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Abstract

Background: Histone deacetylase inhibitor (HDACI), sodium butyrate (SB), has been shown to be neuroprotective
in adult brain injury models. Potential explanation for the inhibitor action involves among others reduced inflammation.
We therefore anticipated that SB will provide a suitable option for brain injury in immature animals. The aim of our study
was to test the hypothesis that one of the mechanisms of protection afforded by SB after neonatal hypoxia-ischemia is
associated with anti-inflammatory action. We examined the effect of SB on the production of inflammatory
factors including analysis of the microglial and astrocytic cell response. We also examined the effect of SB on
molecular mediators that are crucial for inducing cerebral damage after ischemia (transcription factors, HSP70,
as well as pro- and anti-apoptotic proteins).

Methods: Seven-day-old rat pups were subjected to unilateral carotid artery ligation followed by 60 min of
hypoxia (7.6% O,). SB (300 mg/kg) was administered in a 5-day regime with the first injection given immediately after
hypoxic exposure. The damage of the ipsilateral hemisphere was evaluated by hematoxylin-eosin staining (HE) 6 days
after the insult. Samples were collected at 24 and 48 h and 6 days. Effects of SB on hypoxia-ischemia (HI)-induced
inflammation (cytokines and chemokine) were assessed by Luminex assay and immunohistochemistry. Expression
of molecular mediators (NFkB, p53, HSP70, COX-2, pro- and anti-apoptotic factors Bax, Bcl-2, caspase-3) were
assayed by Western blot analysis.

Results: SB treatment-reduced brain damage, as assessed by HE staining, suppressed the production of inflammatory
markers—IL-1(3, chemokine CXCL10, and blocked ischemia-elicited upregulation of COX-2 in the damaged ipsilateral
hemisphere. Furthermore, administration of SB promoted the conversion of microglia phenotype from inflammatory
M1 to anti-inflammatory M2. None of the investigated molecular mediators that are known to be affected by HDACis
in adults were modified after SB administration.

Conclusions: Administration of SB is neuroprotective in neonatal hypoxia-ischemia injury. This neuroprotective activity
prevented the delayed rise in chemokine CXCL10, IL-1B3, and COX-2 in the ipsilateral hemisphere. SB appears to exert a
beneficial effect via suppression of Hl-induced cerebral inflammation.
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Background

Histone deacetylase inhibitors (HDACis) are a heteroge-
neous group of agents that inhibit histone deacetylases
(HDACs) and promote posttranslational acetylation of
lysine residues within nuclear and cytoplasmic proteins,
which may alter their activity and function. In particular,
HDAC inhibition can have a profound effect on the
acetylation status of histone proteins within chromatin,
resulting in the augmented expression of genes relevant
to protection from an ischemic insult. In addition, in-
hibition of deacetylation equally promotes the acetyl-
ation of non-histone proteins, such as transcription
factors, signal transduction mediators, determining
their interaction, localization, and stability [1]. It is
very likely that the non-specificity of deacetylase inhib-
itors is responsible for the opposing effect noted in
distinct type of cells. As it is becoming apparent,
HDAC inhibition promotes the demise of tumor cells.
The same drugs display strong protective properties
for neurons in in vitro and in vivo models of neurotox-
icity and neurodegeneration (for rev see [2]).

Furthermore, it was reported recently that the treat-
ment of adult animals with histone deacetylase inhibi-
tors, such as trichostatin A (TSA), sodium butyrate (SB),
and vorinostat (SAHA), administered just before as well
as after the onset of stroke, provides neuroprotection
[3-8]. The neuroprotective effect of these agents has
been associated with decreasing the lesion volume, neu-
robehavioral improvement, and stimulation of neuro-
genesis in the ischemic adult brain [9, 10]. Despite the
growing number of evidence supporting the beneficial
effect of HDACis in the experimental model of stroke
in adult rodents, only a few available reports were
addressed upon their effect in the hypoxia-ischemia
(HI)-injured immature brain [11-13]. However, due to
different experimental paradigms, it is not possible to
make the explicit conclusion.

Neonatal HI encephalopathy still remains one of the
most important causes of neonatal mortality and/or
long-term neurological sequelae such as cerebral palsy,
seizure disorders, cognitive and intellectual deficits, and
behavioral problems [14—17]. Currently, there are no
well-established treatments to reduce brain damage and
it is still a big challenge to protect the newborns’ brain
from HI injury. The only available effective treatment,
hypothermia, neither provides complete brain protection
nor stimulates the repair necessary for neurodevelop-
mental outcome. Recently, HDACis are being considered
as valuable tools to reduce or even to prevent HI-
induced brain damage in neonates. Since many aspects
of the evolving brain damage following the insult differ
between adults and neonates, extrapolating data ob-
tained in the mature brain to neonates is generally un-
wise. Therefore, the present study was undertaken to
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examine whether treatment with one of the HDACis, so-
dium butyrate (SB), has neuroprotective effects in a rat
model of neonatal HI. We aimed to assess whether SB
action is associated with changes in molecular mediators
that are crucial for inducing cerebral damage and thus
be targeted for therapy. As inflaimmation is a well-
recognized pathogenic factor in perinatal brain injury, we
analyzed the microglial and astrocytic cell response to SB
treatment and the influence of SB on cytokines, transcrip-
tion factors, HSP70, and pro- and anti-apoptotic proteins.

Methods

Experimental animal work was conducted according to
regulations following European Union directives. Experi-
mental procedures were approved by the Local Ethics
Committee for Animal Experimentation. All efforts were
made to minimize the number of animals and animal
suffering in every step.

Experimental neonatal hypoxia-ischemia

Animals were housed under controlled temperature
(22 °C+2), with a 12-h light cycle period and pelleted
food and water ad libitum. Cerebral hypoxia-ischemia
was produced in 7-day-old (P7) Wistar rats of either sex
by a permanent unilateral common carotid artery
ligation, followed by systemic hypoxia [18, 19]. As was
previously reported, the ligation alone does not decrease
cerebral perfusion below critical levels and the addition
of hypoxia is required to cause brain infarct [20]. Briefly,
pups were anesthetized with isoflurane (4% induction,
2% maintenance) carried by O,. Once they were fully
anesthetized, a midline neck incision was made and the
left common carotid artery was exposed, double ligated
with surgical silk, and cut between two ligatures. The in-
cision was then sutured with monofilament nylon.
Sham-operated animals underwent the same surgical
procedure without the ligation of the carotid artery. The
time length of anesthesia lasted on average 5 min. After
surgery, the rat pups were returned to their home cage
for 1 h to recover. Later, the animals were placed for 1 h
in a hypoxic chamber containing 7.6% oxygen balanced
with nitrogen with controlled humidity and temperature
maintained at 35 °C.

The undamaged hypoxic hemisphere, as well as age-
matched sham-operated animals, served as controls.
Pups from each litter were randomly assigned to four
experimental groups (5 rats per group): (1) control
group (vehicle treatment), (2) control animals (SB treat-
ment), (3) animals which underwent HI (vehicle treat-
ment), and (4) animals which underwent HI (SB
treatment). Animals were sacrificed at specific time
points (12, 24, 48, 72 h and 6 days) after the injury.
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Drug administration

Rats subjected to HI or sham operated were treated once
a day with subcutaneous injections of sodium butyrate
(SB; Sigma-Aldrich; 300 mg/kg body wt) [4] or vehicle
(saline) starting immediately after hypoxic exposure and
lasting up to 5 consecutive days.

Tissue preparation
Six days after HI-anesthetized animals were perfused
transcardially first with phosphate-buffered saline (PBS)
followed by a fixative solution (4% paraformaldehyde,
PFA, in 0.1 M phosphate buffer, pH 7.4). The brains were
removed and submerged in the same fixative solution for
4 h at 4 °C. Following postfixation brains were cryopro-
tected overnight in 30% sucrose solution (in 0.1 M PBS),
frozen rapidly using dry ice, and placed in -80 °C storage.
For biochemical analysis, animals were sacrificed (12,
24, 48, 72h and 6 days after HI) through decapitation
and the whole hemispheres were frozen on dry ice. All
tissue samples were stored at —80 °C until used.

Brain injury evaluation

Hematoxylin-eosin (HE) staining was performed to
evaluate the neuroprotective effect of SB against
ischemia-induced brain damage. Six days after the insult
(at postnatal day 13), the pups were anesthetized with
100 mg/kg ketamine combined with 10 mg/kg xylazine
and perfused. The brains were dissected and frozen on
dry ice. Coronal cryostat sections (20 pm) were stained
with HE and examined using light microscopy.

Immunohistochemistry

The following antibodies (source and final dilution) were
used for tissue staining: mouse monoclonal anti-ED1
(CD68) (AbD Serotec, 1:100), goat polyclonal anti-Arg-1
(arginase-1) (Santa Cruz, 1:250), rabbit polyclonal anti-
IL-1B (Santa Cruz, 1:250), rabbit polyclonal anti-GFAP
(Glial Fibrillary Acidic Protein, DAKO, 1:200), and
chicken polyclonal anti-GFAP (Millipore, 1:200).

Coronal cryostat sections of the brain (30 pm thick)
were cut at the level of the lateral ventricles in serial
order to create 10 series sections. Double fluorescent
immunohistochemistry was performed on free-floating
sections. After blocking for unspecific reactivity, adjacent
series of sections were stained for a specific cell-lineage
marker.

For identification of the type of microglia, we used
markers labeling M1 (ED1/IL-1B) and M2 (ED1/argi-
nase-1) cells. Double labeling was also employed for
monitoring astrocytes expressing IL-1p. Tissue sections
were rinsed in PBS and then incubated in 10% normal
goat serum in PBS containing 0.25% Triton X-100 for
60 min in room temperature (RT). Next, the sections
were washed with PBS and incubated with anti-ED-1 or
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anti-GFAP overnight at 4 °C. The following day, tissue
sections underwent the washing procedure, and the
primary antibodies were revealed by applying appropri-
ate secondary FITC-conjugated antibodies (AlexaFluor,
1:500) for 60 min at room temperature and in the dark.
After this step, the sections were rinsed in PBS and in-
cubated with primary antibodies (anti-Arg-1 or anti-IL-
1B) overnight at 4 °C. The next day, after being rinsed
in PBS, the sections were exposed to appropriate Cy3-
conjugated secondary antibodies (AlexaFluor, 1:500) for
1 h at room temperature. Nuclei were subsequently
labeled with the fluorescent dye Hoechst 33258 (2 pg/ml
PBS; Sigma).

Labeling was verified using a confocal laser scanning
microscope (LSM 780, Carl Zeiss, Germany) using a 10x
or 20x objective. A helium-neon laser (543 nm) was uti-
lized in the excitation of Alexa Fluor 546, while an argon
laser (488 nm) was applied in the excitation of FITC.
Image] software was used for quantitative analysis of im-
munoreactive sections. Five animals per group were ana-
lyzed. Images from five sections per animal were taken,
and the number of positive-labeled cells as well as fluor-
escence intensity was assessed in an area of 1.44 mm?®,

Determination of cytokine expression in brain extracts
Concentrations of chemokines/cytokines were mea-
sured in extracts from brain hemispheres using the
EMD Millipore’s MILLIPLEX® MAP Rat Cytokine/
Chemokine Magnetic Bead assay according to the manu-
facturer’s instructions. The cytokines and chemokines ana-
lyzed included TNFq, IL-1q, IL-1pB, IL-2, IL-4, IL-6, IL-12,
IFN-y, and chemokine CXCL10 (IP-10). The median
fluorescence intensity plates were assayed on a Bio-Plex®
200 Luminex system with Bio-Plex Manager 5.0 software.
The five-parameter logistic method was applied to
estimate cytokine/chemokine concentrations in brain
homogenates.

Quantitative polymerase chain reaction (real-time PCR)
Gene expression of pro-inflammatory (TNF«, IL-1p)
cytokines was evaluated in the brain hemispheres ob-
tained from rats 12, 48 and 72 h after HI. Total RNA
was isolated with TRIzol Reagent, and the quality and
concentration of RNA was verified by spectrophotom-
etry with the Nanodrop™ apparatus. The samples con-
taining 1 pg of total RNA were reverse transcripted
using High Capacity RNA-to-cDNA Kit (Applied Biosys-
tems) according to the manufacturer’s instructions.
Quantitative real-time PCR analyses of cDNA samples
(300 ng) with designed specific primers (Table 1) and
Fast SYBR Green Master Mix (Applied Biosystems) were
performed in 7500 Fast Real-Time PCR System (Applied
Biosystem). Reaction parameters were as follows: (1)
holding stage, 20 s at 95 °C; (2) cycling stage (40x), 3 s
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Table 1 List of designed primers used in reverse transcription and quantitative real-time (RT)-PCR analysis

Gene Forward primer sequence Reverse primer sequence

IL-1B 5"-CACCTCTCAAGCAGAGCACAG-3' 5-GGGTTGCATGGTGAAGTCAAC-3'
TNFa 5"-AAATGGGCTCCCTCTCATCAGTCC-3' 5-TCTGCTTGGTGGTTTGCTACGAC-3'
SDHA 5-CCCTGAGCATTGCAGAATC-3' 5"-CATTTGCCTTAATCGGAGGA-3'

at 95 °C and 30 s at 60 °C; and (3) melt curve stage, 15 s
at 95 °C, 1 min at 60 °C, 15 s at 95 °C, and 15 s at 60 °C.
Each sample was tested in triplicate during two analyz-
ing sessions. The fluorescence signal from specific tran-
script was normalized against that of reference gene
(SDHA), and threshold cycle values (ACt) were quanti-
fied as fold changes by the 27#*“T method.

Western blot analysis

The following antibodies (source and final dilution) were
used for analysis: mouse monoclonal anti-NFkB (Cell
Signaling, 1:1000), rabbit polyclonal anti-p53 (Cell Sig-
naling, 1:1000), rabbit polyclonal anti-HSP70 (Cell Sig-
naling, 1:1000), rabbit monoclonal anti-COX-2 (Cell
Signaling, 1:1000), rabbit polyclonal anti-Bcl-2 (Cell Sig-
naling, 1:1000), rabbit polyclonal anti-Bax (Cell Signal-
ing, 1:1000), and mouse monoclonal anti-actin (MP
Biomedicals, 1:500).

Brain tissues were homogenized in RIPA lysis buffer
(10 mM Tris-HCI pH 7.5 containing 150 mM NaCl, 1%
Nonidet P40, 0.1% SDS, 1% Triton X-100, PMSF 0.1 mg/
ml) and a proteinase and phosphatase inhibitor cocktail
(Life Technologies, 1:100). Lysates were clarified by
centrifugation at 13000 g for 10 min at 4 °C. The super-
natant was collected, and protein concentrations were
determined using a Bio-Rad DCTM protein assay kit
(Bio-Rad). Samples (50 pg protein) were ran on 10-15%
SDS-PAGE gels and transferred onto nitrocellulose
membranes (Amersham Bioscience). After blocking,
membranes were probed with specific primary anti-
bodies and then incubated with horseradish peroxidase-
conjugated secondary IgG antibodies (Sigma-Aldrich).
Immunoblot signals were visualized using ECL chemilu-
minescence kit (GE Healthcare Life Sciences). To verify
an equal loading of protein per line, the B-actin antibody
was used as an internal control for each immunoblotting.
Semi-quantitative evaluation of protein levels detected by
immunoblotting was performed by computer-assisted
densitometric scanning (LKB Utrascan XL, Program GelS-
can). The level of protein immunoreactivity was deter-
mined by frequent analysis of multiple immunoblots.

Quantitative measurement of prostaglandin E2 protein
concentration

To estimate the amount of prostaglandin E2 (PGE2) in
homogenates obtained from the brain hemispheres, the
Prostaglandin E2 ELISA Kit-Monoclonal (Cayman) test

was applied according to the supplier’s instructions.
Frozen hemispheres were homogenized in 1 ml of
0.1 M phosphate buffer (pH 7.4) containing 1 mM
EDTA and 10 pM indomethacin. Homogenates were
clarified by centrifugation at 8000 g for 10 min at 4 °C,
and the supernatant was collected for analysis. Protein
concentrations were determined using a Bio-Rad DC™
protein assay kit (Bio-Rad). After performing the Sand-
wich ELISA assay, the plates were read at 412 nm
using a spectrophotometric plate reader Fluorostar
Omega (BMG LabTech).

Quantitative measurement of caspase-3 activity

To estimate the level of activated caspase-3 in lysates
obtained from both brain hemispheres, the Caspase-3
Fluorescence Assay Kit (Cayman Chemical) was applied
according to the supplier’s instructions. Briefly, the kit
employs a specific caspase-3 substrate, N-Ac-DEVD-
N'-MC-R110, which, upon cleavage by active caspase-3,
generates a highly fluorescent product that is easily
quantified. The fluorescence intensity of each was well
read using a spectrophotometric plate reader Fluorostar
Omega (BMG LabTech; excitation =485 nm, emission
=535 nm).

Statistical analysis

GraphPad PRISM 5.0 software was used for the statis-
tical analysis of the received data. Comparisons between
animal groups were performed using the one-way ana-
lysis of variance (ANOVA) followed by the Bonferroni
post-hoc test for multiple comparisons or Student’s ¢
test. All values are expressed as mean+ SD. The data
were considered significant at p value <0.05.

Results

Sodium butyrate reduces brain damage after neonatal Hi
Both the left and right brain hemispheres of all rats
(sham control, HI with or without SB treatment) were
subjected to histological evaluation at 6 days after the in-
sult (P13). Coronal sections (cut at the level of the lateral
ventricles) stained with HE show the loss of neurons and
signs of cerebral edema with swollen cells throughout
the ipsilateral frontal cortex exclusively (Fig. 1). Admin-
istration of SB immediately after HI provided almost
complete neuroprotection in comparison with non-
treated animals. Neither neuronal loss nor edema was
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ipsilateral

Fig. 1 Sodium butyrate treatment reduces hypoxia-ischemia- induced brain damage in neonates. Seven-day-old rats (PND7) were subjected to
hypoxia-ischemia followed by 6 days of recovery. SB or vehicle was administered directly after the onset of HI and for 5 consecutive days. a Brain
coronal sections from sham control animals and from animals 6 days after hypoxia-ischemia (with or without SB treatment) were stained with
hematoxylin-eosin (HE). b Lower panel represents magnification (100x) of the ipsilateral hemisphere area (marked with rectangles in a). Note the
loss of neurons and signs of cerebral edema in the cortex of ipsilateral hemisphere. Sodium butyrate administration provided almost complete
neuroprotection in comparison with non-treated animals. Photomicrographs are representative of observations made from five animals per group

JHI+SB

ontralateral || ipsilateral contralateralj

observed. Furthermore, the brain slices demonstrated
proper cytoarchitecture.

SB-modified microglial/macrophage and astroglial
response to neonatal Hi

Microglia

To determine the effect of SB administration on cerebral
activation/influx of microglia/macrophages after hypoxia-
ischemia, we performed ED1 staining on the brain sec-
tions of sham-operated, HI, and HI + SB rat pups. The
data presented in Fig. 2 shows numerous ED1-positive
cells in ipsilateral hemisphere at 6 days after HI. Most
microglial cells were round shaped with thick processes
and were considered to be in an activated state. The acti-
vated microglial cells were scattered throughout the entire
cortex and striatum. Contrary, in slices obtained from
control animals, as well as from contralateral hemispheres,
the activated microglial cells were not detected (p < 0.001,
ipsi vs. contra). Sodium butyrate administration resulted
in an increased number of microglial cells to 150% of
vehicle-treated animals in the ipsilateral side.

Next, we examined whether SB promotes the polarization
of microglia from M1- to M2-like phenotype after HI. To
address this, we performed double staining with IL-1f anti-
body coupled with ED1 for the identification of activated
proinflammatory M1 phenotype and ED1/arginase-1 for
anti-inflammatory M2-like phenotype (Fig. 3a, b). Six days
after HI, the majority of ED1-positive cells expressed IL-1
in the cortical region of the ipsilateral hemisphere, with
only a few cells stained positively with ED1/Arg-1. The ad-
ministration of SB after HI led to a marked decrease in the
amount of cells presenting the M1 phenotype of microglia
(HI vs HI + SB, p <0.001) with concomitant enhancement

of cells stained with ED1/Arg-1 specific for M2 type (HI vs
HI + SB, p <0.001).

Astrocytes

Figure 4 shows that 6 days after neonatal HI, the GFAP-
associated fluorescent signal increased in the ipsilateral
hemisphere; however, this elevation was not statistically
significant compared to the contralateral side. Astrocytes
presented an activated phenotype characterized by
hypertrophic processes. SB treatment resulted in an over
twofold elevation in the GFAP staining intensity in the
ipsilateral hemisphere. In addition, the hypertrophy of
astrocytic cells was more pronounced and associated
with inter-digitations of processes that overlapped and
formed glial scars.

We also determined the effect of SB treatment after HI
on the number of GFAP-positive cells co-stained with
cytokine IL-1f antibody (Fig. 5a, b). Our results show that
6 days following HI, a majority of astroglial cells express
IL-1B within the cortex of the damaged ipsilateral hemi-
sphere. The amount of these cells was markedly reduced
upon SB administration (HI vs HI + SB, p < 0.001).

Effect of SB on inflammatory markers

Effect of SB on cytokines

Cytokines IL-1a, IL-1f, IL-2, IL-4, IL-6, IL-12, chemo-
kine CXCL-10, tumor necrosis factor alpha (TNFa),
and interferon-gamma (IFN-y) were measured, and
differences between ipsilateral (hypoxic-ischemic) vs
contralateral (hypoxic) hemispheres, as well as vs sham
control, were compared at 48 h and 6 days after the in-
jury in animals treated with vehicle or SB.
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Fig. 2 Sodium butyrate increases microglial/macrophage cell number in the ipsilateral hemisphere after neonatal hypoxia-ischemia. Seven-day-
old rats (PND7) were subjected to hypoxia-ischemia followed by 6 days of recovery. SB or vehicle was administered directly after the onset of HI
and for 5 consecutive days. Brain sections were stained for ED1 immunoreactivity (red). a Confocal photomicrographs show immunohistochemical
reaction in the frontal cortex of ipsilateral (injured) and contralateral (control) hemispheres with or without SB treatment. Numerous ED1-positive
cells are mainly seen in ipsilateral side, and their number further increases after SB administration. Lower panel represents magnification of the
upper ipsilateral photomicrographs. Scale bar 100 um. b Graph shows the number of ED1-labeled cells quantified in the frontal cortex (1.44 mm?
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area). The values represent means + SD of five animals per each experimental group. The one-way ANOVA and Bonferroni test indicate
significant differences in the number of ED1(+) cells between the investigated groups: ***p < 0.001. IPS/ ipsilateral hemisphere, CONTRA

We found a large individual variation in the cytokine
levels after HI, and not all of them present elevated
levels after HI (Fig. 6). A significantly increased amount
of proinflammatory IL-1a, IL-1B, TNFa, and chemokine
CXCL10 (IP-10) was observed in the ipsilateral hemi-
sphere at 48 h compared to the control one. However,
the degree of significance in the case of TNFa and IL-1a
reached p <0.05, for IL-1p p <0.01, and for the chemo-
kine p <0.0001. It is worth to note that the concentra-
tion of IL-1p and chemokine remained elevated up to
6 days of survival time (p <0.01 and p < 0.05, respect-
ively, HI vs sham control). In contrast, in the contralat-
eral hemisphere, the level of these molecules did not
differ from the controls. SB significantly suppressed
upregulation of the CXCL10 chemokine at 48 h post-
HI (p < 0.001, HI vs HI+SB). The reduction of IL-1f in
the HI hemisphere occurred later, at 6 days of recovery
(p <0.05, HI vs HI + SB). In the case of TNFa and IL-
la, the SB action was expressed only by the tendency
to lessen the concentration of this protein.

No notable differences between hemispheres were ob-
served in IL-2, IL-6, IL-12, IFNy, and anti-inflammatory
IL-4 at 48 h and 6 days post-HI. The expression pattern
of these molecules did not change after SB administra-
tion (data not shown).

To investigate if the pattern of protein concentration
changes of IL-1B and TNFa (Fig. 7) is similar to that
presented by the expression of their messenger RNA
(mRNA), we performed qRT-PCR at different time
points following HI. As shown in Fig. 7, HI insult led
to a remarkable increase in IL-1p (p < 0.05) and TNFa
( <0.01) mRNA level by more than three- and four-
fold, respectively, in the ipsilateral hemisphere 12 h
after HI, when compared with the matching controls.
A significantly elevated level for TNFa mRNA also
remained 48 h after HI (p <0.01), but was reduced to
the control level in the presence of SB (HI vs HI + SB,
p<0.01). This was the only action manifested by the
histone deacetylase inhibitor. At a later time point, the
level of both cytokines decreased and no considerable
changes in gene expression were noticed at 72 h post-
HI, regardless of animal groups.

Effect of SB on COX-2

COX-2 is the rate-limiting enzyme for prostanoid syn-
thesis and an inflammatory marker. The COX-2 protein
expression was determined by Western blotting and
scanning densitometry (Fig. 8 a, b). At 24 h after HI, we
observed only an increasing, however not significant ten-
dency in the hypoxic-ischemic hemisphere. The robust
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Fig. 3 Sodium butyrate promotes the polarization of microglia from M1- to M2-like phenotype after neonatal hypoxia-ischemia. Seven-day-old
rats (PND7) were subjected to hypoxia-ischemia followed by 6 days of recovery. SB or vehicle was administered directly after the onset of HI and
for 5 consecutive days. Sections from ipsilateral hemispheres were stained for ED1 immunoreactivity (red), for arginase-1 (Arg-1), marker specific
for M2 phenotype (green), and for IL-13, marker for M1 phenotype (green). Nuclei were labeled with the Hoechst dye (blue). Six days after HI, the
majority of ED1-positive cells expressed IL-1(3, with only a few cells co-stained with ED1/Arg-1. The administration of SB after HI led to a marked
decrease in the amount of cells presenting the M1 (ED1/IL-1B positive) phenotype of microglia with concomitant enhancement of cells stained
with ED1/Arg-1 specific for M2 type. a Photomicrographs are representative of observations made from 5 animals per experimental group. Scale
bar 100 um. b Graphs show the percent of the ED1(+)/Arg-1(+) and ED1(+)/IL-1B (+) cells versus total pool of ED1-positive cells quantified in the
frontal cortex (1.44 mm? area). The values represent means + SD of five animals per each experimental group. Student’s  test indicates significant
differences in the number of ED1(+)/Arg-1(+) and ED1(+)/IL-1B (+) cells between the investigated groups: ***p < 0.001. IPS/ ipsilateral
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Fig. 4 Sodium butyrate increased the amount of reactive astrocytes in the rat ipsilateral hemisphere after neonatal hypoxia-ischemia. Seven-day-old
rats (PND?) were subjected to hypoxia-ischemia followed by 6 days of recovery. SB or vehicle was administered directly after the onset of HI and for 5
consecutive days. Brain sections were stained for GFAP immunoreactivity (red). a Confocal photomicrographs show immunohistochemical reaction in
the frontal cortex of contralateral (control) and ipsilateral (injured) hemispheres with or without SB treatment. Note the increased amount of
GFAP-positive cells in injured side 6 days after hypoxia-ischemia. SB administration resulted in a significant elevation in the GFAP staining
intensity in the ipsilateral hemisphere in comparison to vehicle-treated animals. Lower panel represents magnification of the upper photomicrographs.
Scale bar 100 um. b Graph shows the GFAP-associated fluorescent signal quantified in the frontal cortex (1.44 mm? area). The values represent means
+ SD of five animals per experimental group. The one-way ANOVA and Bonferroni test indicate significant differences in GFAP fluorescence intensity

between the investigated groups: ***p < 0.001. IPS/ ipsilateral, CONTRA contralateral

HI-induced elevation of COX-2 protein expression in
the ipsilateral hemisphere by about threefolds compared
to that of sham control (p <0.01) was seen at 6 days
after the insult. Administration of SB reduced the immu-
noreactivity level to the value presented by the respective
sham (p <0.01, HI vs HI + SB).

Effect of SB on prostaglandin E,

As shown on Fig. 9, the concentration of PGE2 at 24 h after
HI markedly increased when compared to control (p < 0.05).
The administration of SB had no noticeable impact. Further-
more, the pattern of PGE2 changes remains close to that
presented by COX2. The elevation of COX-2 protein con-
centration in the ipsilateral hemisphere seen at 6 days after
HI remains in agreement with increased PGE2 (p < 0.001).
However, despite that treatment with SB induced a decrease
in COX-2 expression at this time point, it does not influence
the concentration of PGE2 which remains on a high level.

SB treatment modified expression of transcription factors
(NFkB, p53) and HSP70

Subsequently, we checked if SB counteracts the action
of chosen transcription factors: NFkB and p53, and
HSP70.

NFkB

As depicted on Fig. 8 c, d, exposure of 7-day pups to HI
caused significant elevation of NFkB, almost equally in
the both brain hemispheres (ipsi- and contralateral),
compared to the sham control (about 1.5-fold; p < 0.01)
at 24 h of recovery. As a result of SB treatment, the level
of protein returned to the control level and this was the
only noticeable effect of the histone deacetylase inhibitor
action. At the later time points after the injury, the level
of NFkB had the tendency to increase; however, densito-
metric analysis of the respective blots did not indicate
any significant changes between experimental groups.

p53

The level of p53, the apoptosis regulating transcription
factor, was estimated at 24 and 48 h of recovery after HIL.
As shown in Fig. 8 e, f, the insult did not alter signifi-
cantly the immunoreactivity level; however, the trend
was noticed towards higher expression of p53 in the
hypoxic-ischemic hemisphere, compared with the hypoxic
only, contralateral side, as well as with sham control.
Importantly, administration of SB after the onset of HI in
any case did not suppress the expression level of p53.
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HSP70

According to generally accepted data indicating the cor-
relation between HSP induction and resistance to brain
damage, we aimed to evaluate the role of HSP70 as a
potential mediator of the neuroprotective effects of
exogenously administered SB. Figure 8 g, h shows repre-
sentative immunoblots and relative intensity of changes
(quantified by scanning densitometry). The data revealed
that 24 h after HI, the immunoreactivity of HSP70
declined in the ipsilateral side to 80% of control values
(p <0.01, control vs HI). We did not observe any change
in HSP70 expression in this time point in the contralat-
eral hypoxic hemisphere of HI-treated rats. Unexpect-
edly, the administration of SB led to a further decrease
of HSP70 expression (to 69% of control; p < 0.001). An
increased expression of HSP70 after SB injection was

found in both brain hemispheres, compared to respect-
ive vehicle-treated animals, at 6 days of recovery (p<
0.05, vehicle treated vs SB treated).

Effect of SB on pro- and anti-apoptotic proteins

To address the question whether the neuroprotective ac-
tion of SB is associated with an influence on apoptosis
related factors, we assayed the levels of activated
caspase-3, Bax, and Bcl-2.

Caspase 3

Activity of caspase-3 is expressed by the level of fluores-
cence generated upon cleavage of specific caspase-3 sub-
strate (N-Ac-DEVD-N’-R110). As shown in the graph
(Fig. 10), HI induced a significant increase in caspase-3
activity in the ipsilateral hemisphere noticed at 24 and
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48 h of recovery, compared to sham control (p <0.0001
and p < 0.05, respectively). Only a tendency to increase
the activity of caspase-3 was simultaneously observed
within the contralateral hypoxic hemisphere at 24 h after
the insult. There was no effect of HDACi on the activity
of caspase-3 in the injured ipsilateral side.

The assay of Bax and Bcl-2

The levels of pro- and anti-apoptotic proteins Bax and
Bcl-2, respectively, were evaluated by Western immuno-
blotting analyses. Figure 11 shows representative immu-
noblots and relative intensity of changes quantified by
scanning densitometry.

Western blotting for Bax revealed that 24 h after HI,
the level of this pro-apoptotic protein in the ipsilateral
side increased about twofold compared to sham (p <
0.001). Higher than the control level of Bax expression
was also observed at 48 h of recovery (p < 0.05). In con-
trast, at the same time, the expression of Bax protein in
the contralateral hemisphere remained unchanged. SB
injection had no apparent effect on the level of this
protein in the brain; however, a tendency for it to de-
crease in relation to vehicle treatment was observed
(Fig. 11a, b).

As it is shown in Fig. 11c, d, HI significantly increased
the level of Bcl-2 in the contralateral, non-injured side

pronounced at 48 h of recovery, compared to HI hemi-
sphere (p < 0.05). Injection of SB after the injury did not
change the HI-affected immunoreactivity.

Discussion

The principal finding in our present study is that so-
dium butyrate treatment exhibits brain-protective
activity in a neonatal hypoxia-ischemia model. The
protection afforded by SB was expressed by a clear re-
duction of brain damage, suppression of brain edema,
and preservation of brain architecture when analyzed
at 6 days after the onset of hypoxia-ischemia. Further-
more, the effect of SB was associated with substantial
inhibition of HI-induced inflammation. Our findings
remain in general agreement with those reported pre-
viously that deacetylase inhibitors (VPA, TSA, SB) are
neuroprotective in cerebral injury models in adult ro-
dents [3-5]. Our data also agrees with a brief paper
showing neuroprotection following treatment with val-
proate (VPA) after HI in neonatal rat [12].

Neonatal hypoxia-ischemia triggers a series of patho-
physiological processes (including loss of energy, acid-
osis, excitotoxicity, elevation of intracellular calcium,
induction of oxidative stress, inflammation) that result
in a loss of neurons and severe neurological deficits. It is
generally accepted that one of the most important
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pathogenic components of neonatal brain damage is in-
flammation induced by either the production of cytokines
and chemokines followed by leukocyte (including mono-
cytes and macrophages) infiltration or glial activation and
proliferation [21-23]. First of all, it is in agreement that
blocking the inflammatory reaction promotes neuropro-
tection and, in addition, has potential for use in the clin-
ical treatment of ischemic brain injury [21, 24, 25].
Convincing evidence reveals that HDACis, among
VPA, TSA and SB, are efficacious neuroprotective
agents in adult cerebral injury models associated with
inflammation. Administration of these compounds after
the onset of stroke results in a marked reduction of
microglia number, suppression of their activation, and
inhibition of other inflammatory markers, which in
turn lead to improved neuropathological outcome [4,
5]. In contrast to these findings, our results show that
SB treatment of neonatal HI induced a paradoxical sig-
nificant increase in the number of ED1-positive cells
(microglia/macrophages) in the damaged ipsilateral
hemisphere at 6 days after the insult, as compared to
animals treated with vehicle. As demonstrated in the
current study, the majority of ED-1+ cells present a
positive reaction with an established marker of M2

microglia phenotype, arginase-1, mostly pronounced in
the SB-treated rats. It may be speculated that SB facili-
tates conversion of M1l to M2 leading to anti-
inflammatory signalling and, by this, keeps microglia
from acquiring a proinflammatory phenotype, and in
consequence prevents tissue damage, such as that
found in models of AD, MS, and neurodegeneration
[26-28]. This prediction may be reinforced by the par-
allel decrease in the number of ED-1/IL-1B positive
cells observed in our study. The reduced cytokine re-
sponse after SB treatment, despite an increase in the
number of microglia, implies that these cells are not
necessarily damaging and in some conditions may al-
leviate harmful consequences of injury. This hypoth-
esis remains in line with data showing that transition
in the microglial response during recovery from the
proinflammatory (M1) to immunomodulatory and
neurotrophic response (M2) [29-32] and then main-
tenance of endogenous neurogenesis [33—36] may play
a key role in attenuation of brain damage [37]. To
confirm the role of the microglial reaction to HI injury
in the developing brain and, in particular, to define the
time course of M1 to M2 polarization, further studies
will be needed.
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It is commonly known that reactive astrocytosis also
appears to be a part of the hypoxia-ischemia-induced
pathological processes [38, 39]. Consistent with previous
reports [30, 40, 41], we noted a delayed increase in
GFAP expression accompanied with hypertrophy and
cell proliferation in the ipsilateral hemisphere at 6 days
after the insult, implying astrogliosis. The expression of
GFAP was further markedly increased by SB treatment.
However, this increase was associated with the reduction
of cell population co-expressing GFAP and proinflam-
matory IL-1p. It is worthy to note that SB treatment also

led to diminished IL-B production in microglia/macro-
phages at the same time point. This reduction of IL-1p
expression after SB injection in glial cells parallels the at-
tenuation of brain damage. The precise molecular mech-
anism responsible for the effect of SB is not known.
However, apart from the number of biochemical and
morphological factors functioning in concert to influ-
ence the final SB effect, accumulation of GFAP protein
presented here is likely to also contribute to neuropro-
tection after neonatal HI. This may be supported by data
showing that GFAP knock-out mice have a greater
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Fig. 9 The effect of SB on PGE2 concentration in the brain after
neonatal HI. Seven-day-old rats (PND7) were subjected to
hypoxia-ischemia followed by 24 h and 6 days of recovery. SB or
vehicle was administered directly after the onset of HI and for 5
consecutive days (determined by the experimental paradigm).
The PGE2 concentration was determined in the ipsilateral (injured)
hemispheres as well as in the control brains. Graphs represent statistical
analysis of the data from indicated experimental groups: vehicle
control (C), SB-treated control (C + SB), vehicle-treated hypoxia-ischemia
(HI), and SB-treated hypoxia-ischemia (HI + SB). SB application had
no effect on the Hl-induced activation of PGE2 in the Hl ipsilateral
hemispheres. The values represent means + SD from five animals in
each group. The one-way ANOVA and Bonferroni test: *p < 0.05
and ***p < 0.001. C control, ipsi ipsilateral

susceptibility to ischemic injury [42]. Furthermore, ex-
perimental disruption of astroglial scar formation follow-
ing stroke results in an increased spread of inflammation
and increased lesion volume [43]. Although results ob-
tained from adult experiments cannot be directly trans-
ferred and used as explanation for neonatal data due to
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Fig. 10 The effect of SB treatment on caspase-3 activity in the
brain after neonatal HI. Seven-day-old rats (PND7) were subjected
to hypoxia-ischemia followed by 24 or 48 h of recovery. SB or vehicle
was administered directly after the onset of HI and for 2 consecutive
days. Bar graphs represent statistical analysis of fluorescence units
estimated in four experimental groups: vehicle control (C), SB-treated
control (C + SB), vehicle-treated hypoxia-ischemia (HI), and SB-treated
hypoxia-ischemia (HI + SB). SB application had no effect on the
HI-induced activation of caspase-3 in the Hl ipsilateral hemispheres.
The values represent means + SD from five animals. The one-way
ANOVA and Bonferroni test: *p < 0.05, ***p < 0.001, ****p < 0.0001.
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differences in the level of maturation and different ische-
mia model, some hypotheses may be valid in adults as
well as in neonates. Nevertheless, a precise role of en-
hanced astrogliosis seen after SB treatment of neonatal
HI is yet to be determined.

Cytokines are regarded as pro- or anti-inflammatory,
and based on their state and/or concentration, they can
be protective or harmful. Although these proteins can be
found in almost any nucleated cell within the brain, such
as brain endothelial cells or neurons, they are mainly
produced by glial cells or by immune cells, such as
helper T cells. Therefore, in the present study, we
followed the influence of SB administration on the total
content of selected cytokines correlating with the brain
damage. The biological effect of these factors include
stimulation and synthesis of other cytokines and
prompting leukocyte infiltration, which in turn leads to
the induction of neuronal injury mediators and influen-
cing glial expression (see rev [44]). Our results, in gen-
eral accordance with other reports [40], depicted a
considerable alteration in the expression of IL-1q, IL-1f,
TNFq«, and chemokine CXCL10 in the ipsilateral hemi-
sphere at 48 h after HI compared to the control one. In
line with this, we also observed a significant enhance-
ment in IL-1f and TNFa mRNA level estimated 12 h
following the insult. In addition to these early modifica-
tions, IL-1p and chemokine CXCL10 protein expression
presented a delayed increase after 6 days of recovery
suggesting ongoing inflammation. This is in agreement
with reported elevation in mRNA and protein level of
IL-1P even at 14 days after HI [45, 46]. Treatment with
SB suppressed significantly HI-induced upregulation of
chemokine CXCL10 at 48 h and IL-1p at 6 days after
HIL In the case of IL-1a and TNFa, the effect of SB was
presented only by a non-significant decrease in their
level 48 h after the insult, despite a sole, clear reduction
in TNFa mRNA expression in the same condition. Prob-
ably both factors do not play a prominent role in the
protective action mediated by this inhibitor.

The reduction of IL-1B expression presented in our
study seems to be particularly important and strongly sup-
ported by a number of data showing that downregulation
of this cytokine plays a neuroprotective function in the de-
velopment of HI encephalopathy [22, 29, 47, 48]. Accord-
ing to research, the decrease of IL-1f production can
reverse cell swelling, brain edema, and neurologic func-
tion deficiencies induced by HI [49].

Despite the number of reports focusing on the role of
IL-1pB, only a few data are available on the potential role
of chemokines in the development of HIE [50]. It was
found in a neonatal mouse study of HI injury that
mRNA expression of chemokines precedes infiltration of
immune cells into the brain, thus proving their relevance
in the inflammatory response. It is therefore reasonable
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Fig. 11 The effect of SB treatment on pro-apoptotic and anti-apoptotic protein levels in the brain after neonatal HI. Seven-day-old rats (PND7)
were subjected to hypoxia-ischemia followed by 24 or 48 h of recovery. SB or vehicle was administered directly after the onset of Hl and for 2
consecutive days. Figure shows representative immunoblots of pro-apoptotic Bax and anti-apoptotic Bcl-2 protein levels (a, €) in brain hemispheres,
analyzed in four experimental groups: vehicle control (C), SB-treated control (C + SB), vehicle-treated hypoxia-ischemia (Hl), and SB-treated
hypoxia-ischemia (HI + SB). The intensity of each band obtained by Western blotting was quantified by LKB Ultrascan XL software and
normalized in relation to B-actin. Bar graphs (b, d) represent statistical analysis of densitometric data from indicated experimental groups.
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to speculate that the reduction of CXCL10 expression
observed in the present study participates, at least par-
tially, in the beneficial action of SB. On the other hand,
chemokines attract mesenchymal stem cells to home at
the lesion site [51]. Hence, immunomodulatory interven-
tion may have a negative effect upon specific aspects of
neurogenesis and thus brain regeneration. Therefore, the
question arises if the protective abilities will outweigh
the potentially harmful consequences.

It has been suggested that in terms of anti-inflammatory
effects, inhibition of COX-2 and subsequent reduction of
prostaglandin E2 (PGE2) generation, a major downstream
product of COX-2 enzymatic activity, can lead to attenu-
ation of ischemic injury in adult rodents [52—54]. As dem-
onstrated in the current study, SB administration
decreased the HI-induced elevated COX-2 expression in
the damaged ipsilateral hemisphere. This observation may
be related to the reduced level of pro-inflammatory IL-1f
at the same time point, as demonstrated by Neeb et al.
[55]. Unexpectedly, the decreased expression of COX-2
after SB treatment seen 6 days post-HI does not result in
diminished generation of PGE2. Moreover, the fact that
COX-2 and PGE2 levels do not correlate in animal models
of induced inflammation is also an interesting finding
[56]. The lack of this correlation suggests that not COX-2
but COX-1 isoform may be expressed and be responsible

for maintaining the PGE2 production under brain ische-
mia [54, 57-59]. Nevertheless, the reason for SB suppres-
sion of COX-2 and not PGE2 level in our study is unclear
at present and should be explored in the future. Particular
attention should be paid to the complexity of enzymatic
pathways embedded in PGE2 synthesis and degradation,
rather than focusing only on COX-1 and COX-2 concen-
tration. In this context, it is noteworthy that PGE2 under
defined conditions may not only contribute to brain dam-
age but rather affect and modulate neuronal function in a
positive way through the regulation of microcirculation
and synaptic functions [60, 61].

Several findings indicate that inhibitors of histone dea-
cetylases may also modify diverse targets including,
among others, transcription factors such as NF«B and p
53, the HSP family of proteins, and apoptosis-related
genes [4, 62, 63].

A number of reports point to the damaging role of
activated by brain ischemia nuclear factor NF«B. This
is supported by studies showing that inhibition of
NFkB activation after ischemia in adult rodents pre-
vents brain damage in the insulted hemisphere via in-
hibition of cytokine response [64—67]. However, our
findings revealed that following neonatal hypoxia-
ischemia, the expression of NF«kB increased signifi-
cantly in both hemispheres, ipsi- and contralateral,
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despite tissue alterations not being observed in the
hypoxic, uninjured side. Moreover, in both hemi-
spheres, the level of NFkB returned to the control
value after SB treatment. Thus, the question arises
whether the response of NfkB to SB may constitute
part of the defense process against HI-induced damage
in the ipsilateral side. It is worthy to mention that
probably the basal level of NFkB is sufficient for con-
ditions required for neonatal brain development.

An additional suggested factor by which HDACis are
reported to mediate neuroprotection in adult cerebral
injury models includes HSP70 [68-71]. HSP70 besides
functioning as a key member of molecular chaperon sys-
tem has also been assigned an anti-apoptotic function,
although failure to detect protection against apoptosis in
neurons overexpressing HSP70 also has been reported
[72]. Nevertheless, most studies describe increased ex-
pression of HSP70 as a neuroprotective mechanism in
adult rodents after MCAO [3, 73, 74], as well as after
neonatal HI [75]. The suggested influence of HSP70
action includes inhibition of nuclear transcription fac-
tor—NF«kB. In contrast to high expression of HSP70 at
12-48 h found by Van den Tweel [75] in the damaged
HI hemisphere, our present results show significant
reduction of this protein level at the same time point
regardless of exposure to SB. Additionally, the changes
in HSP70 expression observed in our studies do not
parallel alterations seen in the level of NfkB. The
major difference with our study is that we used P7 vs
P12 rats and a different time of hypoxia—60 vs 90 min
of hypoxia insult used by Van den Tweel [75]. The rea-
son for the loss of HSP70 may be due to a low rate of
its synthesis or increased activity of proteases able to
digest HSP70. Also, our results are more clearly in
agreement with Sun et al. [76], showing that HSP70 is
only slightly altered, if at all, in P7 neurons after HIL
Interestingly, SB treatment caused elevation of HSP70
expression in both brain hemispheres 6 days post-HI.
It seems that such delayed response detected in both
hemispheres has to be insult independent. It may be
also considered that induction of HSP70 after SB
treatment may facilitate neuroplasticity during recov-
ery time and improve learning processes [77].

We also tested if SB-induced neuroprotection in the
HI neonatal brain involves changes in the expression of
p53-apoptosis regulating transcription factor. The impli-
cation that p53 plays a role in the response that follows
a hypoxic-ischemic insult stems from the observation
that pifithrin alpha, an inhibitor of p53, decreases the
number of apoptotic cells in the ischemic brain [78]. In
contrast to the robust upregulation of p53 detected in
the adult ischemia model in rodents and inhibition of
p53 protein levels by SB [4], HI induced in neonates
with/or without SB treatment did not show any
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significant effect. Thus, p53 seems to not contribute to
the protective effect of SB.

Finally, our results revealed no apparent effect on
caspase-3 activation, as well as on expression of anti-
apoptotic proteins Bcl-2 and pro-apoptotic Bax. There-
fore, these targets probably do not mediate SB-induced
neuroprotection.

Conclusions

In conclusion, we demonstrated that SB, an inhibitor of
histone deacetylases, has significant neuroprotective
abilities in a model of HI-induced neonatal brain injury.
However, we were incapable of finding the precise
mechanism by which SB exerts its actions. The mecha-
nisms associated with the outcome of SB were not in
agreement with those reported in adult cerebral injury
studies. Nevertheless, the present results imply that
some effects may be mediated by suppression of inflam-
mation. Based on the findings obtained in our laboratory
[10], it is also tempting to speculate that the delayed
neuroprotective action may be mediated in part by in-
creased proliferation and/or neurogenesis.
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