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Virgen del Rocı́o University Hospital,
Spain
Aggelos Banos,
Biomedical Research Foundation of
the Academy of Athens (BRFAA),
Greece
Junaid Wazir,
Nanjing University, China

*CORRESPONDENCE

Weiguo Wan
wgwan1969@sina.com
Xue Yang
xyang@unirheuma.org

†These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Autoimmune and Autoinflammatory
Disorders : Autoimmune Disorders,
a section of the journal
Frontiers in Immunology

RECEIVED 10 August 2022

ACCEPTED 03 October 2022
PUBLISHED 19 October 2022

CITATION

Wang Y, Huang Z, Xiao Y, Wan W and
Yang X (2022) The shared biomarkers
and pathways of systemic lupus
erythematosus and metabolic
syndrome analyzed by bioinformatics
combining machine learning algorithm
and single-cell sequencing analysis.
Front. Immunol. 13:1015882.
doi: 10.3389/fimmu.2022.1015882

COPYRIGHT

© 2022 Wang, Huang, Xiao, Wan and
Yang. <?A3B2 tlsb -.Creative Commons
Attribution License (CC BY).2pt?>This is
an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction
in other forums is permitted, provided
the original author(s) and the
copyright owner(s) are credited and
that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Original Research
PUBLISHED 19 October 2022

DOI 10.3389/fimmu.2022.1015882
The shared biomarkers and
pathways of systemic lupus
erythematosus and metabolic
syndrome analyzed by
bioinformatics combining
machine learning algorithm and
single-cell sequencing analysis

Yingyu Wang1,2†, Zhongzhou Huang1,2†, Yu Xiao1,2†,
Weiguo Wan1,2* and Xue Yang1,2*

1Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China, 2Institute of
Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
Background: Systemic lupus erythematosus (SLE) is one of the most prevalent

systemic autoimmune diseases, and metabolic syndrome (MetS) is the most

common metabolic disorder that contains hypertension, dyslipidemia, and

obesity. Despite clinical evidence suggested potential associations between

SLE and MetS, the underlying pathogenesis is yet unclear.

Methods: The microarray data sets of SLE and MetS were obtained from the

Gene Expression Omnibus (GEO) database. To identify the shared genes

between SLE and MetS, the Differentially Expressed Genes (DEGs) analysis

and the weighted gene co-expression network analysis (WGCNA) were

conducted. Then, the GO and KEGG analyses were performed, and the

protein-protein interaction (PPI) network was constructed. Next, Random

Forest and LASSO algorithms were used to screen shared hub genes, and a

diagnostic model was built using the machine learning technique XG-Boost.

Subsequently, CIBERSORT and GSVA were used to estimate the correlation

between shared hub genes and immune infiltration as well as metabolic

pathways. Finally, the significant hub genes were verified using single-cell

RNA sequencing (scRNA-seq) data.

Results: Using limma and WGCNA, we identified 153 shared feature genes, which

were enriched in immune- and metabolic-related pathways. Further, 20 shared

hub genes were screened and successfully used to build a prognostic model.

Those shared hub genes were associated with immunological and metabolic

processes in peripheral blood. The scRNA-seq results verified that TNFSF13B and

OAS1, possessing the highest diagnostic efficacy, were mainly expressed by

monocytes. Additionally, they showed positive correlations with the pathways
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for the metabolism of xenobiotics and cholesterol, both of which were proven to

be active in this comorbidity, and shown to be concentrated in monocytes.

Conclusion: This study identified shared hub genes and constructed an

effective diagnostic model in SLE and MetS. TNFSF13B and OAS1 had a

positive correlation with cholesterol and xenobiotic metabolism. Both of

these two biomarkers and metabolic pathways were potentially linked to

monocytes, which provides novel insights into the pathogenesis and

combined therapy of SLE comorbidity with MetS.
KEYWORDS

systemic lupus erythematosus, metabolic syndrome, bioinformatics, machine
learning, hub genes, single-cell
Introduction

Systemic lupus erythematosus (SLE) is one of the systemic

autoimmune diseases characterized by a loss of tolerance and

excessive autoimmune reaction, with an increasing number of

atypical, early, or comorbid cases (1). The typical clinical

symptoms of SLE include red speckles on the skin and

multiple organ involvement, mostly in young women (2).

However, the etiology of SLE, which may be related to genetic

predisposition, environmental exposure, gender, or some

endogenous triggers, is exceedingly complicated and has not

been uncovered thoroughly (3). Previous research has been

implicated that some genes as the biomarker candidates of

SLE, including IFI27, CXorf21, NCF1-339, et al. (4–6).

Metabolic syndrome (MetS), also known as insulin resistance

(IR) syndrome, is one of the metabolic disorders with a high risk

of negative cardiovascular outcomes, including obesity,

hypertension, dyslipidemia, and impaired glucose tolerance

(IGT) (7, 8). Recent studies indicated that genes like CTRP7

and SPTAN1 are associated with the occurrence of MetS (9, 10).

In addition, various serological indicators were proved to be the

potential biomarkers for the diagnosis of MetS (11–13).

The comorbidity burden of SLE with many other diseases

has been increasingly reported, such as thyroid diseases, MetS,

osteoporosis, cardiovascular diseases, allergic disorders, and

some psychiatric problems (14, 15). Male and older patients

had higher rates of MetS in SLE, and the most prevalent

comorbidities are hypertension (24.6%), dyslipidemia (33.3%),

and obesity (35.3%) (15). Disturbances in the homeostasis of

metabolism have been demonstrated to exist in some SLE

patients, which may be driven by the existence of MetS

comorbidity, long-term glucocorticoid usage, and a few other

risk factors (14). Notably, despite mounting evidence showed

that SLE and MetS are closely connected, these studies tended to
02
take a clinical approach and were unable to reveal the molecular

mechanism at the genetic level. Furthermore, research on

targeted therapy for comorbidity patients was also minimal.

The gene microarray and scRNA-seq technology provide

new insights into the pathogenesis of SLE and MetS, and the

bioinformatics analysis helps us to understand the etiology from

the genetic perspective. In this study, we performed integrative

bioinformatics analysis in combination with machine learning

algorithm to identify shared hub genes and pathways in SLE and

MetS from GEO database. Additionally, we investigated the

correlation between hub genes with immune cells and

metabolic pathways in SLE and MetS. In the end, the

expression and the location of the most significant hub genes

and the related metabolic pathways were verified using scRNA

analysis. In general, this might be the first study to establish the

shared biomarkers and related metabolic pathways of SLE and

MetS, which may offer hints for the exploration of the genetic

etiology and combined therapeutic strategy of SLE and

MetS comorbidity.
Materials and methods

Data selection

The keywords “lupus” or “SLE” and “Metabolic Syndrome”

or “MetS” were used to search gene expression profiles in the

GEO database with filter criteria that the samples should be

taken from peripheral blood. For SLE, the gene expression

profiling by array data sets GSE72326 and GSE81622 were

downloaded from the GEO. Data set GSE72326 includes 157

SLE samples and 20 healthy controls samples, and GSE81622

includes 30 SLE samples and 25 healthy controls samples

(Platform: GPL10558 Illumina HumanHT-12 V4.0 expression
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bead chip). For MetS, data set GSE98895 was obtained from the

GEO, which contains 20 MetS samples and 20 healthy controls

samples. Single-cell sequencing data of SLE patients and healthy

controls was procured from the data set of the GSE135779

dataset and was downloaded from GEO, which contains 8 SLE

patients and 6 healthy controls. Using Mann-Whitey U test, Chi-

square test, and DEGs analysis, we excluded effects of gender and

age between patients and healthy controls in those data sets that

could introduce a bias in our study. The demographic data of

samples in these data sets is provided in Supplementary Table

S1. The workflow of this investigation is provided in Figure 1.
Identification and visualization of
differentially expressed genes

Using the limma R package (16), the GSE72326 and GSE98895

data sets were normalized and analyzed. Adjusted P < 0.05 and |

log2FC| ≥ 0.5 were employed as our standard screening criteria for

DEGs. Genes were categorized as upregulated or downregulated

depending on whether their log2FC value was greater than 0.5 or

less than -0.5. To better visualize these DEGs, R software was used

to make heatmaps and volcano plots. Heatmaps were created with

the pheatmap R package.
Construction of weighted gene
co−expression network analysis

WGCNA was performed on GSE72326 and GSE98895

datasets to screen the gene modules using “pickSoftThreshold”

(package WGCNA) (17). The genes ranking in the top 5000 of

the median absolute deviation in the corresponding expression

matrix were selected for WGCNA. After the missing values and
Frontiers in Immunology 03
genes with zero variance were filtered out, the extracted values

were chosen to build an adjacency matrix based on the scale-free

topology criterion (scale-free R2 = 0.9), which was then

transformed into a topological overlap matrix (TOM). Next,

the average-linkage hierarchical clustering method was used to

cluster genes showing similar expression profiles with gene

modules. To identify key modules, the minimum module size

was determined at 30, and the cut height was set at 0.25. The grey

module represented the genes that cannot be merged. Finally,

Pearson correlation analysis was performed to calculate the

correlation between modules and traits in SLE and MetS.
Pathway and functional
enrichment analysis

We screened feature biomarkers at the intersection of the

above DEGs and WCGNA. Based on Metascape (http://

metascape.org/gp/index.html#/main/step1), Ontology (GO) term

enrichment analysis and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway analysis were applied for the

identification of pathways in which feature genes were

significantly enriched of both SLE and MetS (18). The

conditions for screening significantly enriched GO terms and

KEGG pathways wereMin overlap = three andMin Enrichment =

1.5. The enrichment significance threshold was set to an adjusted

p-value below 0.05.
Hub genes screening and validation
based on the machine learning algorithm

Random forest algorithm (19) and the least absolute

shrinkage and selection operator (LASSO) logistic regression
FIGURE 1

Flowchart of Investigation.
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(20) were applied for hub genes screening from the intersection

genes of DEGs and WGCNA. To better analysis, we used the sva

R package (21) to combine and remove batch effects of

GSE72326, GSE81622 (used for validation set) and GSE98895

for further study and performed principal component analysis

(Supplementary Figure S1). Random forest was performed by

the randomForest R package to build a classifier, which

compares and ranks the features by importance. LASSO

regression was realized by the glmnet R package (22) to reduce

data dimensions after the random forest further. In turn, the

genes screened by these two algorithms were regarded as

hub genes.
Construction of the prognostic model
based on the hub genes

The R package xgboost was used for constructing the

Extreme Gradient Boosting (XGBoost) classifier, and the

expression values of hub genes were used as eigenvalues for

the training of the XGBoost model (23). Firstly, we selected the

SLE data set GSE72326 MetS data set GSE98895 as the training

sets. Since there is no validation data set available for MetS, we

used another SLE data set GSE81622 for validation. The

prognostic efficiency was evaluated by receiver operating

characteristic (ROC) or precision-recall (PR) curves (24) and

their AUC values.
Correlation analysis of hub gene
expression with immune infiltration

CIBERSORT is a deconvolution algorithm widely used to

label genomes of different types of immune cells in the

microenvironment (25). This study used CIBERSORT to

analyze the proportion of 22 immune cells in peripheral blood

of GSE72326 and GSE98895. CIBERSORT p-value < 0.05 was

included. Pearson correlation coefficient was used to determine

the correlation between hub genes and immune-infiltrated cells.

Vioplot and pheatmap R packages were used for visualization.
Correlation analysis of hub gene
expression with metabolic pathway

Gene Set Variation Analysis (GSVA) is a non-parametric

and unsupervised method for estimating the changes in specific

gene sets (26). The activities of the 50 hallmark pathways were

quantified with the GSVA R package to find the related

metabolic pathways in SLE and MetS. In this part, p < 0.05

was regarded as statistically significant. Pearson correlation

coefficient was used to determine the correlation between hub
Frontiers in Immunology 04
genes and metabolic pathways. Pheatmap R packages were used

for visualization.
Single-cell data processing and clustering

For single-cell sequencing analysis, raw data for GSE135779

were downloaded from GEO, and the package of Seurat (version

4.1.0) was used to process data with R studio (27). ScRNA-seq

data quality control was necessarily performed as previously

described. Cells were filtered with the criteria of >20%

mitochondria-related genes. Based on the variance stabilization

transformation (vst), each sample’s first 3000 highly variable

genes were analyzed after normalization. The first 3000 highly

variable genes screened above were scaled using the function of

ScaleData, and the dimension of PCA was reduced using the

function of RunPCA. We chose dim = 20 and clustered the cells

into 17 cell populations using the FindNeighbors and

FindClusters functions. Then the function of RunUMAP was

performed for the visualization. For cell population annotation,

signatures of CD3E, IL-7R, CCR7, CD4, CD8A, and CCL5 were

chosen for T cell annotation; signatures of FOXP3 and IL2RA

were chosen for Treg cell annotation; signatures of KLRB1,

NKG7, and GNLY were chosen for NK cell annotation;

signatures of LYZ, CD14, CD68, S100A9, CD16, FCGR3A,

and CD1C were chosen for monocytes annotation; signatures

of FCER1A and CST3 were chosen for myeloid DC (m-DC)

annotation; signatures of LILRA4 and CLEC4C were chosen for

plasmacytoid DC (p-DC) annotation; signatures of MS4A1,

CD19, and CD79A were chosen for B cell annotation; and

signatures of CD27 was chosen for memory T or B cell

demonstration. Furthermore, the VlnPlot function was used to

verify the location and expression pattern of potential

biomarkers and metabolic pathways in different cell types. The

comparisons of the metabolic pathway scores were conducted by

Wilcoxon rank-sum test. The visualization of potential

biomarkers and metabolic pathways was performed by the

FeaturePlot function.
Results

Differential expression genes
identification in SLE and MetS

With the limma R package, a total of 488 differential genes

(DEGs) were identified based on the SLE dataset GSE72326. The

volcano plot shows the identified DEGs, including 314

upregulated and 174 downregulated (Figure 2A) using the

logFC value. The heatmap demonstrates DEGs (Figure 2C).

Besides, a total of 672 DEGs were obtained from the MetS

dataset GSE98895, among which 301 genes were upregulated
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B

C D

E

A

FIGURE 2

(A) Volcano plot of DEGs in GSE72326 |log2FC| > 0.5). (B) Volcano plot of DEGs in GSE98895 |log2FC| > 0.5). Red: upregulated; blue:
downregulated. (C) Heatmap of DEGs in GSE72326. (D) Heatmap of DEGs in GSE98895. (E) Overlapping DEGs of GSE72326 and GSE98895.
Volcano plots showed the genes that are up- or down-regulated in the data sets, with red dots indicating significant up-regulation and blue
dots indicating significant down-regulation. Heatmaps exhibited the expression levels of genes in each sample in the data set.
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and 371were found to be downregulated (Figure 2B). Heatmaps

of DEGs are shown in Figure 2D. A total of 44 overlapping DEGs

of GSE72326 and GSE98895 were observed (Figure 2E).
Weighted gene co-expression network
analysis of SLE and MetS

We performed WGCNA to explore the correlation between

clinical traits and genes. All samples were clustered in the

GSE72326 and GSE98895 datasets, and none of the samples

was eliminated (Figures 3A, B). According to the WGCNA

methodology, the optimal soft-power value for GSE72326 was

19 while for GSE98895 it was 11 (Figures 3C, D). A total of 8

modules were identified in GSE72326, and 11 were identified in

GSE98895. Afterwards, the correlations between the module and

clinical traits were calculated. The green and red modules had

the strongest positive relation with SLE (r = 0.52 and 0.31), while

the turquoise module had the strongest negative relation (r = 0.18)

in the GSE72326 database (Figures 3E, G). For MetS, the green,

magenta, black, and turquoise modules showed the strongest

positive correlation (r = 0.52, 0.4, 0.5, 0.77, and 0.53), whereas

pink, blue, and yellow modules had the strongest negative

correlation (r = 0.62, 0.66, and 0.66) in the GSE98895 database

(Figures 3F, H). A total of 112 overlapped module genes of

GSE72326 and GSE98895 were observed (Figure 3I).
Enrichment analysis and PPI
network construction

There were 112 genes shared by the SLE and MetS modules.

Moreover, for DEGs, 44 shared genes were found. There were

only 3 overlapping genes of DEGs and WGCNA module genes.

Firstly, the modules screened fromWGCNA contain a cluster of

genes with similar expression profiles, which may not cover the

full range of DEGs or even differ a lot from DEGs. Secondly,

some DEGs did not consist of modules with other similar genes,

which may also be critical for the development of disease. In

order not to cause the omission, we combined DEGs and

modules genes together to be the candidate genes for the

following analyses.

Then we got 153 candidate genes, which may be the

important players involved in the pathogenesis of both

SLE and MetS and potentially possess a shared molecular

mechanism. Therefore, to further explore the signaling

pathway associated with those genes involved in SLE and

MetS, pathways and functional enrichment analyses were

carried out on the basis of GO, including biological

processes, cellular components, and molecular functions, and

the KEGG comprised significantly enriched signaling

pathways. According to the results of GO/KEGG enrichment

analyses, those genes were significantly involved in the positive
Frontiers in Immunology 06
regulation of immune response, positive regulation of

leukocyte proliferation, cytokine signaling in the immune

system, modulators of TCR signaling and T cell activation,

rRNA processing, and NF-kappa B signaling pathway, et al.

(Figure 4A). Meanwhile, we found those feature genes were not

only enriched in immunological but also in metabolic-related

terms (Figure 4B). Moreover, we constructed a protein-protein

interaction (PPI) network based on the STRING database. A

total of 188 nodes and 445 edges were obtained with a

combined score >0.8, as shown in Figure 4C. The top3

significant genes with the highest ranking were LYN proto-

oncogene (LYN), phospholipase C, gamma 1 (PLCG1), and

ribosomal protein L13 (RPL13).
Identification and validation of potential
shared hub genes by random forest
and LASSO

To further screen the hub genes with the most diagnostic

values, we selected the foremost characteristics based on

machine-learning algorithms. Random Forest analysis and

LASSO regression analysis were carried out in succession.

Random forest was used to identify 139 genes from 153

feature genes (Figure 5A). Figure 5B showed the top 30

significant genes, with TNF Superfamily Member 13b

(TNFSF13B) and 2’-5’-Oligoadenylate Synthetase 1, and H1

histone family, member 0 (H1F0) having the highest

MeanDecreaseGini. At the same time, 21 genes were screened

from DEGs by LASSO logistic regression (Figure 5C). By

overlapping genes screened from Random Forest and LASSO,

we eventually obtained 20 shared hub genes, which were

considered to carry the maximum diagnostic value

(Figure 5D). Moreover, we validated the diagnostic prognostic

efficacy of each shared hub genes through ROC curve (Table 1,

Supplementary Figure S2), with TNFSF13B (AUC = 0.936) and

OAS1 (AUC = 0.924) having the highest AUC (Figure 5E).
Construction of prognostic model based
on XGBoost

Although each shared hub gene can be employed as an

auxiliary diagnostic or predictive biomarker, we prefer to

develop a comprehensive prognostic model to increase the

effectiveness of diagnosing or predicting diseases. Therefore,

we utilized machine learning to ascertain whether these 20

hub genes can construct a comprehensive prognostic model.

XGBoost algorithm, a popular algorithm in machine learning

classifiers that has demonstrated excellent performance (28), was

selected for generating the model based on those 20 hub genes.

In order to improve the model, XGBoost calculates negative

gradients and uses them to find problems. Training and testing
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FIGURE 3

(A) Clustering according to the expression level of SLE patients in GSE72326. (B) Clustering according to the expression level of MetS patients in
GSE98895. Each branch represents a sample in the data sets, and there is no outlier sample in each data set. (C) Determination of Soft
Threshold power for GSE72326. (D) Determination of Soft Threshold power for GSE98895. When scale-free distribution is reached, the optimal
soft-power value for GSE72326 was 19 while for GSE98895 it was 11. (E) Origin and merged modules displaying under the clustering tree for
GSE72326. (F) Origin and merged modules displaying under the clustering tree for GSE98895. Cluster dendrograms showed the clustering
process of the gene modules (G) Heatmap of the correlation between module eigengenes and the occurrence of SLE. (H) Heatmap of the
correlation between module eigengenes and the occurrence of MetS. (I) Overlapping module genes of GSE72326 and GSE98895.
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FIGURE 4

(A) the top 20 enriched clusters across feature genes, colored by p-values. (B) The top-level Gene Ontology biological processes colored by p-
values. The darker the color, the stronger the enrichment of the gene in that pathway. (C) The PPI network of feature genes. Each blue node
represents a gene, and each other node represents a protein. Different sizes indicate the core degree of genes in the PPI network, whereas a
bigger size indicates more importance in the network.
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FIGURE 5

(A) Gene selection via Random Forest algorithm. (B) The top 30 significant genes recognized from Random Forest. MeanDecreaseGini showed
the rank of genes in accordance with their relative importance. (C) The performance in of ten-time cross-verification for tuning parameter in
selection least absolute shrinkage and selection operator (LASSO). Each coefficient curve in the upper picture represents a single gene. The solid
vertical lines in another picture represent the partial likelihood deviance SE, and the number of genes (n = 20) corresponding to the lowest
point of the curve is the most suitable for LASSO. (D) The intersected genes of these two algorithms were selected. (E) ROC curves of TNFSF13B
(AUC = 0.936, 95%CI 0.885-0.986) and OAS1 (AUC = 0.924, 95%CI 0.883-0.965).
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sets were used to confirm the effectiveness and dependability of

the prognostic model. We chose one SLE dataset (GSE72326) for

training and another SLE dataset (GSE81622) for validation. The

performance of the training set showed that the AUC of ROC

and Precision-Recall curve were 0.995 and 0.999 (Figure 6A),

and the AUC of the validation set were 0.809 and 0.846

(Figure 6B), respectively, indicating that this prognostic model

had good performance in distinguishing SLE patients from

healthy controls. Meanwhile, to verify whether it is able to

identify MetS patients, we used the MetS dataset (GSE98895)

to train the model based on the same shared hub genes, and the

result showed its equally well performance (Figure 6C).
Immune cell infiltration and correlation
with shared hub genes

The enrichment analysis revealed that immunity plays an

essential role in developing this comorbidity, so we investigated

whether distinct patterns of immune infiltration could be

discerned based on the 22 types of immune cells by the

CIBERSORT method. First, we evaluated the composition of

the immune cell infiltrate in peripheral blood of the SLE data set

(GSE72326) and MetS data set (GSE98895).

The Violin diagram demonstrated significant differences

between SLE and control samples in monocytes, NK cells,

macrophages, dendritic cells, neutrophils, and CD4+ memory

T cells populations (Figure 7A). Compared with the normal
Frontiers in Immunology 10
sample, resting CD4+ memory T cells and resting NK cells were

considerably decreased in the SLE sample, while monocytes, M0

macrophages, M1 macrophages, activated dendritic cells, and

neutrophils were significantly increased. We also performed

CIBERSORT in the MetS data set (GSE98895). The result

showed that resting CD4+ memory T cells and neutrophils

were decreased in patients while gamma delta T cells

increased (Figure 7B).

However, common differences in immune cell composition

ratios are only one aspect of the common pathogenesis of SLE

and MetS. We still need to confirm whether these 20 shared hub

genes are associated with immune infiltration in the peripheral

blood, and if so, specifically which immune cells they are

associated with, as well as to identify their commonalities.

Therefore, Pearson correlation analysis was used to investigate

the correlations between shared hub genes with immune cells in

SLE. We observed that monocytes, M0 macrophages, activated

dendritic cells, and neutrophils had a similar significant positive

correlation with TNFSF13B, WIPI1, and OAS1, and a

significantly negative relationship with AUTS2, PPP1R13B,

EBI2, and NOSIP. Additionally, resting NK cells were

positively correlated with AUTS2 and LRCH4 but negatively

correlated with OAS1 and H1F0 (Figure 8A).

As mentioned earlier, since both TNFSF13B and OAS1

possessed the highest diagnostic potency, we observed that

neutrophils, monocytes, activated dendritic cells, activated

CD4+ memory T cells, M1 macrophages, and resting mast

cells had a significantly positive correlation with TNFSF13B,

while negatively correlated with CD8+ T cells, resting CD4+

memory T cells, regulatory T cells (Tregs), and NK cells. For

OAS1, a similar correlation was observed with those cells in

front, with the exception of activated memory T cells, Tregs, and

resting mast cells. Also, we observed some relationships between

hub genes and immune cells in MetS (GSE98895) (Figure 8B),

suggesting that immune-related cells were also involved in the

pathogenesis of MetS. Both TNFSF13B and OAS1 had a

significantly positive correlation with monocytes, while

negatively related to naïve CD4+ T cells and M1 macrophages.

Generally speaking, there is a consistent correlation between

these two genes and monocytes in SLE and MetS.
Metabolic pathway involvement and
correlation with shared hub gene

The GSVA result of the relevant metabolic pathway is

presented in the heatmap (Figure 9). 9 in 50 hallmark

pathways were involved in the metabolic process, and we

completed Pearson correlation analysis to determine the

relationship between our hub genes and those nine metabolic

pathways. Overall, this result suggested that cholesterol

homeostasis, xenobiotic metabolism, hypoxia, and heme

metabolism were highly and consistently correlated with hub
TABLE 1 AUC of 20 hub genes.

Gene AUC of ROC 95% CI

SCD 0.744 0.643–0.846

OAS1 0.924 0.883–0.965

LOC100008589 0.816 0.721–0.911

TNFSF13B 0.936 0.885–0.986

WIPI1 0.703 0.577–0.829

C21orf51 0.571 0.434–0.708

H1F0 0.885 0.818–0.952

STOM 0.781 0.679–0.883

FCRLA 0.839 0.767–0.912

TAGLN 0.748 0.634–0.862

FAM129C 0.859 0.792–0.925

CD79B 0.86 0.799–0.921

AUTS2 0.859 0.787–0.931

NOSIP 0.719 0.616–0.822

LOC728643 0.72 0.583–0.857

PMP22 0.805 0.719–0.890

EBI2 0.827 0.715–0.939

PPP1R13B 0.867 0.792–0.941

LRCH4 0.721 0.592–0.850

LAMA5 0.851 0.785–0.917
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1015882
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2022.1015882
B

C

A

FIGURE 6

(A) Performance in the training set (GSE72326) using XGBoost. (B) Performance in the Validation set (GSE81622) using XGBoost. (C) Performance
in the training set (GSE98895) using XGBoost.
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FIGURE 7

(A) The composition of the immune cell infiltrate in SLE. (B) The composition of the immune cell infiltrates in MetS.
Frontiers in Immunology frontiersin.org12

https://doi.org/10.3389/fimmu.2022.1015882
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2022.1015882
B

A

FIGURE 8

(A) Correlation matrix between immune cell proportions and shared hub genes in SLE. Red represents for positive correlation, while blue for
negative correlation. (B) Correlation matrix between immune cell proportions and shared hub genes in MetS. Orange represents for positive
correlation, while green for negative correlation. Asterisks represent levels of significance (*p < 0.05, **p < 0.01, ***p < 0.001).
Frontiers in Immunology frontiersin.org13

https://doi.org/10.3389/fimmu.2022.1015882
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2022.1015882
genes. In addition, those four pathways were positively

correlated with up-regulated hub genes and negatively with

down-regulated hub genes. In other words, those four

pathways might be activated in SLE and MetS. Focusing on

TNFSF13B and OAS1 as they held the highest diagnostic

performance, we found these two hub genes were highly

positively correlated with cholesterol homeostasis and

xenobiotic metabolism in SLE.
Single-cell analysis for the location of
hub genes

In addition to transcriptomics analysis, we evaluated the

immune microenvironment of peripheral blood using scRNA-seq

data GSE135779. After QC (Supplementary Figure S3), we clustered

11178 cell populations into 17 clusters (Supplementary Figure S4).

Using genes CD3E, IL-7R, CCR7, CD4, CD8A, CCL5, FOXP3,

IL2RA, KLRB1, NKG7, GNLY, LYZ, CD14, CD68, S100A9, CD16,

FCGR3A, CD1C, FCER1A, CST3, LILRA4, CLEC4C, MS4A1,

CD19, CD79A, and CD27, we classified 17 cell clusters into 7 cell

populations, including 6376 T cells, 1676 monocytes, 820 NK cells,

449 B cells, 40 p-DCs, 26 m-DCs, and 60 cells that are not ultimately

defined (Figures 10A, B). Results showed that the cell clusters

comprising T cells, monocytes, and NK cells were not identical in

SLE and control samples, suggesting that the subpopulations of these

cells may be different, following the CIBERSORT results above.

Since TNFSF13B and OAS1 are the two with the highest

diagnostic efficacy among hub genes, we selected them for

further study to assess their expression and localization in

PBMC between SLE and normal samples. The expression level

of TNFSF13B and OAS1 were both elevated in GSE72326 and

GSE81622 (Figures 10C, D), which was verified in scRNA-seq

data GSE135779 (Figure 10F). It has been well recognized that

TNFSF13B was mainly expressed by monocyte clusters in SLE,

which was consistent with our result of scRNA analysis

(Figure 10E). For gene OAS1, however, we had very limited
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knowledge of the cells in which it was mostly expressed in SLE.

Thus, we further examined OAS1 in single-cell populations.

As noticed, monocytes, NK cells, and T cells showed high

expression of OAS1 (Figure 10E). Using UMAP for the

visualization, we found that the expression level of OAS1 was

upregulated and primarily enriched in monocytes, which was

similar to TNFSF13B (Figure 11). In other words, the core cell

type that was strongly associated with the expression of both

TNFSF13B and OAS1 was represented by monocytes.
Single-cell analysis for the location of
metabolic pathways

According to the front results, TNFSF13B and OAS1 were

highly positively correlated with cholesterol homeostasis and

xenobiotic metabolism pathways and mainly expressed by

monocytes, NK cells, and T cells. Therefore, to investigate

whether the expression level of these two metabolic pathways in

those three types of immune cells was different in SLE, the

comparison of cholesterol homeostasis and xenobiotic

metabolism pathways in SLE and healthy controls was

performed. We discovered those two metabolic pathways were

increased in those three kinds of immune cells with significant

differences (p < 0.05), except cholesterol homeostasis in NK cells

(Figure 12). Next, to further determine which types of immune cells

was dominant, we use UMAP for visualization, and those two

metabolic pathways were observed to be significantly concentrated

in monocytes, which appeared to be accompanied by the expression

of TNFSF13B andOAS1 (Figure 13) indicating that monocytes may

play a vital role in these two kinds of metabolic disorders in the

peripheral blood of SLE patients.

Discussion

Metabolic disorders are often present in SLE patients, and

the high incidence of SLE and MetS comorbidity has been
FIGURE 9

Correlation matrix between metabolic pathways and shared hub genes in SLE. The left part showed those up-regulated hub genes, and the right
part showed the down-regulated hub genes. Red represents for positive correlation, while blue for negative correlation. Asterisks represent
levels of significance (*p < 0.05, **p < 0.01, ***p < 0.001).
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FIGURE 10

(A) UMAP visualization of the 11178 cells in the single-cell RNA seq dataset GSE135779; Different colors indicate distinct clusters; m-DC: myeloid
dendritic cells; p-DC: plasmacytoid dendritic cells. (B) Dot plot of cell population annotation based on different signatures. (C) Boxplots of
TNFSF13B expression levels in GSE72326 and GSE81622; Comparison was conducted by Wilcoxon rank-sum test. (D) Boxplots of OAS1
expression levels in GSE72326 and GSE81622; Comparison was conducted by Wilcoxon rank-sum test. (E) The expression level of TNFSF13B
and OAS1 in 8 clusters of cells in GSE135779. (F) The expression level of TNFSF13B and OAS1 in controls and SLE patients in GSE135779.
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increasingly documented (15). As an effective predictor of

cardiovascular morbidity and mortality, MetS has been

confirmed to predispose SLE patients to a range of

cardiovascular events, as well as chronic kidney disease and

diabetes (29). Moreover, since the proinflammatory cytokines

are a common underlying mechanism of both SLE and obesity,

MetS may also act as a trigger and contribute to the

accumulation of chronic systemic inflammation and disease

activity of SLE (29). Previous intravenous methylprednisolone

use, male, older age, higher ESR, higher C3 levels and higher

serum creatinine levels are regarded as risk factors for MetS in

SLE patients (30). These characteristics, however, were only

examined at the clinical or serological levels; the genetic level

is still a mystery. Additionally, since altering one’s lifestyle and

taking medications like metformin or hydroxychloroquine only

had little effectiveness in reducing insulin resistance in cases of

SLE and MetS cooccurrence (29), therapies that target specific

genes and pathways are urgently needed to be discovered. In

addition, clinical data indicated that the main obstacle to target

treatment of SLE patients is its heterogeneity in the involvement

of different cell types. The clinical heterogeneity of SLE and its

related involvement of different cell types has made it

challenging to design accurate therapy (31). Therefore, finding

the major cell types involved in the pathogenesis of SLE and

MetS comorbidity and exploring a cell-specific molecular

program is of vital importance.
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In this study, to explore whether SLE and MetS have some

genetic and molecular mechanism similarities, we performed

integrative bioinformatics analysis in combination with machine

learning algorithms to identify shared hub genes and pathways

in SLE and MetS. Firstly, we analyzed shared DEGs and co-

expression modules of SLE and MetS, which lack relevant

reports. In order to try not to miss genes associated with the

development of SLE and MetS comorbidity, we combined DEGs

and WGCNA module genes together, and 153 shared candidate

genes were found. Enrichment analyses suggested that those

candidate genes were associated with both immune-relate and

metabolic-related signaling pathways. Next, to further screened

shared hub genes, machine learning approaches were applied.

The intersection of Random Forest and LASSO was considered

the shared hub genes of SLE and MetS, and the diagnostic

efficacy of each shared hub gene was further certificated. TNF

Superfamily Member 13b (TNFSF13B) and 2’-5’-Oligoadenylate

Synthetase 1 (OAS1) exerted the best diagnostic performance

with the highest AUC.

Even though each shared hub gene can be used as a

predictive biomarker, the differential expression levels of

individual genes may not only present in SLE or MetS, making

diagnosis or prediction based on individual genes less precise.

Thus, we prefer to construct a comprehensive prognostic model

to improve the accuracy of disease diagnosis or prediction using

the XGBoost algorithm. The AUC of the training and validation
FIGURE 11

UMAP visualization of TNFSF13B and OAS1 expression in controls and SLE patients in GSE135779. Yellow dots indicated TNFSF13B expression,
and cyan dots indicated OAS1.
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sets indicated that these 20 genes were reliable for prognosing

SLE and MetS comorbidity.

In addition, to further investigated the correlation between

hub genes with immune cells and metabolic pathways in SLE

and MetS, we employed CIBERSORT immune infiltrates

analysis and GSVA metabolic pathway analysis, and found

some correlations between hub genes with 22 immune cells

and nine metabolic pathways. TNFSF13B and OAS1 exerted a

significantly positive relationship with monocytes in both SLE

and MetS. Additionally, Cholesterol homeostasis and xenobiotic

metabolism pathways correlated remarkably with TNFSF13B

and OAS1.

In the end, scRNA-seq analyses were performed to verify the

expression and the location of the most significant hub genes

and the related metabolic pathways in specific cell types.

However, due to the lack of MetS-associated single-cell data

from PBMC, we applied only the SLE single-cell dataset for

analysis. Finally, we found that these two central genes and

metabolic pathways were upregulated and significantly enriched

in monocytes.

As one member of the tumor necrosis factor (TNF) ligand

family, the cytokine coded by TNFSF13B is also known as B cell

activating factor (BAFF) and B lymphocyte stimulator (BLyS)
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(32, 33). BAFF has been shown to be commonly overexpressed

in SLE, which plays a vital role in the proliferation and

differentiation of B cells and is strongly involved in the

pathogenesis of SLE (34). A recent study revealed that

TNFSF13B expression was elevated in SLE and highly

positively correlated with monocytes (31), which was

consistent with our results of CIBERSORT and scRNA

analyses. Belimumab, the only effective biological therapy that

targets BAFF, has been authorized for clinical use in SLE (35).

Notably, since belimumab has been widely used in the clinical

treatment of SLE and has exerted efficient and safe therapeutic

effects, our results suggested that this drug may also be

appropriate for the combination treatment of SLE and

MetS comorbidity.

In contrast to TNFSF13B, the other gene focused on in this

study OAS1, is rarely defined as a hub gene in SLE or MetS. As

the coding gene of 2’-5’-oligoadenylates (2-5As), OAS1 was

proved to be essential for distinctive biological processes,

including anti-virus infection, cell growth, as well as cell

apoptosis in tumors (36, 37). Recently, a two-sample

Mendelian randomization (MR) study revealed that OAS1

could influence the susceptibility and severity of COVID-19.

Another study found a link between OAS1 genetic risk for
FIGURE 12

Violin plots of the cholesterol homeostasis and xenobiotic metabolism levels in monocytes, NK cells, and T cells of controls and SLE;
Comparison was conducted by Wilcoxon rank-sum test.
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Alzheimer’s disease and susceptibility to critical illness with

COVID-19 (38, 39). Thomas Magg et al. found that OAS1

could regulate the development of interferon-induced

hyperinflammatory monocytes and B cells (40). These studies

indicating that OAS1 was associated with immune response. In

addition, a newly bioinformatics investigation identifiedOAS1 as

one of the common DEGs with high diagnostic sensitivity and

specificity in SLE (AUC > 0.8), which was consistent with our

study; nonetheless, it did not reveal the correlation between

OAS1 and immune cell types. Our study ensured the expression

of OAS1 was enriched in monocytes, which was the same as

TNFSF13B. Also, we found OAS1 was positively correlated with

cholesterol homeostasis and xenobiotic metabolic, suggesting it

may be involved in the metabolic disorders in SLE.

It is well known that the Interferon (IFN) signatures are typical

features of inflammatory diseases, such as SLE (41). Increased

expression of TNFSF13B (BAFF), an INF-inducible gene, and

activation of the INF pathway are significantly associated with the

disease activity of SLE patients (34, 42, 43). OAS1, like TNFSF13B,

also belongs to INF-inducible genes and is responsible for the

inflammatory response (38, 39). In MetS, there is growing evidence

that the development of MetS is linked to patients’ activated

inflammation (44–46). Additionally, recent studies have

demonstrated the enhanced level of IFN and the activation of

IFN-related pathways in MetS patients, including the cyclic GMP-

AMP synthase-stimulator of interferon genes signaling (cGAS-
Frontiers in Immunology 18
STING) pathways (47, 48). Therefore, it may lead to elevated

expression levels of IFN signatures, including TNFSF13B and

OAS1, suggesting that activation of IFN-related pathways may

also be an essential feature of MetS, which is the same as SLE.

Cholesterol homeostasis is one of the lipid metabolism

pathways. It has been documented that the dysregulation of

cholesterol metabolism may be associated with the high incidence

of atherosclerosis in SLE patients (49). Moreover, the disorder of

cholesterol metabolism may accumulate the burden of

inflammation condition, and the dyslipidemia of SLE could also

be the result of the immune response in turn (50). Our results

showed that cholesterol metabolism was upregulated in SLE and

highly enriched in monocytes, which is the same as TNFSF13B and

OAS1. According to previous studies, exogenous chemicals

(xenobiotics), including many environmental exposures, consist of

one of the risk factors for SLE (51), thus the xenobiotic metabolic

dysfunction may also account for the pathogenesis of SLE. We

discovered that the metabolism of xenobiotics was markedly

increased in SLE, which may be due to the fact that SLE patients

were generally exposed to some exogenous poisons and unable to

metabolize normally and properly. This study also found that

xenobiotic metabolism was positively associated with TNFSF13B

and OAS1. Moreover, xenobiotic metabolism was activated and

primarily enriched in monocytes, which was similar to cholesterol

metabolism in SLE. Therefore, the use of belimumab and targeted

therapy against OAS1 may help restore monocyte metabolic
FIGURE 13

UMAP visualization of cholesterol homeostasis and xenobiotic metabolism scores in controls and SLE patients in GSE135779. Blue dots indicated
cholesterol homeostasis, and pink dots indicated xenobiotic metabolism.
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dysfunction and further alleviate the metabolic disorder in

SLE patients.

It is worth noting that the data set samples used in our

investigation were all drawn from peripheral blood, which has the

advantages of being simpler to collect and detect than tissue samples,

less hazardous to patients, and having a higher prognostic value.

Also, there exist some limitations in our study. Firstly, the sample

size of data sets we used was limited, and we were unable to draw a

causal association between SLE and MetS due to the absence of a

dataset of SLE andMetS comorbidity in public databases. For further

validation, larger sample size data sets and comorbidity data sets are

needed. Secondly, we lack in vivo or in vitro experiments to validate

our results. Thirdly, the exact mechanisms of metabolic disorders

mediated by TNFSF13B and OAS1 and their exact relationship with

monocytes need further investigation. Therefore, our results still

need to be verified through in vivo and in vitro.
Conclusion

In conclusion, this is the first study to screen the shared hub

genes and metabolic pathways in peripheral blood for SLE and

MetS coexistence. We identified monocyte as the primary cell type,

which had a positive correlation with TNFSF13B and OAS1, as well

as cholesterol and xenobiotic metabolism in SLE. This study may

provide a new perspective on the pathogenesis and combination

treatment of SLE and MetS comorbidity.
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