.6 rather than 6.1 Å); this finding points to the search process being

the limiting factor rather than Upside’s energy function.

The Upside simulations tend to achieve the correct secondary structure with a small num-

ber of distinct tertiary arrangements. This diversity in tertiary structures occurs as mirrored

three helix bundles for α3d and protein B, as well as the subtle re-arrangements of NuG2. For

the three largest CASP11 targets we investigated (115–178 residues), the secondary structure

performance is noticeable poorer, implying a strong coupling between secondary and tertiary

structure formation for these larger systems (Fig 5).

Comparison with other physics-based approaches

Simmerling and coworkers folded 17 sub93 residue proteins using GPUs to obtain a microsec-

ond of simulation time per day with their pairwise Generalize Born (GB) model trained to

reproduce Poisson–Boltzmann solvation along with their ff99SB force field [14]. Impressively,

their replex protocol folded 16 of the 17 proteins to within 3 Å Cα-RMSD although the top

cluster was greater than 10Å for five of the six largest proteins. Over-all, the performance is

very similar to Upside’s in that 1-3 Å Cα-RMSD structures are achievable on most proteins but

the structures are not always in the largest cluster.

For seven CASP11 targets between 65-178 residues, we compared Upside with two physics-

based approaches that participated in CASP11 (Fig 5): the Cornell-Gdansk group’s coarse-

grained united residue model “UNRES” [16] and MacCallum, Perez and Dill’s highly acceler-

ated molecular simulation method “MELD” (Modeling Employing Limited Data), a Bayesian

approach that utilizes physically-based heuristics combined with atomistic implicit solvent

simulations [15]. It should be noted that both methods employ PsiPred, a secondary structure

predictor employing evolutionary information [18]. In contrast, Upside’s secondary structures

emerge during folding solely are a result of our energy function.

For T0765-D1, a 76 residue α/β protein, Upside’s major cluster contains the native fold (Fig

5). The performance is reflected in a low flat trace for the cluster centroid in the Hubbard plot

of the Global Distance Test (GDT) versus sequence percentage. This performance is superior

to all five of UNRES’s submissions (there were no MELD submissions). For T0769-D1, a 112

residue α/β protein, both Upside and MELD perform very well, with UNRES’s best submission

being only slightly worse. For T0771-D1 and T0803-D1, 178 and 134 residue α/β proteins,

respectively, neither Upside nor UNRES’s performance is very good (no MELD submissions).

For T0773-D1, a 77 residue α/β protein, MELD performs extremely well while one of Upside
structure also has the native fold. UNRES performance is much poorer. For T0816-D1, a 68

residue helical bundle, MELD performs astonishingly well while Upside’s and UNRES’s
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performances also are commendable. For T0855-D1, a 115 residue α/β protein, both MELD

and UNRES perform similarly and better than Upside, but none succeed in finding the native

fold. Generally, the three approaches are capable of folding proteins of up to 94 residues, but

are challenged with larger proteins.

Characterization of folding behavior

In constant temperature simulations, we observe reversible folding to the native state for a

number of proteins in our test set in core-days (Figs 6 and 7). The time scales of folding indi-

cated by these trajectories imply that the time scales we employed in the contrastive divergence

simulations are far less (often a factor of 100 or more) than required to equilibrate these pro-

teins, implying that contrastive divergence is optimizing only over fluctuations in or near the

native well.

Note that conditional on low hydrogen bonding, the radius of gyration (Rg) at high temper-

ature and at the peak of the heat capacity are quite similar. This suggests the increase in Rg for

the unfolded state as temperature increases is driven by a reduction in backbone-backbone

hydrogen bonds rather than side chain effects.

Fig 6. Constant temperature simulations. Trajectories are selected by the highest temperatures that still produce a significant population for the native

state. Note that pivot Monte Carlo moves are attempted periodically which has little effect on folded dynamics but greatly decreases correlation time in

the unfolded state.

https://doi.org/10.1371/journal.pcbi.1006578.g006
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Based on these results, two observations should be reconciled. The first observation is the

presence of a sharp phase transition with a single peak for the heat capacity. The shape of the

phase transition, but not its amplitude, is consistent with a cooperative folding transition. The

second observation is the unrealistically large level of residual hydrogen bonding in the dena-

tured state at temperature of the maximum in the heat capacity. Although the hydrogen bond-

ing is less than that in the native state, the residual hydrogen bonding indicates that the

transition is not fully cooperative. These observations may be explained by the essential feature

of the contrastive divergence process, that it must balance the competing energy terms of the

model so that no one energy dominates. More extensive training, for example using a more

diverse ensembles that contain conformations outside the native well, may remove the excess

hydrogen bonding.

The Upside model exhibits concerted melting behavior over a small range of temperatures

(Fig 8). While the temperature of the model in Upside is not exactly comparable to a physical

temperature, it is reasonable to assume T = 1 corresponds roughly to a temperature of 300-310

K. The ubiquitin transition occurs over a temperature range of approximately 0.07 tempera-

ture units, or approximately a 20 K range, similar to that observed experimentally [20].

Furthermore, our temperature-denatured states have high Rg near the midpoint of the tran-

sition, consistent with experimental results and inconsistent with many all-atom molecular

dynamics folding simulations [4, 21]. At the peak of the heat capacity, the Rg is *15% smaller

than the predicted from experimental data while the Rg at high temperature is*10% larger

Fig 7. Constant temperature trajectory of ubiquitin. Simulation conducted at T = 1.00, initialized from the native structure, with representative structures along

the trajectory highlighted. The 2nd and 4th structures are chosen for having a high Rg while the last structure is chosen based on minimum RMSD (2.3 Å.) after

achieving full unfolding. Red and blue colors in lower right panel refer to helical and sheet secondary structures.

https://doi.org/10.1371/journal.pcbi.1006578.g007
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than the experimental value. Both Rg values are significantly larger than those in most atomis-

tic molecular dynamics simulations [4].

Discussion

A major challenge in protein chemistry is to extract from a set of proteins the underlying inter-

action energies that capture the physiochemistry governing their folded structures adn dynam-

ics. We addressed this challenge by showing that a strong connection exists between properties

of the native basin and the rest of the protein’s conformational landscape, and this connection

is strong enough to train a potential for de novo folding simulations. Furthermore, the

Fig 8. Thermodynamic behavior. The heat capacity is computed using the fluctuation relation Cp = (var E)/T2. The self-avoiding random walk Rg is computing

using Rg = (1.9Å)(Nres)
0.6 for chemically-denatured proteins [19]. In the upper two panels (A) and (B), the Cp and Rg values are obtained from simulations started

from either the native (blue line) or a random unfolded state (red line). In the lower two panels (C) and (D), the brown points are from high temperature

simulations, while the green points (unfolded state) and blue points (folded state) are from simulations at the peak of the heat capacity. The simulation units are

converted to physical units by assuming that the physical energy unit is 0.6 kcal/mol and that T = 1 corresponds to 300 K.

https://doi.org/10.1371/journal.pcbi.1006578.g008
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resulting potential is inexpensive enough to equilibrate simulations of small proteins in CPU

core-days on a commodity computer.

Specifically, we have developed a procedure involving extremely short simulations in the

native energy well, coupled with optimization using contrastive divergence, to parameterize a

sophisticated coarse-grain model. Underlying the model is a re-evaluation of the common

assumption that increased detail is the path to greater accuracy. This requirement for detail is

mitigated with trajectory-based training because less expensive models allow more extensive

exploration leading to higher accuracy. We have also shown that very large numbers of param-

eters (even *20000 in our case) are no obstacle to producing accurate proteins models using

trajectory-based training. While over-fitting is always a concern, the severity is greatly reduced

because contrastive divergence is training against the vast possibilities of alternative protein

conformations explored by conformational sampling. Additionally, contrastive divergence

automatically obtains balanced parameters such that no particular interaction overwhelms the

others. We contend that this balance between parameters is more important than the accuracy

of any particular term.

Decoupling representations of protein physics is a key aspect of the Upside model. In partic-

ular, Upside decouples the representation of the protein used for dynamics, an N–Cα–C back-

bone model, from the representation used for computing energies and forces, a complex

representation that includes oriented side chain interactions. This combination allows us to

build up the sophisticated coordinates needed to represent solvent exposure of side chains,

geometry of hydrophobic packing, and side chain-backbone hydrogen bonding without the

cost of running dynamical simulation on a complex model with slow equilibrium. The largest

improvement comes from applying belief propagation to the side chain degrees of freedom so

that we represent detailed side chain physics at the χ1/χ2-level without incurring the roughen-

ing of the energy landscape and slowing of the dynamics normally associated with detailed

sterics of side chain interactions. It is an open question to determine how much molecular

detail must be retained for accurate protein energetics, but Upside provides a flexible frame-

work to explore these issues without compromising the simple backbone representation of

dynamics.

Related work

Contrastive divergence optimization has been applied to Gō-like protein potentials sampled

with crankshaft Monte Carlo moves [22, 23]. These works optimized only tens of parameters,

and the resulting model is used to fold protein G and 16-residue peptides.

Other studies have trained protein energy functions using libraries of decoys [24]. Such

efforts are challenging because atomic energy functions have rugged energy landscapes where

even small structural differences can produce large energy differences. This ruggedness implies

that scoring decoys by energy without first relaxing them is problematic for the sharply-

defined force fields necessary to describe protein physics, a problem that contrastive diver-

gence avoids.

A distinction between contrastive divergence and traditional training methods, such as Z-

score optimization [25], relates to the goal and the source of the decoys. In contrastive diver-

gence, the critical task is to produce a high population of low RMSD structures with the

model. Z-scoring training attempts to make the energy of the native state much lower than the

average energy of an pre-constructed decoy library. This is problematic because the decoys

may not have structures that exhibit the pathologies of a poorly-trained model. Additionally,

we believe optimization should concentrate on the lowest energies that have significant Boltz-

mann probability, not the average energy which is dominated by highly-unlikely structures.
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Furthermore, it is difficult to evaluate the reliable energies of decoys without relaxing the

decoys. Methods based on simulation ensembles (such as maximum likelihood and contrastive

divergence) are well-defined and do not need pre-constructed decoy libraries.

Podtelezhnikov et al. [26] apply contrastive divergence to few-parameter protein models to

optimize the parameters of hydrogen bond geometry. Their work is similar to this paper but

narrower in scope.

The maximum likelihood method requires the computation of the derivative of the free

energy, which involves a summation over an equilibrium ensemble. Such a requirement neces-

sitates a very long simulation to update parameters. Still, this approach can be viable when

used with very small proteins on which the simulations converge quickly. A variant of maxi-

mum likelihood is given in Ref. [27], where decoys are generated and a maximum likelihood

model is fit to adjust the parameters to distinguish between near-native and far-from-native

conformations. The potential is trained on a single protein, tryptophan cage, and then the

resulting potential is applied to a number of α-helical proteins with some success.

Time and temperature scale

The precise time scale and temperature scale of the Upside models is intentionally left arbitrary

because the coarse-graining process may leave us without a linear relationship to physical time

and temperature. The speed-up of Upside simulation due to the smoothing of side chain inter-

actions is likely to have a disproportionate effect on time scales for condensed structures as

compared to extended structures. Regardless, the equilibrium population distribution that

determines the free energy is expected to be approximately correct, as well as the order of

dynamical folding events. The precise relationship of Upside time scales to physical time scales

is left to future work.

Conclusion

By employing the computationally fast yet detailed Upside model, we can use multiple trajecto-

ries to train tens of thousands of parameters simultaneously to simulate protein folding and

dynamics. The training successfully produces low-energy, native or near-native structures

with sharp folding transitions for most of our validation proteins. The strategy’s success argues

that simpler (in atomic representation) models that can be globally parameterized can rival

more detailed but slower models whose parameterization is more challenging. We achieve suc-

cess for some proteins in terms of accurately folding to low energy native state and achieve

thermodynamic equilibration, but still fail on others. We hypothesize that the short-time con-

trastive divergence we are using does not provide a sufficient library of large changes in the ter-

tiary structure to enable the potential to properly distinguish the various conformations. This

issue will be addressed in future studies. Coupling large computational resources with Markov

state models [28] should improve training of the Upside model by exploring a larger and more

diverse conformational landscape on each contrastive divergence step.

The ready generation of Boltzmann ensembles allows for a wide range of computational

studies of protein folding, dynamics, and binding. For example, computational screening of

large numbers of proteins for foldability should be tractable as is the study of hydrogen

exchange and folding kinetics. Additionally, in studies that incorporate experimental or bioin-

formatics data, including contact predictions, Upside provides an inexpensive Bayesian prior

distribution over protein structures that may be updated using experimental information. This

provides accurate predictions that make essential use of the totality of protein physics as

encoded in the Upside model, while being inexpensive enough to allow validation and iteration

on large numbers of proteins.
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