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Competition promotes the 
persistence of populations in 
ecosystems
Tao Wang1, Jinqiao Duan2,3 & Tong Liu4

Competition is one of the most common form in ecological systems, which plays important roles in 
population dynamics. However, the influences of competition on persistence of populations remain 
unclear when space effect is included. In this paper, we investigated a predator-prey model with 
competition and spatial diffusion. Based on pattern formations and time series of populations, we 
found that competitions induce the persistence of populations, which denies competitive exclusion 
principle. Moreover, we testify the robustness of these effects. Our results also suggest that space may 
lead to the emergence of new phenomenon in ecosystems.

Ecological system is an important part of the real world, and populations constitute the ecological system1–3. 
Consequently, study on persistence of populations is one of the most important research fields of ecosystem4,5. 
Previous work showed that different factors have influences on the persistence of populations such as spatial 
motion6,7, time delay8,9 and random environments10,11.

Competition behaviors widely exist in the evolutions of populations, which have great effects on the persistence 
of the populations. One of the most important rules in competition systems is competitive exclusion principle12–15.  
From biological point of view, this principle suggests that two competitive species can not survive at the same time 
or in the same niche. In other words, it implies that competition behaviors play negative roles in the persistence  
of the populations.

Pattern formation in ecosystems is one of the central problems of the natural, social, and technological 
sciences16–21, which can reveal the distribution of the populations and provide useful information for protection 
of the population diversity. In recent ten years, pattern transition in ecosystems has being received more and more 
attention, including the mechanisms, ecosystem functions and so on22–26. In previous work27–29, it was found that 
competition may induce the populations to exhibit rich pattern structures, including mixed state of spotted and 
stripe pattern, labyrinth pattern and spotted pattern.

In this paper, we want to check whether competition behaviors have adverse impact in the persistence of the 
populations when space is included. In particular, we want to show the functions of pattern transition on the  
stability of the populations systems. The paper is organized as follows. We firstly show the pattern formation of the 
populations. Moreover, we reveal that competitions induce the persistence of populations. Additionally, we check 
robustness of persistence induced by competition.

Results
In this part, we show our results based on a predator-prey model in reaction diffusion form (see Method section). 
In the first step, we display the spatial patterns in two cases and reveal the difference in these two cases. In the 
following step, we demonstrated competition would induce the persistence of populations. Finally, we revealed 
that the finding that persistence induced by competition is widely applicable in ecosystems.

Spatial patterns of populations.  Pattern structures may provide some important information on the state 
of the populations including persistence or extinction. Spatial patterns in different types imply different biological  
meanings. Our simulations employ the zero-flux boundary conditions with a system size of 200 ×​ 200 space 
units. Time step is Δ​t =​ 0.0001 and space step is Δ​h =​ 1. And the initial density distributions are random spatial  
distributions of the predator and prey populations. During the simulations, different types of dynamics are 

1College of Science, Shihezi University, Shihezi, Xinjiang 832003, P. R. China. 2Department of Applied Mathematics, 
Illinois Institute of Technology, Chicago, IL 60616, USA. 3Center for Mathematical Sciences, Huazhong University of 
Science and Technology, Wuhan, 430074, P. R. China. 4College of Life Science, Shihezi University, Shihezi, Xinjiang 
832003, P. R. China. Correspondence and requests for materials should be addressed to T.L. (email: betula@126.com)

received: 24 May 2016

accepted: 05 July 2016

Published: 27 July 2016

OPEN

mailto:betula@126.com


www.nature.com/scientificreports/

2Scientific Reports | 6:30477 | DOI: 10.1038/srep30477

obtained and the distributions of predator and prey are always of the similar type. As a result, we can restrict 
our analysis of pattern formation to one distribution (in this paper, we show the spatial pattern of predator 
populations).

In order to declare our results, we show the spatial patterns of populations in two cases: (i) systems (7)-(8) 
without competition; (ii) systems (7)-(8) with competition. We perform a series of numerical simulations of the 
spatially extended systems (7)-(8) in two-dimensional spaces, and the dynamical behavior are represented by 
figures. In the first step, we show the spatial pattern of predator populations in systems (7)-(8) without compe-
tition (see Fig. 1) and the parameter sets are a =​ 1.3, b =​ 0.2, l =​ 1.1, m =​ 0.09 and e =​ 0. From Fig. 1, we can see 
that regular spiral waves emerge after the perturbation of the stationary solutions of the spatially homogeneous 
systems (7)-(8). After a long time, the spiral waves do not break up and stay stable in the two-dimensional space.

In the following step, we show the evolution of the spatial pattern of predator populations with competition 
at t =​ 100, 200, 300 and 1000 in Fig. 2 with e =​ 0.5. After the random conditions, spotted spatial patterns with 
different radius emerge. After some iterations, regular spots with the same radius prevail over the whole domain 
and the dynamics of the system does not undergo any further changes. Compared Fig. 1 with Fig. 2, one can con-
clude that competition in predator populations induces the pattern transition from no-stationary patterns (spiral 
waves) to stationary patterns (spotted patterns).

Competitions induce the persistence of populations.  To see the effects of competition on the persis-
tence of populations, we use time series analysis to show our results. In Fig. 3, we present the average density of 
predator population when there is no competition. For a long time, the density will exhibit a periodic behavior. 
However, the minimum value is too small and the predator population may suffer a high risk of extinction. In the 
real world, populations live in the natural environment and thus they are strongly influenced by abiotic factors 
such as weather and climatic conditions30,31. Under these circumstances, populations will be induced to be extinct 

Figure 1.  Spatial pattern of predator populations as time increases. This figure indicates that spiral wave can 
emerge if there is no competition in predator populations. (a) t =​ 100; (b) t =​ 200; (c) t =​ 500; (d) t =​ 1000. Prey 
populations have the similar pattern structures.
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if their density is smaller than a critical value. To intuitively represent the extinction risk, we give a quantity to 
measure the extinction rate:

Figure 2.  Spatial pattern of predator populations as time increases. This figure indicates that stationary 
pattern in spot form can appear if competition is considered in predator populations. (a) t =​ 100; (b) t =​ 200;  
(c) t =​ 300; (d) t =​ 1000. Prey populations have the similar pattern structures.

Figure 3.  Time series of predator population when there is no competition. This figure shows that predator 
population has an apparent oscillatory behavior and may be in danger of disappearing.
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where nc means the number of points when predator density is smaller than the critical density, and ntotal is the 
total number points we employed. In Fig. 4, we found that the population may extinct if critical value is small. 
That is to say, if the population has spiral wave, then it is apt to die out.

When there is competition in predator population, the density of predator population will keep stable for 
a long time which is shown in Fig. 5. From this figure, we can find that the time series of the spatially aver-
aged values of the population density shows that in the first intervals these values change fast as time increases. 
One can see that at t ≈​ 350, the density of predator population reaches a constant value and the value increases 
much slower. As time further increases, the predator density has almost completely evolved and reaches its stable 
state. Based on time series analysis, we can draw a conclusion that competition may induce the persistence of 
populations.

Robustness of persistence induced by competition.  In the above part, we focused our attentions on 
the deterministic predator-prey system. We want to check that whether persistence of populations induced by 
competition can be found in stochastic environments. By numerical results on systems (18)-(19) (see Method sec-
tion), we find that wave pattern can also be obtained if competition is not considered. Moreover, if critical value 
is small, then the populations may extinct with high rate. However, when competition is taken into account, then 
the population will go towards to stable state. Additionally, we further checked that in predator-prey systems with 
Holling type (such as Holling-II and III), competition can also promote the persistence of populations.

Figure 4.  Extinction rate of predator population as a function of critical value. This figure implies that if the 
population under strong disturbance (i.e. critical value is small), then the population will tend to be extinct.

Figure 5.  Time series of predator population when competition is combined in the systems (7)-(8). This 
figure shows that predator population will tend to a stable state as time is long enough.
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Discussion
In this paper, we investigated a predator-prey model with competition and spatial diffusion. It was found that 
competition may induce the persistence of populations. In the previous work, the studies on two competitive 
species showed that the species can not survive at the same time or in the same niche12–15. Our results suggest that 
competitive exclusion principle does not hold when space is included, which well extend the findings in the fields 
of population dynamics. At the same time, our results imply that space may cause the emergence of new phenom-
enon and thus space should not be ignored in the investigations of ecosystems.

It should be noted that our results are obtained based on a predator-prey model in the reaction-diffusion form. 
In this sense, we need to check that whether our results still hold if predator-prey models in other forms, such as 
cellular automata32. What is more, we also need to use the real data to verify our conclusions which will be well 
discussed in the future study.

For spatial diseases, they may also exhibit pattern transition from no-stationary patterns to stationary pat-
terns, which suggests that the disease may persist as an endemic state6,16. In this case, we need to take measures 
to control the diseases. That is to say, the results obtained in this paper are widely applicable from ecosystems to 
epidemiology.

Method
A predator-prey model.  We give three principal rules on our model:

(1) In the absence of predator populations, prey populations grow logistically with intrinsic rate r and carrying 
capacity K;

(2) Functional response depends on the densities of both prey (U) and predators (V) populations:




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 = +

=
+
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(3) Competitions only occurs in predator populations.
Based on the above rules, we obtain a predator-prey system with a ratio-dependent functional response and 

competitions which is as follows33–35:
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where U, V are prey and predator density, respectively. All parameters are positive constants, R stands for maxi-
mal growth rate of the prey, K carrying capacity, A capture rate, B conversion efficiency, D predator death rate, H 
handling time, and E competition rate. Δ​ =​ ∂​2/∂​x2 +​ ∂​2/∂​y2 is the usual Laplacian operator in two-dimensional 
space and D1, D2 are prey and predator diffusion coefficients.

For sake of calculations, taking
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we arrive at the following equations containing dimensionless quantities (V is replaced by p):
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Emergence of spatial patterns.  Denote E*​ =​ (n*​, p*​) as the positive equilibria of systems (7)-(8). By lin-
ear analysis, we have the linear equations of systems (7)-(8):

∂
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Following the methods in refs 36 and 37, we let:
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= + →⁎n n n r t( , ), (11)

and

= + →⁎p p p r t( , ), (12)

into the systems (7)-(8) and assume < ⁎n n  and < ⁎p p . The initial conditions are assumed as: = →
=

n l r( )t 0
 

and = →
=

p z r( )t 0
, where the functions →l r( ) and →z r( ) decay rapidly for →→ ± ∞r . Following the standard 

approach, we perform a Laplace transformation of the linearized equations over the two independent variables →r  
and t. For →r  we use the so-called two-sided version of the transformation. The relations for the forward and 
backward transforms are
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where s and q are complex variables. After this transformation, the kinetic equations read

− − − =s a d q n a p L q( ) ( ) (15)sq sq11 1
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where L(q) and Z(q) are the transforms of →l r( ) and →z r( ). As a result, we obtain the denominator:
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The condition for a spatial mode q (in one- or two-dimensional space) to be unstable and thus grow into  
spatial patterns is that Re(s) >​ 0.

A predator-prey model with stochastic factors.  When combined with noise term, the original spatially 
extended model (7)-(8) is written as the following system:
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where η(r, t) is the noise term introduced additively in space and time, which is the Ornstein-Uhlenbech process 
that obeys the following stochastic partial differential equation38,39:
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where ξ(r, t) is a Gaussian white noise with zero mean and correlation,

ξ =r t( , ) 0, (21)
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The colored noise η(r, t), which is temporally correlated and white in space, satisfies
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where τ controls the temporal correlation, and ε measures the noise intensity.

References
1.	 Abrams, P. A. & Ginzburg, L. R. The nature of predation: prey dependent, ratio dependent or neither? Trends Ecol. Evol. 15, 337–341 

(2000).
2.	 Hengeveld, R. Dynamics of Biological Invasions. Chapman and Hall, London (1989).
3.	 Murray, J. D. Mathematical Biology II: Spatial Models and Biomedical Applications. Springer, New York (2003).
4.	 Petrovskii, S., Li, B.-L. & Malchow, H. Transition to chaos can resolve the paradox of enrichment. Ecol. Complex. 1, 37–47 (2004).
5.	 Sherratt, J. A., Lambin, X. & Sherratt, T. N. The effects of the size and shape of landscape features on the formation of traveling waves 

in cyclic populations. Am. Nat. 162, 503–513 (2003).



www.nature.com/scientificreports/

7Scientific Reports | 6:30477 | DOI: 10.1038/srep30477

6.	 Sun, G.-Q. Pattern formation of an epidemic model with diffusion. Nonlinear Dyn. 69, 1097–1104 (2012).
7.	 Reichenbach, T., Mobilia, M. & Frey, E. Mobility promotes and jeopardizes biodiversity in rock-paper-scissors games. Nature 448, 

1046–1049 (2007).
8.	 Sun, G.-Q. et al. Effects of time delay and space on herbivore dynamics: linking inducible defenses of plants to herbivore outbreak. 

Scientific Reports 5, 11246 (2015).
9.	 Li, L., Jin, Z. & Li, J. Periodic solutions in a herbivore-plant system with time delay and spatial diffusion. Applied Mathematical 

Modelling 40, 4765–4777 (2016).
10.	 Bjornstad, O. N. & Grenfell, B. T. Noisy clockwork: time series analysis of population fluctuations in animals. Science 293, 638–643 

(2001).
11.	 Reichenbach, T., Mobilia, M. & Frey, E. Noise and correlations in a spatial population model with cyclic competition. Phys. Rev. Lett. 

99, 238105 (2007).
12.	 Wilson, E. O. Sociobiology. Harvard University Press, Cambridge, MA (1980).
13.	 Begon, M., Harper, J. L. & Townsend, C. R. Ecology, Individual, Populations and Communities. Blackwell Scientific Publications, 

Cambridge, Massachusets (1990).
14.	 Tilman, D. Diversity and production in European grasslands. Science 285, 1099–1100 (1999).
15.	 Potapov, A. B. & Lewis, M. Climate and competition: the effect of moving range boundaries on habitat invasibility. Bull. Math. Biol. 

66, 975–1008 (2004).
16.	 Li, L. Patch invasion in a spatial epidemic model. Applied Mathematics and Computation 258, 342–349 (2015).
17.	 Baurmann, M., Gross, T. & Feudel, U. Instabilities in spatially extended predator-prey systems: spatiotemporal patterns in the 

neighborhood of Turing-Hopf bifurcations. J. Theor. Biol. 245, 220–229 (2007).
18.	 Sun, G.-Q., Zhang, G., Jin, Z. & Li, L. Predator cannibalism can give rise to regular spatial pattern in a predator-prey system. 

Nonlinear Dyn. 58, 75–84 (2009).
19.	 Segel, L. A. & Jackson, J. L. Dissipative structure: An explanation and an ecological example. J. Theor. Biol. 37, 545–559 (1972).
20.	 Sun, G.-Q. et al. Influence of time delay and nonlinear diffusion on herbivore Outbreak. Commun. Nonlinear Sci. Numer. Simulat. 

19, 1507–1518 (2014).
21.	 Sun, G.-Q. et al. Pattern formation of a spatial predator-prey system. Applied Mathematics and Computation 218, 11151–11162 (2012).
22.	 Rietkerk, M. & van de Koppel, J. Regular pattern formation in real ecosystems. Trends Ecol. Evol. 23, 169–175 (2007).
23.	 Sun, G. Q. et al. Spatial patterns of a predator-prey model with cross diffusion. Nonlinear Dyn. 69, 1631–1638 (2012).
24.	 Kefi, S. et al. Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. Nature 449, 213–217 (2007).
25.	 Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).
26.	 Lade, S. J. & Gross, T. Early warning signals for critical transitions: a generalized modeling approach. PLoS Comput. Biol. 8, e1002360 

(2012).
27.	 Sun, G.-Q. Mathematical modeling of population dynamics with Allee effect. Nonlinear Dyn. 85, 1–12 (2016).
28.	 Wu, Y.-P., Feng, G.-L. & Li, B.-L. Interactions of multiple atmospheric circulation drive the drought in Tarim River Basin. Sci. Rep. 

6, 26470 (2016).
29.	 Wu, Y., Shen, Y. & Li, B. L. Possible physical mechanism of water vapor transport over Tarim River Basin. Ecol. Complex. 9, 63–70 

(2012).
30.	 DeBach, P. The role of weather and entomophagous species in the natural control of insect populations. J. Econ. Entomol. 51, 

474–484 (1958).
31.	 Dempster, J. P. The natural control of populations of butterflies and moths. Biol. Rev. Cambridge Philos. Soc. 58, 461–481 (1983).
32.	 Durrett, R. & Levin, S. A. The importance of being discrete (and spatial). Theor. Popul. Biol. 46, 363–394 (1994).
33.	 Wang, M. X. Stationary patterns for a prey-predator model with prey-dependent and ratio-dependent functional responses and 

diffusion. Physica D 196, 172–192 (2004).
34.	 Peng, R., Shi, J. P. & Wang, M. X. Stationary pattern of a ratio-dependent food chain model with diffusion. SIAM J. Appl. Math. 67, 

1479–1503 (2007).
35.	 Sun, G.-Q., Wu, Z.-Y., Jin, Z. & Wang, Z. Influence of isolation degree of spatial patterns on persistence of populations. Nonlinear 

Dynamics 83, 811–819 (2016).
36.	 Henry, B. & Wearne, S. Existence of Turing instabilities in a two-species fractional reaction-diffusion system. SIAM J. Appl. Math. 

62, 870–887 (2002).
37.	 Kuznetsov, S. P., Mosekilde, E., Dewel, G. & Borckmans, P. Absolute and convective instabilities in a one-dimensional brusselator 

flow model. J. Chem. Phys. 106, 7609–7616 (1997).
38.	 Higham, D. J. An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43, 525–546 (2001).
39.	 Wang, H., Zhang, K. & Quyang, Q. Resonant-pattern formation induced by additive noise in periodically forced reaction-diffusion 

systems. Phys. Rev. E 74, 036210 (2006).

Acknowledgements
This work is supported by the National Natural Science Foundation of China under Grants 31260099 and 
41061004, and Key Technology R&D Program (Grant No. 2014BAC14B02).

Author Contributions
T.W., J.D. and T.L. designed the study, carried out the analysis and contributed to writing the paper, and performed 
numerical simulations.

Additional Information
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Wang, T. et al. Competition promotes the persistence of populations in ecosystems.  
Sci. Rep. 6, 30477; doi: 10.1038/srep30477 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/
 
© The Author(s) 2016

http://creativecommons.org/licenses/by/4.0/

	Competition promotes the persistence of populations in ecosystems

	Results

	Spatial patterns of populations. 
	Competitions induce the persistence of populations. 
	Robustness of persistence induced by competition. 

	Discussion

	Method

	A predator-prey model. 
	Emergence of spatial patterns. 
	A predator-prey model with stochastic factors. 

	Acknowledgements
	Author Contributions
	﻿Figure 1﻿﻿.﻿﻿ ﻿ Spatial pattern of predator populations as time increases.
	﻿Figure 2﻿﻿.﻿﻿ ﻿ Spatial pattern of predator populations as time increases.
	﻿Figure 3﻿﻿.﻿﻿ ﻿ Time series of predator population when there is no competition.
	﻿Figure 4﻿﻿.﻿﻿ ﻿ Extinction rate of predator population as a function of critical value.
	﻿Figure 5﻿﻿.﻿﻿ ﻿ Time series of predator population when competition is combined in the systems (7)-(8).



 
    
       
          application/pdf
          
             
                Competition promotes the persistence of populations in ecosystems
            
         
          
             
                srep ,  (2016). doi:10.1038/srep30477
            
         
          
             
                Tao Wang
                Jinqiao Duan
                Tong Liu
            
         
          doi:10.1038/srep30477
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 Macmillan Publishers Limited
          10.1038/srep30477
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep30477
            
         
      
       
          
          
          
             
                doi:10.1038/srep30477
            
         
          
             
                srep ,  (2016). doi:10.1038/srep30477
            
         
          
          
      
       
       
          True
      
   




