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Background. Transarterial chemoembolization (TACE) is recommended for intermediate-stage HCC patients. Owing to sub-
stantial variation in its efficacy, indicators of patient responses to TACE need to be determined. Methods. A Gene Expression
Omnibus (GEO) dataset consisting of patients of different TACE-response status was retrieved. Differentially expressed genes
(DEGs) were calculated and variable gene ontology analyses were conducted. Potential drugs and response to immunotherapy
were predicted using multiple bioinformatic algorithms. We built and compared 5 machine-learning models with finite genes to
predict patients’ response to TACE. .e model was also externally validated to discern different survival outcomes after TACE.
Tumor-infiltrating lymphocytes (TILs) and tumor stemness index were evaluated to explore potential mechanism of our model.
Results. .e gene set variation analysis revealed enhanced pathways related to G2/M checkpoint, E2F, mTORC1, and myc in
TACE nonresponders. TACE responders had better immunotherapy response too. 373 DEGs were detected and the upregulated
DEGs in nonresponders were enriched in IL-17 signal pathway. 5 machine-learning models were constructed and evaluated, and a
linear support vector machine (SVM)-based model with 10 genes was selected (AQP1, FABP4, HERC6, LOX, PEG10, S100A8,
SPARCL1, TIAM1, TSPAN8, and TYRO3). .e model achieved an AUC and accuracy of 0.944 and 0.844, respectively, in the
development cohort. In the external validation cohort comprised of patients receiving adjuvant TACE and postrecurrence TACE
treatment, the predicted response group significantly outlived the predicted nonresponse counterparts. TACE nonresponders
tend to have more macrophage M0 cells and lower resting mast cells in the tumor tissue and the stemness index is also higher than
responders. .ose characteristics were successfully captured by our model. Conclusion. .e model based on expression data of 10
genes could potentially predict HCC patients’ response and prognosis after TACE treatment. .e discriminating power
was TACE-specific.

1. Introduction

Transarterial chemoembolization (TACE) is recommended
as the first-line therapy for intermediate-stage HCC based
on the Barcelona Clinic Liver Cancer (BCLC) staging sys-
tem. TACE is also used outside of intermediate HCC after
recommended methods fail to achieve satisfactory results
[1]. .e response rate at 1 month after TACE ranges from
39.6% to 87%, with variation among studies [2–4].

Owing to the heterogeneity of intermediate-stage HCC
and broad application of TACE beyond recommended
settings, patient responses are highly variable. .us, it is

necessary to develop a method to select patients expected to
benefit from this procedure [5]. Multiple scoring systems
have been established to predict outcomes after TACE based
on routinely measured biomarkers, such as the hepatic
arterial embolization prognostic (HAP) score and enhanced
derivatives [6, 7]. However, these models are mostly HCC-
specific and not TACE-specific [8]. Recently, post-TACE
transient hypertransaminase (elevation of >52% alanine
aminotransferase and >46% aspartate aminotransferase
from baseline) was found to be a good indicator of TACE
response [9]. .us, it is vital to develop a TACE-specific
method for the selection of candidates for TACE therapy
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before TACE operation. .e increasing clinical application
of gene sequencing and accumulation of related data provide
a basis for the development of a gene signature for predicting
the response to TACE in precision oncology.

In this study, we evaluated associations between tran-
scriptomic data for individual patients and the response to
TACE. We employed a gene expression database from Gene
Expression Omnibus (GEO) to develop a predictive gene
signature for the response to TACE and validated its efficacy
with an external dataset.

2. Material and Methods

2.1. Gene Expression Data Obtaining and Preprocessing.
.e development cohort GSE104580 (https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc�GSE104580) came from a
continuing study based on a clinical trial under registration
number https://ClinicalTrials.gov.NCT00493402. .e dataset
comprised 147 patients with unresectable HCCs and no
significant baseline liver dysfunction. .ose treatment-näıve
patients received TACE as their primary treatment and 81 of
them were labelled as TACE responders and 66 were marked
as TACE nonresponders. .e RNA was extracted from HCC
patients before TACE treatment.

.e gene expression as well as clinical data of external
validation cohort came from GSE14520 (https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc�GSE14520) including
74 HCC patients receiving adjuvant TACE after liver re-
section, 30 patients receiving postrecurrence TACE treat-
ment, and 85 patients receiving liver resection only. .e
detail of clinical information of the external validation co-
hort was described in previous research [10].

.e gene expression profiles were retrieved from GEO
database using GEOquery package in R. Probes corre-
sponding to multiple genes or probes corresponding to
default genes were discarded. Once there were multiple
probes for one gene, the probes with max average expression
across all samples were preserved. .e gene expression data
were transformed to z-scores for better extrapolation of the
model.

2.2. Gene Set Variation Analysis (GSVA). GSVA were
adopted to discern the differentially enriched pathways
between TACE nonresponders and responders. We chose
the representative hallmark gene set for enrichment analysis
and the whole operation was carried out using GSVA
package in R.

2.3. Differentially Expressed Genes (DEGs) Distinguishing and
GeneOntologyAnalysis. To find out DEGs between response
and nonresponse groups, we employed Limma package in R
and set the threshold to be |log2 Fold Change|> 1 and
Benjamini-Hochberg adjusted p< 0.05 to mark off DEGs.
Subsequent Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analysis was conducted to explore the
differentially enriched pathways between 2 response
statuses.

2.4. Protein-Protein Interaction Network (PPI) Construction.
STRING database was used to infer the potential interac-
tions between proteins encoded by DEGs. We employed
Cytoscape software to visualize the PPI network. Molecular
COmplex DEtection (MCODE) plugin was used to extract
the highly interacted subnetwork within the whole PPI.

2.5. Potential Compounds Detection. We searched the
Connectivity Map (CMap) database (https://clue.io/cmap)
for potential chemicals which could elicit opposite tran-
scriptomic alterations as we observed in the nonresponse
group compared with the response group. CMap is a ge-
nome-scale library of cellular signatures storing the response
to chemical, genetic, and disease perturbation [11]. By
comparing the transcriptomic change in our samples with
those caused by related perturbagens collected in the library,
the CMap could predict drugs with their annotated mode of
action (MoA). In this research, we queried CMap build 1.0
based on L1000 assay with DEGs between TACE responders
and nonresponders and counted those compounds whose
connectivity scores associated with HepG2 cell line were less
than −90 as potential cure.

Meanwhile, Genomics of Drug Sensitivity in Cancer
(GDSC) database stored genomic expression profiles of
considerable cell lines and their drug response data mea-
sured with half-maximal inhibitory concentration (IC50).
.e GDSC consist of 2 databases; GDSC1 contained 958 cell
lines and 367 drugs while GDSC2 contained 805 cell lines
and 198 drugs. We utilized the data from GDSC to speculate
the response to different drugs using oncoPredict package in
R [12].

Besides, the Tumor Immune Dysfunction and Exclusion
(TIDE, https://tide.dfci.harvard.edu/) algorithm was
employed to deduce sample’s response to immunotherapy.
TIDE was a framework developed to use gene expression
profile to assess the potential of tumor immune evasion and
thus predict response to immune checkpoint blockade such
as anti-PD1 (programmed cell death protein 1) and anti-
CTLA4 (cytotoxic T-lymphocyte-associated protein 4).

2.6. Machine-Learning-Based Gene Selection. Our study
applied 5 commonly used models including least absolute
shrinkage and selection operator (Lasso) logistic regression,
linear support vector machine (SVM), artificial neural
network (ANN), random forest, and eXtreme Gradient
Boosting (XGBoost)-based tree model. 147 patients from
GSE104580 with their DEGs expression data composed the
development cohort. In each iteration, the development was
randomly split into 80% training cohort and 20% testing
cohort. Only the training cohort was used to generate the
model. We tracked the AUC, accuracy, F1 score, Youden
index, sensitivity, specificity, positive predictive value (PPV),
and negative predictive value (NPV). In addition, we cal-
culated the weight given to each gene involved in con-
structing the model and ranked those genes according to
their importance. Once a gene was ranked top 20% among
all DEGs, we marked it as one occurrence. After 10 times of
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iterations, those genes with occurrence no less than 8 were
preserved for further model construction.

.e weights of genes were returned by the model directly
through coefficient or feature importance attributions, ex-
cept for ANN model. .erefore, the mean absolute SHAP
(Shapley additive explanation) values across all the test sets
were employed to determine the importance of each gene in
the ANN model. In this method, the SHAP value of each
feature indicates the contribution it made to build up the
result. .e processes were carried out using SHAP package
in Python.

As for the tuning of hyperparameters for each model, 5-
fold grid search cross validation was used to optimizing the
hyperparameters for Lasso-logistic regression, SVM, and
ANN, while we adopt Bayesian optimization to tune the
hyperparameters for random forest and XGBoost-based tree
model to accelerate the training speed. AUC was employed
as the main metric to assess the performance of the model.

2.7. Establishment of Gene Signature and External Validation.
.ose genes whose occurrence exceeded 8 and were si-
multaneously present in GSE14520 were selected to con-
struct the gene signature for each model, respectively. Model
was built and evaluated in the development cohort with 20%
of the data chosen as test set. During 10 rounds construc-
tion-evaluation loop, the AUC, accuracy, F1 score, Youden
index, sensitivity, specificity, PPV, and NPV were recorded
and averaged to improve the validity of model selection.
Subsequent model with highest AUC was chosen as the best-
performed model to predict the response status of each
sample in the external validation cohort.

2.8. Tumor-Infiltrating Lymphocytes (TILs) Evaluation.
CIBERSORTx is a widely used algorithm which could ap-
proximate the cell composition of bulk tissues. .e results
were verified to be highly consistent with truth [13]. To
assess the different fractions of TILs, we utilized LM22
signature matrix in CIBERSORTx to calculate the propor-
tions of 22 subtypes of immune cells with 1000
permutations.

2.9. Tumor Stemness Evaluation. We adopted the algorithm
presented earlier and developed the one-class logistic re-
gression machine-learning model (OCLR) trained on ex-
pression profiles of a collection of stem cells from PCBC
database (https://www.synapse.org/#!Synapse:syn1773109)
using GELnet package in R [14]. We used the summarized
normalized mRNA matrix (syn2701943) of those cells la-
belled as SC (stem cell) only. .e model was constructed
using leave-one-out cross-validation technique. After the
establishment of the stemness signature, we scored the
mRNA stemness index (mRNAsi) of a new sample through
calculating the spearman correlation between the expression
data of sample and the model’s weight of related genes. .e
correlation coefficients were later transformed through min-
max standardization for better interpretation.

2.10. Statistics. Statistical analyses in this research were
performed using associated package in Python and R. OS
and RFS curves were drawn with Kaplan–Meier method and
difference in survival results were evaluated with log-rank
test. Univariate and multivariate Cox regression models
were employed to identify valuable feature to predict the
prognosis of patients. Independent t-test was implemented
to detect any divergence between groups. All statistical tests
were two-tailed, and we considered p< 0.05 a significant
result.

3. Results

3.1. Enriched Pathways for Differentially Expressed Genes
between TACE Responders and Nonresponders. After pro-
cessing microarray data, we obtained an expression matrix
with 147 samples and 19999 genes. Considering the het-
erogeneity in the response to TACE, we performed a GSVA
for each sample and identified marked pathway enrichment
for the comparison between TACE responders and non-
responders. .e detailed procedure is shown in Figure 1.

Widely used and representative hallmark gene sets, in-
cluding 50 carefully curated gene sets summarizing the main
biological states and processes, were employed for further
analyses. We identified seven highly enriched and five poorly
enriched gene sets in TACE nonresponders compared to
responders. As shown in Figure 2, in nonresponders, genes
downstream of mammalian target of rapamycin complex 1
(mTORC1), E2F, and MYC as well as genes related to the
G2/M checkpoint, unfolded protein response, and sper-
matogenesis were upregulated. Genes associated with the
interferon α response, coagulation, fatty acid, xenobiotics,
and bile acid metabolism were remarkedly downregulated.

3.2. Differentially Expressed Genes between TACE Responders
and Nonresponders. By comparing gene expression levels
between 81 TACE nonresponders and 66 TACE responders,
we screened out 373 DEGs, among which 179 were upre-
gulated and 194 were downregulated in nonresponders
(Figure 3(a), Supplementary Table 1). In a KEGG analysis,
the IL-17 signaling pathway was the only enriched pathway
for upregulated DEGs, while 23 pathways were significantly
enriched for downregulated DEGs (Figure 3(b)).

We input these DEGs into STRING and constructed a
PPI network with 303 nodes and 1319 edges. Within this
network, we extracted the subnetwork with the most in-
teractions, including 25 upregulated genes and 291 edges
(Figure 3(c)). A KEGG analysis revealed that these genes are
highly enriched in cell cycle pathways. We also adopted the
CMap database to identify potential compounds that could
offset the dysregulation of DEGs in TACE nonresponders.

We specifically focused on reagents that could elicit
opposite responses in the well-known human HCC cell line
HepG2. As shown in Figure 4(a), 62 chemicals with con-
nectivity scores of less than −90 were detected. .eir MoAs
were recorded and CDK inhibitor was identified as the best
candidate to reverse nonresponse status. It was noteworthy
that the commonly used doxorubicin and pidorubicine
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147 samples form GSE104580
81 responders VS 66 non-responders

Gene set variation analysis (GSVA)

KEGG enrichment analysis

PPI network 373 DEGs
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potential drug searching

TILs validation
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Model construction
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receiving TACE

74 patients receiving
adjuvant TACE
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85 patients receiving
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Data processing

Expression matrix
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Figure 1: Flowchart displaying detailed process of this research.
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Figure 2: Significant differentially enriched pathways between TACE responders and nonresponders..e TOP7 pathways were remarkably
upregulated among TACE nonresponders while the bottom 5 pathways were abnormally enriched in TACE responders.
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which is the synonym of epirubicin were potential reagents
which could treat the TACE nonresponse status. Besides, we
also applied oncoPredict package to infer the drug response
status with genomic expression data. Combining results
from GDSC1 and GDSC2, we detected 18 and 58 drugs
which were more effective in response and nonresponse
groups, respectively (Supplementary Tables 2 and 3). It
should be noted cisplatin was ranked high in those effective
drugs in nonresponders. As sorted and presented in
Figures 4(b)–4(c), most effective drugs in TACE responders
belong to PI3K/MTOR signaling pathway, while in TACE
nonresponders, most drugs belong to RTK signaling path-
way. Additionally, we also employed TIDE algorithm to
predict samples’ response to thriving immunotherapy. Since
lower TIDE score indicates more better response to im-
munotherapy, the result in Figure 4(d) suggested that TACE
responders were more likely to benefit from
immunotherapy.

3.3. Establishment of a Gene Signature. For the development
of predictive gene signatures for the response to TACE, we
compared five commonmachine-learningmodels, including
Lasso-logistic regression, linear SVM, random forest,
XGBoost, and artificial neural networks. .e model was
developed using a training cohort and evaluated using an
internal validation cohort, and the importance of each gene
was recorded. During 10 rounds of replication, we tracked
genes included in model construction and ranked genes
based on the importance coefficient returned by the model.
We recorded genes in the top 74 (20% of 373 DEGs) in each
replication and selected those genes obtained in at least 8 of

10 rounds for further analyses. .e performance of each
model based on 373 DEGs is shown in Supplementary
Table 4. .e top 20 important genes of each model are listed
in Supplementary Table 5. We evaluated the AUC, F1 score,
accuracy, Youden index, sensitivity, specificity, PPV, and
NPV for each model.

Next, we selected intersected genes that were also present
in GSE14520 to avoid overfitting and to facilitate external
validation. We retrained and verified the efficacy of different
models within the development cohort. As summarized in
Table 1, after 10 rounds of repetition, the SVM achieved the
highest average AUC score and was chosen for further
analyses. After applying it to the full development cohort, the
SVM model achieved an AUC of 0.944 and an accuracy of
0.844. .e SVM model consisted of 10 genes, including
aquaporin 1 (AQP1), FABP4, HECT and RLD domain-
containing E3 ubiquitin protein ligase family member 6
(HERC6), lysyl oxidase (LOX), paternally expressed 10
(PEG10), S100 calcium binding protein A8 (S100A8),
SPARC-like 1 (SPARCL1), TIAM Rac1 associated GEF 1
(TIAM1), Tetraspanin 8 (TSPAN8), and TYRO3 protein
tyrosine kinase (TYRO3) (Table 2). .e expression levels of
these 10 genes in both groups are shown in Figure 5(a).
TSPAN8, S100A8, TYRO3, LOX, and PEG10 were over-
expressed in nonresponders, while SPARCL1, AQP1,
TIAM1, HERC6, and FABP4 were expressed at low levels in
nonresponders.

3.4. ExternalValidation of theGene Signature. To further test
the predictive ability of our model, we chose patients from
GSE14520 for external validation, including 74 patients
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Figure 3: Analysis of DEGs. (a) Volcano plot displaying the distribution of 373 detected DEGs. Red dots indicate overexpressed genes in
TACE nonresponders compared with responders while blue dots denoted the downregulated genes. .e top 5 upregulated and down-
regulated genes were labelled with symbol on the plot. |log2 Fold Change|> 1 and Benjamini-Hochberg adjusted p< 0.05 was chosen as the
threshold. (b) KEGG enrichment analysis of downregulated DEGs in nonresponders. .e color of dots indicates different p values while the
size implies the number of genes enriched in the given set. (c) Extracted PPI subnetwork using MCODE plugin in Cytoscape software. .e
red color implies an upregulated status in nonresponders.
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treated with adjuvant TACE and 30 patients treated with
postrecurrence TACE. In the external validation cohort,
scores for each sample were calculated and samples were
divided into TACE response and nonresponse groups with
a threshold of 0.5. As shown in Figure 5(b), the predicted
response group had a remarkably longer OS than that of the
nonresponse group. In terms of patients receiving adjuvant
TACE treatment after liver resection, our model success-
fully predicted a group of patients with a considerably
longer OS (Figure 5(c)). However, our model failed to
detect patients with a longer RFS after adjuvant TACE
(Figure 5(d)). For patients who received postrecurrence
TACE treatment, the prognosis diverged dramatically
between the two groups (Figure 5(e)). To determine
whether the predictive power was exclusive to TACE
treatment, we applied our model to patients who received
liver resection only. As shown in Figures 5(f ) and 5(g), the
OS and RFS values were similar in the predicted response
and nonresponse groups, supporting the specificity of our

model for the prediction of the TACE response. Moreover,
we calculated the AUC values and generated time-de-
pendent ROC curves for the prediction of 1-, 3-, and 5-year
survival in different populations (Supplementary
Figures 1A–1F). As displayed in Supplementary Figure 1G,
our model achieved the best performance in predicting OS
in patients receiving postrecurrence TACE.

3.5. IndependentPrognostic Factor for theOSofTACE-Treated
Patients. Combining the clinical data for patients in
GSE14520, we performed univariate Cox analyses to explore
the predictive value of a series of clinical metrics. As shown
in Table 3, a larger main tumor size (>5 cm), higher BCLC
stage, and the predicted response status by our model were
identified as meaningful risk factors. We performed a
multivariate Cox analysis including these three variables and
found that the predicted response status of our model was an
independent predictor.

Table 1: Comparative performance between different predictive models using selective genes.

Models AUC F1 score Accuracy Youden index Sensitivity Specificity PPV NPV
SVM 0.930 0.798 0.823 0.643 0.808 0.835 0.793 0.851
ANN 0.922 0.816 0.843 0.690 0.815 0.865 0.832 0.867
Log 0.918 0.819 0.847 0.686 0.815 0.871 0.830 0.865
XGBoost 0.858 0.762 0.793 0.581 0.769 0.812 0.763 0.827
RF 0.839 0.726 0.760 0.515 0.738 0.776 0.737 0.804
Log: Lasso-logistic regression; SVM: support vector machine; ANN: artificial neural network; RF: random forest; XGBoost: eXtreme gradient boosting-based
tree model.

Table 2: Top 20 genes and their corresponding coefficients in SVM model.

Gene Occurrence Ranking sum Average rank Coefficient
SLC9A3-AS1 10/10 31 3.1
TSPAN8 10/10 31 3.1 0.053
SLAIN1 10/10 68 6.8
SPARCL1 10/10 70 7 −0.098
PKIB 10/10 121 12.1
S100A8 10/10 128 12.8 0.064
AQP1 10/10 212 21.2 −0.069
ERAP2 9/10 98 10.9
TYRO3 9/10 135 15 0.084
TIAM1 9/10 171 19 −0.054
HERC6 9/10 224 24.9 −0.054
ZC3HAV1L 9/10 248 27.6
LOX 9/10 306 34 0.065
FABP4 8/10 178 22.2 −0.033
PEG10 8/10 194 24.2 0.027
SLC35G1 8/10 256 32
VWF 7/10 68 9.7
CXCL11 7/10 89 12.7
DHRS2 7/10 93 13.3
ADH1C 7/10 103 14.7
SLC9A3-AS1: SLC9A3 antisense RNA 1; TSPAN8: Tetraspanin 8; SLAIN1: SLAINmotif family member 1; SPARCL1: SPARC-like 1; PKIB: cAMP-dependent
protein kinase inhibitor beta; S100A8: S100 calcium binding protein A8; AQP1: aquaporin 1; ERAP2: endoplasmic reticulum aminopeptidase 2; TYRO3:
TYRO3 protein tyrosine kinase; TIAM1: TIAM Rac1 associated GEF 1; HERC6: HECT and RLD domain-containing E3 ubiquitin protein ligase family
member 6; ZC3HAV1L: zinc finger CCCH-type containing, antiviral 1 like; LOX: lysyl oxidase; FABP4: fatty acid binding protein 4; PEG10: paternally
expressed 10; SLC35G1: solute carrier family 35 member G1; VWF: von Willebrand factor; CXCL11: C-X-C motif chemokine ligand 11; DHRS2: de-
hydrogenase/reductase 2; ADH1C: alcohol dehydrogenase 1C.
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Figure 5: Continued.
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3.6. Differences in TIL Components and Tumor Stemness
between TACE Response and Nonresponse Groups. .e tu-
mor microenvironment and tumor stemness are strongly
associated with TACE outcomes; accordingly, we further
investigated the mechanism underlying the predictive value
of our model; we focused on TILs and tumor stemness [15].
We utilized the CIBERSORTx algorithm to explore the
differences in proportions of TILs between TACE re-
sponders and nonresponders. As demonstrated in
Figure 6(a), the TACE nonresponders tended to have re-
markably more macrophage M0 cells and neutrophils with
fewer cδT cells, macrophage M1 cells, and resting mast cells
than the responders. We also compared the predicted re-
sponse and nonresponse groups in the development and
validation cohorts to determine whether our model could
capture these differences in immune cell infiltration. Among
the five abnormally enriched cell types, the higher frequency

of macrophage M0 and lower frequency of resting mast cells
in TACE nonresponders were corroborated using our model
within the development and validation cohorts. In addition,
other cell types shared a similar distribution to that of the
actual classification (Figures 6(b) and 6(c)). Since the DEG
analysis suggested that an aberrant cell cycle contributes to
the TACE nonresponder status and CDK inhibitors are
candidate therapeutic agents, we evaluated whether tumor
stemness differs between responders and nonresponders.
We calculated the mRNAsi for each sample using the OCLR
method. As shown in Figure 6(d), the TACE nonresponse
group showed higher mRNAsi values than those of the
response group. We later compared the mRNAsi between
the predicted response and nonresponse groups in the de-
velopment and external validation cohorts and found that
our model could discern those with higher mRNAsi values
in both cohorts (Figures 6(e) and 6(f )), providing insight
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Figure 5: Survival analysis of external validation cohort. (a) Violin plot demonstrating the expression level of 10 genes of interest in TACE
responders and nonresponders. (b) OS of predicted response and nonresponse HCC patients receiving both adjuvant and postrecurrence
TACE treatment. (c) OS of patients receiving adjuvant TACE treatment. (d) RFS of different group of patients receiving adjuvant TACE
treatment. (e) OS of patients receiving postrecurrence TACE treatment. (f ) OS of patients receiving liver resection only. (g) RFS of patients
receiving liver resection only.

Table 3: Cox regression for OS of patients receiving TACE treatment (n� 104).

Feature
Univariate analysis Multivariate analysis

Hazard ratio 95% CI (HR) p value Hazard ratio 95% CI (HR) p value
Gender (male VS female) 1.30 0.40–4.20 0.66
Age (>VS≤ 50) 1.07 0.59–1.94 0.83
Predicted response (nonresponse VS response) 2.12 1.16–3.87 0.01∗ 1.93 1.02–3.64 0.04∗
HBV (positive VS negative) 0.75 0.18–3.10 0.69
AFP (>VS≤ 300 ng/ml) 1.35 0.74–2.45 0.33
ALT (>VS≤ 50U/L) 0.85 0.46–1.55 0.59
Cirrhosis (presence VS absence) 7.15 0.98–51.99 0.05
Main tumor size (>VS≤ 5 cm) 1.88 1.03–3.42 0.04∗ 1.40 0.67–2.93 0.38
Multinodular (presence VS absence) 1.17 0.58–2.38 0.66
BCLC stage (B and C VS 0 and A) 2.76 1.45–5.22 <0.005 1.98 0.93–4.24 0.08
HBV, hepatitis B virus; AFP, alpha fetoprotein; ALT, alanine aminotransferase; BCLC stage, Barcelona clinic liver cancer staging (there were no BCLC-D
patients included in the research) (∗ p< 0.05).

10 Journal of Oncology



0.0

0.2

0.4

0.6

0.8

Fr
ac

tio
n

TILs fraction of 147 patients from GSE 104580

TACE responders
TACE non_responders

*

** * *

B 
ce

lls
 n

ai
ve

B 
ce

lls
 m

em
or

y

Pl
as

m
a c

el
ls

T 
ce

lls
 C

D
8

T 
ce

lls
 C

D
4 

na
iv

e

T 
ce

lls
 C

D
4 

m
em

or
y 

re
sti

ng

T 
ce

lls
 C

D
4 

m
em

or
y 

ac
tiv

at
ed

T 
ce

lls
 fo

lli
cu

la
r h

elp
er

T 
ce

lls
 re

gu
lat

or
y 

(T
re

gs
)

T 
ce

lls
 g

am
m

a d
elt

a

N
K 

ce
lls

 re
sti

ng

N
K 

ce
lls

 ac
tiv

at
ed

M
on

oc
yt

es

M
ac

ro
ph

ag
es

 M
0

M
ac

ro
ph

ag
es

 M
1

M
ac

ro
ph

ag
es

 M
2

D
en

dr
iti

c c
el

ls 
re

sti
ng

D
en

dr
iti

c c
el

ls 
ac

tiv
at

ed

M
as

t c
el

ls 
re

sti
ng

M
as

t c
el

ls 
ac

tiv
at

ed

Eo
sin

op
hi

ls

N
eu

tro
ph

ils

(a)

0.0

0.2

0.4

0.6

0.8

Fr
ac

tio
n

Predicted TILs fraction of 147 patients from GSE 104580

*

*

* * * **

B 
ce

lls
 n

ai
ve

B 
ce

lls
 m

em
or

y

Pl
as

m
a c

el
ls

T 
ce

lls
 C

D
8

T 
ce

lls
 C

D
4 

na
iv

e

T 
ce

lls
 C

D
4 

m
em

or
y 

re
sti

ng

T 
ce

lls
 C

D
4 

m
em

or
y 

ac
tiv

at
ed

T 
ce

lls
 fo

lli
cu

la
r h

elp
er

T 
ce

lls
 re

gu
lat

or
y 

(T
re

gs
)

T 
ce

lls
 g

am
m

a d
elt

a

N
K 

ce
lls

 re
sti

ng

N
K 

ce
lls

 ac
tiv

at
ed

M
on

oc
yt

es

M
ac

ro
ph

ag
es

 M
0

M
ac

ro
ph

ag
es

 M
1

M
ac

ro
ph

ag
es

 M
2

D
en

dr
iti

c c
el

ls 
re

sti
ng

D
en

dr
iti

c c
el

ls 
ac

tiv
at

ed

M
as

t c
el

ls 
re

sti
ng

M
as

t c
el

ls 
ac

tiv
at

ed

Eo
sin

op
hi

ls

N
eu

tro
ph

ils

predicted responders
predicted non_responders

(b)

Figure 6: Continued.
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into factors contributing to the predictive value of our gene
signature.

4. Discussion

With the recent emphasis on precision medicine and the
rapid decline in genomic profiling costs, the use of accu-
mulating data to develop novel approaches to guide disease
diagnosis and treatment has become a standard approach. In
this study, we investigated differential gene expression
patterns between TACE responders and nonresponders and
developed a TACE-specific SVM-based model using 10
genes. We successfully validated the efficacy of the model for
predicting outcomes after TACE.

Most of the target genes were not associated with TACE
and only a few have been studied in HCC. TSPAN8, S100A8,
TYRO3, LOX, and PEG10, which were upregulated in
nonresponders in our study, have been identified as indi-
cators of a poor prognosis in HCC and could promote HCC
progression by multiple mechanisms, such as proliferation,
invasion, and metastasis [16–18]. Additionally, the over-
expression of TYRO3 mediates sorafenib resistance and
could serve as a potential target of cabozantinib [19, 20].
LOX, as an extracellular matrix (ECM) remodeling enzyme,
might stiffen the ECM and support angiogenesis sur-
rounding the tumor tissue, thereby contributing to the
TACE nonresponse phenotype [21]. .e remaining five
genes were downregulated in TACE nonresponders,
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Figure 6: TILs and tumor stemness comparison between response and nonresponse groups. (a) Violin plot displaying 22 TILs distribution
using CIBERSORTx algorithm between the given TACE responders and nonresponders in GSE104580. (b) Comparison of 22 TILs fraction
in predicted responders and nonresponders in GSE104580 with our devised model. (c) Comparison of 22 TILs fraction in predicted
responders and nonresponders in GSE14520 with our devised model. (d) Tumor stemness index between given TACE responders and
nonresponders in GSE104580. (e) Tumor stemness index of predicted response and nonresponse patients in GSE104580 using our model.
(f ) Tumor stemness index of predicted response and nonresponse group in GSE14520 using our model.
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including SPARCL1, AQP1, TIAM1, HERC6, and FABP4.
.e functions of these five genes were not as clear as those of
their upregulated counterparts. TIAM1 and FABP4 have
been found to promote HCC progression by promoting
metastasis and tumorigenesis [22, 23]. AQP1, which is
mostly expressed in the membrane of microvessels, could
indicate the extent of neovascularization or angiogenesis of
the tumor, and higher AQP1 expression in HCC usually
indicates a worse prognosis [24]. SPARCL1 has the opposite
effect on angiogenesis. SPARCL1, also known as Hevin,
works together with SPARC to diminish angiogenesis HCC
and delay in vivo tumor growth [25]. .e functions of these
dysregulated genes and particularly their impact on the
development of HCC and the response to TACE require
further research.

One of the main differences between TACE and tradi-
tional chemotherapy is the additional embolization of the
tumor-feeding artery; accordingly, many researchers have
focused on pathways involved in hypoxia and angiogenesis
to explore variation among individuals in the TACE re-
sponse. Some studies have revealed a negative correlation
between the pre-TACE levels of hypoxia-related biomarkers,
such as vascular endothelial growth factor (VEGF) and
hypoxia-induced factor 1α (HIF-1α) and survival outcomes
[10, 26]. However, our GSVA result and PPI network failed
to discern a direct pretherapy overactivated hypoxia-related
biological process in TACE nonresponders. Instead, we
found that pathways related to an aberrant cell cycle and
proliferation, including G2/M checkpoint, E2F, MYC, and
mTORC1 were significantly enriched in TACE nonre-
sponders [27–29]. However, some previous studies have
suggested that there is a positive correlation between hyp-
oxia and activated mTORC1 and E2F pathways [30]. Ad-
ditionally, an enrichment analysis of DEGs in our study
recapitulated the relationship between the augmented IL-17
pathway and TACE nonresponse. IL-17 predicts a poor
prognosis in HCC, in part due to its ability to promote
angiogenesis [31]. Lower levels of IL-17 are favorable for the
survival of patients treated with the combination of apatinib
and TACE compared with TACE alone [32]. In our study,
overactivation of the IL-17 pathway was observed in the
nonresponse group; however, we found no obvious elevation
in the expression levels of IL-17 family molecules. Further
research is required to elucidate the role of IL-17 in the
TACE response.

To explore the mechanisms underlying the predictive
value of our model, we focused on differences in infiltrating
immune cells among groups. With the advent of immu-
notherapy in HCC management, the famous immune-
suppressing CD4+ CD25+ Foxp3+ regulatory T cells
(Tregs) got increasing attention recently [33]. Previous
study disclosed a negative correlation between pre-TACE
Tregs fraction and survival after operation [34]. But no
significant association between pre-TACE Tregs fraction
and TACE response status was found which is consistent
with our results [35]. TACE nonresponders had higher
frequencies of macrophage M0 cells and lower frequencies
of resting mast cells than those of responders. .ese
characteristics were captured by our model and detected in

external validation cohorts. M0 macrophages are com-
monly known as nonactivated macrophages and constitute
tumor-associated macrophages, along with M1 and M2
phenotypes. .e higher fraction of M0 in nonresponders
could result from the increased recruitment of circulating
monocytes. Altered tumor environments, such as hypoxia,
inflammation, chemicals released by tumor cells, and
augmented inflammation, could facilitate the accumulation
of macrophages [36]. Although the impact of a large
population of macrophages in HCC is controversial, most
studies regard it as an indicator of a poorer prognosis [37].
In particular, S100A8 and TYRO3, which were predicted to
increase the risk of nonresponse in our model, were as-
sociated with macrophage infiltration. Infiltrating macro-
phages can upregulate S100A8 expression in tumor cells
and promote their invasion and migration [38]. TYRO3
could serve as a receptor on the surface of macrophages,
mediating its interaction with tumor cells and potentiating
its polarization toward the anti-inflammatory M2 pheno-
type [39].

.e functional enrichment analyses of DEGs, PPI sub-
network, and CMap implied that cell cycle progression is
significantly expediated in the nonresponse group. Ac-
cordingly, we predicted and demonstrated the high stemness
feature of nonresponders in our model. A previous study has
found that HCC with low expression levels of stemness-
related markers, such as keratin 19 or epithelial cell adhesion
molecule (EpCAM), could show better outcomes after
TACE, such as fewer residual tumors and more complete
tumor necrosis [40]. .ese results are consistent with ours
and suggest that tumor stemness is a potential therapeutic
target.

We believe that in the era of precision and personalized
medicine, it is increasingly important to weaponize gene
information from individual patients to find appropriate
therapies. A gene signature was previously developed from
GSE14520 alone to forecast patient responses to TACE;
however, the primary grouping of the training cohort was
retrospectively based on survival outcomes after TACE
which is confounded by many factors, and the criteria for
responses were different from those in common clinical
practice [10]. Our model was developed using the clinical
phenotype to effectively label the training cohort. However,
the lack of related clinical information and diagnostic cri-
teria also partially impaired the credibility of our results.
Deeper integration with clinical information could improve
our model.

5. Conclusion

Our model based on expression of 10 genes could potentially
predict HCC patients’ response and prognosis after TACE
treatment. .e discriminating power was TACE-specific.
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Supplementary Figure 1. Survival prediction efficacy of our
model. A, the 1-, 3-, and 5-year time-dependent ROC curve
as well as relative AUC assessing the efficacy of our model in
predicting OS of patients receiving TACE. B and C, the 1-, 3-
, and 5-year time-dependent ROC curve as well as relative
AUC assessing the efficacy of our model in predicting OS
and RFS of patients receiving adjuvant TACE. D, the 1-, 3-,
and 5-year time-dependent ROC curve as well as relative
AUC assessing the efficacy of our model in predicting OS of
patients receiving postrecurrence TACE. E and F, the 1-, 3-,
and 5-year time-dependent ROC curve as well as relative
AUC assessing the efficacy of our model in predicting OS
and RFS of patients receiving resection only. G, calculated
AUC value at any given time points between 10 and 60
months in different patient groups. Supplementary Table 1.
DEGs between TACE responders and nonresponders.
Supplementary Table 2. More effective drugs in TACE re-
sponders. Supplementary Table 3. More effective drugs in
TACE nonresponders. Supplementary Table 4. Performance
of five models based on 373 DEGs. Supplementary Table 5.
Top 20 important genes of each model. (Supplementary
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