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The type 2C protein which belongs to the major group of protein phosphatases (PP2C) plays a vital role in abscisic acid (ABA)
signaling and signal transductions processes. In the present study, 131 PP2C genes were identified in total in Brassica rapa and
categorized into thirteen subgroups based on their phylogenetic relationships. These B. rapa PP2C are structurally conserved
based on amino acid sequence alignment, phylogenetic analysis, and conserved domains. Moreover, we utilized previously reported
RNA-sequence data on various tissues (root, stem, leaf, flower, and silique), which suggests overlapping expression pattern in 29
paralogous gene pairs. The qRT-PCR validation of 15 paralogous gene pairs depicts distinct expression patterns in response to
various abiotic stresses, such as heat, cold, ABA, and drought. Interestingly, stress-responsive BraPP2C candidate genes were also
identified, suggesting their significance in stress-tolerance mechanism in B. rapa. The evolutionary analysis for 15 paralogous gene
pairs suggested that only three pairs have the positive selection and remaining were purifying in nature. The presented results of
this study hasten our understanding of the molecular evolution of the PP2C gene family in B. rapa. Thus, it will be ultimately
helping in future research for facilitating the functional characterization of BraPP2C genes in developing the abiotic stress tolerant
plants.

1. Introduction

In cellular signaling, the reversible protein phosphorylation
catalyzed by protein kinases (PKs) and phosphatases (PPs)
is known to participate in critical processes [1]. In plants,
the reversible protein phosphorylation is one of the critical
modification processes, which helps in the regulation of
some important physiological and biochemical reactions.The
PPs provide modulations of protein phosphoregulation by
reversing the action of PKs. The PPs can be categorized
into two major classes, such as protein tyrosine phosphatase
(PTPs) and protein serine/threonine phosphatases (PSPs)
based on the substrate specificity [2]. Moreover, most of the
PSPs are further subcategorized into two groups; group one
includes protein phosphatase 1 (PP1), PP2A, PP2B, PP4, PP5,
and PP6, while group two contains protein phosphatase M

(PPM), including the PP2C and also pyruvate dehydrogenase
phosphatases [2].

From prokaryotes to higher eukaryotes, the PP2C are
evolutionarily conserved and mostly found in archaea, bac-
teria, fungi, plants, and animals [3, 4]. Furthermore, it acts
as a negative modulator of PKs cascades activated and then
implicated in regulating stress-signaling pathways. Like PKs,
PPs also share a crucial role under various stress conditions
and might be pivotal at different developmental stages of
plants and signal transduction processes. Particularly in
Arabidopsis and Brassica rapa recently, several groups of the
researcher are engaged by deciphering the involvement of
different kinases against biotic and abiotic stress networks
such as MAPKs [5, 6], CDPKS [7, 8], and CIPKs [9, 10].
For instance, temperature (high and low) stresses are the
major environmental factor that limits crop productivity in
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vegetable production [11, 12]. Generally, during cold treat-
ment in which plants adjust their metabolism are considered
as cold acclimation. To date, several studies highlighted the
importance of PP2C that may play pivotal roles in various
processes, including both biotic-abiotic stress factors and
plant development [13, 14]. In plants, PP2C members have
been described as a regulator of desiccation tolerance and
act as a negative regulator in the ABA-signaling pathway
[15–17]. For example, in moss, the only two PpABI1A and
PpABI1B belonging to subfamily A of PP2C are known to
induce desiccation tolerance in vegetable and are directly
involved in ABA signaling [18]. In addition, drought stress
considerably affects the crop productivity with an ultimate
decline of photosynthetic assimilates, due to the osmotic
stress-imposed constraints. Plants can utilize adaptive strate-
gies against drought stress, such as escape, avoidance, and
tolerance [19]. The validation of maize ZmPP2C-A10 by
transgenic studies has confirmed its negative regulation in
drought stress tolerance [20]. In particular, the two PP2C
genes encoding ABA-insensitive mutants (abi1-1 and abi2-1)
are known to partake in the various physiological processes
after exposure to abiotic stimuli, including salt, drought, and
freezing [21–24]. Plant development and freezing tolerance
were accelerated by downregulation of PP2CA genes and the
antisense mediation [25]. Hence, for a better understanding
of protein phosphatases and their functional significance, the
identification of PP2C provides a stepping stone in stress-
signaling pathways.

Brassica rapa, a diploid species, share a complex his-
tory with model plant Arabidopsis and has experienced
two main duplication events such as (WGD 𝛼 and 𝛽) and
additional one whole-genome triplication event (WGT 𝛾)
13–17 million years ago (MYA) [26, 27].Thus, the B. rapa due
to WGT event has experienced considerable fractionation
in the genome (i.e., duplicate gene loss); as a result, it
presents to us an opportunity for PP2C genes to study its
evolutionary implications. In this study, all the PP2C genes
through various approaches were isolated from Arabidop-
sis and B. rapa and their phylogenetic relationships were
conducted to categorize them into multiple subgroups. In
addition, we comparatively analyzed PP2C genes from ten
representative plant species, including one of the earliest
angiosperm plant Amborella trichopoda, Populus trichocarpa,
Vitis vinifera, Capsella rubella, Citrus sinensis, Carica papaya,
Solanum lycopersicum, Fragaria vesca, Arabidopsis lyrata, and
a bryophyte (Physcomitrella patens), the earliest sequenced
land plant [28].

We further compared the PP2C genes between B. rapa
and Arabidopsis, to explore and identify both shared and
specific subgroups. Following the gene structure organization
analysis, conserved protein motifs, cis-elements, and inter-
action network, we traced paralogous gene pairs and their
evolutionary divergence that likely resulted in the expansion
of the PP2C gene family. To shed a light of some critical
BraPP2C genes on their associated indigenous functional
role were further exposed to heat, cold, ABA-signaling, and
drought stress conditions. Additionally, the transcriptional
profiling of the BraPP2C genes for various tissues and qRT-
PCR analysis of 15 paralogous gene pairs were analyzed

and compared. In both eukaryotes and prokaryotes, the PPs
are vital in both diverse signaling pathways and kinase-
counteracting components. Indeed, for phosphatases,most of
the functionally characterized literatures have been studied
in Arabidopsis, and minimal studies have been done in
crop plants. Therefore, to our knowledge, this is the first
systemic reported genome-wide and transcriptional profiling
of the PP2C genes in B. rapa, and it is affirmative to carry
out a comprehensive study to understand the regulation of
phosphatases in B. rapa during stress and development.

2. Materials and Methods

2.1. Data Resources for Sequence Retrieval. For identification
of PP2C genes in Brassica rapa, we utilized the Plaza 4.0 data-
base (https://bioinformatics.psb.ugent.be/plaza/) with the
help of InterPro PP2C domain “IPR001932”. The B. rapa ge-
nome sequences were downloaded from BRAD (http://
brassicadb.org/brad/) [29], and A. thaliana sequences were
retrieved from TAIR (http://www.arabidopsis.org/). The
sequences of others species were downloaded from Phyto-
zome v12.1.6 (https://phytozome.jgi.doe.gov/pz/portal.html)
[30]. The domains of obtained BraPP2C proteins were also
further verified using NCBI-Conserved Domain database
(https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi)
search program and SMART databases (http://smart.embl-
heidelberg.de/) [31].Those proteins which lack PP2Cdomain
were removed from further analysis. In addition, protein
sequences that were found with obvious errors in their gene
length or having less than 100 lengths were eliminated.

2.2. Multiple Sequence Alignment and Phylogenetic Analysis.
Theamino acid sequences of the BraPP2C proteins were used
for further investigation, and multiple sequence alignment
was performed by MUSCLE [32] using MEGA 7 software
with the default options [33]. The phylogenetic trees were
constructed using the maximum likelihood (ML)method. To
determine the reliability of resulting tree, bootstrap values of
1000 replications were performed with the Jones, Taylor, and
Thornton amino acid substitution model (JTT model), while
keeping the other parameters as a default.

2.3. Calculation of the Ka/Ks for BraPP2C Paralogous Gene
Pairs. The Ka/Ks ratios were calculated for BraPP2C paral-
ogous gene pairs using MEGA 7.0 [33]. The divergence time
among the paralog pairs was calculated with the following
formula: T = Ks/2r, where Ks represents the synonymous
substitutions per site and r is the rate of divergence. For
dicotyledonous plants, specifically B. rapa, the assumption is
1.5 synonymous substitutions per site of 108 years [34].

2.4. Conserved Motifs, Exon-Intron Structure Analysis, and
Physicochemical Parameters of BraPP2C Proteins. Conserved
motif scanning of BraPP2C proteins was carried out through
local MEME Suite Version 5.0.2. For this purpose, parameter
settings were calibrated as follows: maximum number of
motifs 10, with a minimum width of 100 and a maximum
of 120. The other parameters were set as default [35]. For
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the exon-intron structure, we used the Gene Structure Dis-
play Server (GSDS 2.0) (http://gsds.cbi.pku.edu.cn) [36].The
physicochemical properties of the proteins, including molec-
ular weight (MW), isoelectronic points (pI), and GRAVY val-
ues for each gene, were calculated using the ExPASY PROT-
PARAM tools (http://web.expasy.org/protparam/). The sub-
cellular localization was predicted using the WOLF PSORT
(https://wolfpsort.hgc.jp/) website.

2.5. Cis-Elements Predictions and Interaction Network of
BraPP2C. Every BraPP2C promoter sequence (selected as
2000 upstream bp) was imported in Generic File Format
(GFF) file from the B. rapa genome. Then, PlantCARE
database (http://bioinformatics.psb.ugent.be/webtools/plant-
care/html/) [37] was utilized to identify the cis-regulatory
elements for promoters of each gene.The interaction network
of BraPP2C proteins was constructed with the help of
STRING software (https://string-db.org/).

2.6. Chromosomal Location and Paralogous Gene Pairs Iden-
tification of BraPP2C. The chromosomal location BraPP2C
genes were illustrated from top to bottom concerning their
position in the genome annotation using Mapchart [38].
For synteny gene analysis, the relationships were verified
between the homologs of A. thaliana and subgenomes
of B. rapa (LF, MF1, and MF2) obtained from BRAD
(http://brassicadb.org/brad/searchSynteny.php). Further-
more, the paralogous genes were identified either select-
ing genes pair between LF1 and MF1 or MF1 and MF2
subgenomes of Brassica rapa, respectively. Circos program
was applied to demonstrate the syntenic relationships among
the chromosomes of B. rapa and A. thaliana [39].

2.7. Pearson Correlation Analyses. Pearson correlation (PCC)
analysis was performedwith the help of Excel 2013 to evaluate
the PCC values of the RNA-seq and the paralogous genes that
were used for qRT-PCR [40].

2.8. Plant Material and Treatments. In the present study,
the germinated seeds of Chinese cabbage (Chiifu-401-42)
were grown in plastic pots containing a mixture of soil and
vermiculite (3:1). The pots were then placed in an artificial
growth chamber for five weeks. The growth conditions were
as follows: the temperature was set to 24/16∘C, the pho-
toperiod was 16/8 h, and the relative humidity was 65–70%.
Specific treatments were provided to the seedlings as follows:
for heat and cold treatments, seedlings were exposed to 38∘C
and 4∘C, respectively. For ABA and drought stress treatment,
the seedlings were cultured in a nutrient solution medium
with 100𝜇Mand6000PEG (w/v). All treatments were carried
out in continuous time intervals of 1, 6, and 12 h, respectively,
with biological triplicates. After that leaf samples were quickly
frozen in liquid nitrogen and stored at −80∘C for further
use.

2.9. RNA Isolation and Transcriptional Profiling of BraPP2C
under Various Stresses. Total RNA was isolated from the
treated frozen leaves with Trizol (Invitrogen) following the

manufacturer’s instructions. RNA was reverse-transcribed
into cDNA using the Primer Script RT reagent kit (TAKARA,
Dalian China) according to their instructions. Specific
primers were designed using Becan Designer 7.9 and are
presented in Table S1. In order to check the specificity of
the primers, we used the BLAST tool against the B. rapa
genome for confirmation. RT-PCR was performed according
to the guidelines of previous studies [41]. Relative fold
expression was calculated with the comparative Ct-method.
The expression patterns of all BraPP2C genes were analyzed
based on a previous study [42]. Furthermore, gene expression
levels were quantified by FPKM (fragments per kilobase
of transcript per million fragments mapped) values, and
heat maps were generated using an online omicshares tool
(http://www.omicshare.com/).

3. Results

3.1. Characterization of BraPP2C Gene Family Members.
In the present study, we identified 131 putative BraPP2C
genes in B. rapa genome and were denoted as BraPP2C1
to BraPP2C131, based on phylogenetic analysis and their
orthologous positions with Arabidopsis. The physicochem-
ical feature of the BraPP2C proteins along with some
key information of all the identified BraPP2C is provided
in Table S2. The results of sequence analysis exhibited
that the length of the BraPP2C proteins varied with a
ranged from 102 (BraPP2C1) to 1465 (BraPP2C63) bp, with
an average of 412.37 (aa). The detailed information of
BraPP2C, including molecular weights (MW), theoretical
isoelectric point (pI), the grand average of hydropathicity
(GRAVY), and exon number ranged from 11.76 (BraPP2C27)
to 160.43 (BraPP2C63) kDa, -0.777 (BraPP2C59) to 0.001
(BraPP2C41), 4.36 (BraPP2C85 to 9.37 (BraPP2C117), and
1 (BraPP2C73) to 21 (BraPP2C21), respectively. The sig-
nificant variations reflect their functional diversity among
BraPP2C,while the negative value ofGRAVY further demon-
strated that these proteins were unstable and hydrophilic
in nature. Moreover, we analyzed the values of pI, GRAVY,
and exon number, as shown in (Supplementary Figures
1, 2, and 3), respectively. The subcellular localization was
predicated, and results proposed that most of the BraPP2C
proteins were localized in mitochondria, cytoplasm, nuclei,
chloroplasts, plasma membranes, endoplasmic reticulum,
and vacuoles (Table S2). The gene structure analysis of
BraPP2C revealed that the exon number of each BraPP2C
gene ranged dramatically from 1 to 19 (Figure S4). Majority
of BraPP2C genes consisted of only one exon; the rest of
others showed significant variations, whereas BraPP2C32
possesses 19 exons, suggesting that both exon loss and gain
occurred in BraPP2C gene family. Alongside, we systemat-
ically discovered the distribution of conserved motifs and
their logos by online MEME server. A total of ten different
consensus motifs were obtained in all of the BraPP2C
proteins, and their distribution patterns are presented in
Figures S5 and S6. Hence, during the evolutionary process,
the BraPP2C demonstrated the extreme conservation within
subgroups.
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Figure 1: Chromosome locations of PP2C were obtained from the GFF file and displayed using Mapchart. The ancestral karyotypes are
marked in different colors.

3.2. Chromosome Distribution and Syntenic Gene Collinearity
Analysis. The physical chromosomal locations on B. rapa,
across all ten chromosomes (Br01–Br10), were determined
by the Mapchart software. The 126 BraPP2C genes were
dispersed across all ten chromosomes, ranging from 7 to 19
per chromosome, out of which 5 genes were found on the
scaffold region (Figure 1). On each chromosome, the number
of BraPP2C varies drastically; the largest number of BraPP2C
family members was observed on chromosomes Br05 with
19 genes, followed by Br03 with 18 genes, whereas the least
numberswere revealed on chromosomes Br04 andBr07; each
contains 7 genes, respectively. Among these BraPP2C, five
genes (BraPP2C28,BraPP2C68,BraPP2C80,BraPP2C83, and
BraPP2C111) were present on the genomic scaffold. These
results suggest the uneven distribution patterns of BraPP2C
across ten different chromosomes. Based on a previously
reported study, 24 ancestral genomic blocks (GBs) were
reconstructed [27]. The color-coding for these block were
slightly modified according to their position in a proposed

ancestral karyotype (AK1-07) [27, 43]. The majority (18.18%)
of BraPP2C genes were clustered in the AK5 region, followed
by AK1 and AK2 (16.88%), whereas minimum genes (6.49%)
were clustered in AK7 region (Figure 1).

The collinear relationships of the PP2C gene pairs
between Arabidopsis and B. rapa are shown in Figure 2.
Based on three subgenomes of B. rapa, LF contains more
(42.86%) BraPP2C genes than the MF1 (32.77%) and MF2
(24.37%) subgenomes (Figure S7). In addition, the diver-
gence time of the 29 paralogous pairs was estimated with
the help of MEGA7.0 software by calculating the synony-
mous (Ks) and nonsynonymous substitution rates (Ka).
The results proposed that most of the BraPP2C gene
pairs represented less than 1.00 (Ka/Ks) ratios, suggest-
ing the purifying selection of these genes except three
pairs (BraPP2C58-BraPP2C56, BraPP2C85-BraPP2C86, and
BraPP2C125-BraPP2C127) showed higher than 1.00 values,
indicating positive selection. To estimate the divergence
among these BraPP2C paralogous gene pairs, we calculated
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the values of Ks (Figure S8 and Table S3). The average
divergence time among these paralogous is 12.37 MYA,
suggesting that BraPP2C divergence occurred along with the
Arabidopsis (9.6–16.1 MYA) [6].

3.3. Phylogenetic Analysis of BraPP2CGene and Copy Number
Variations/Gene Retention. To provide an overview of the

evolutionary relationships among subgroupmember of PP2C
between B. rapa and A. thaliana, a comparative phylogenetic
tree was constructed using MEGA7.0 software by adapting
the maximum likelihood approach with 1000 bootstrap
replications (Figure S9). The phylogenetic tree and domain
composition further subcategorized the PP2C into thirteen
subgroups: subgroup A-L and one unclassified. The results
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Figure 3: (a) and (b) The copy number variation and the ratio of PP2C among three subgenomes of B. rapa.

of the tree were consistent with the previously reported
studies in Arabidopsis and rice [44]. Moreover, most of the
BraPP2C clustered together with those from Arabidopsis,
while 128 out of 131 BraPP2C genes are further distributed
among twelve subfamilies (A-L), and the remaining three
(BraPP2C35, BraPP2C60, and BraPP261) BraPP2C genes
cannot be grouped into any subfamilies and were categorized
as unclassified. Most of the PP2C members were found in
two subgroups E and F each with 25 genes, respectively, as
compared to other subgroups. The complete overview and
the distribution patterns among Brassica rapa and various ten
species are described in Table 1.

Following the similar method, we also constructed a phy-
logenetic tree to compare the relationships of PP2C among
Arabidopsis, Amborella trichopoda, Vitis vinifera, Populus
trichocarpa, Capsella rubella, Citrus sinensis, Carica papaya,
Solanum lycopersicum, Fragaria vesca, Arabidopsis Iyarta,
and a bryophyte (Physcomitrella patens). Intriguingly, we
observed diversification within subgroups of almost every
species, which might indicate that different species used
for tree topologies lead to slight variations (Supplementary
Figures S10 and S11).

The copy number of variation and gene retention in
B. rapa and A. thaliana during a Brassica-specific WGT
event was also investigated. Meanwhile, B. rapa genome is
based on three subgenomes and shares the same diploid
ancestor with A. thaliana [26]. For each gene, we identified
its syntenic paralogous and orthologous pairs by utilizing the
Brassica rapa database (BRAD) (Table S4). In particular, we
counted the retention of BraPP2C genes based on subgroups
and by calculating the number of gene copies among three
subgenomes. It was observed that the majority of genes were
found either in a single, double or triple copy. Interestingly,
for subgroup E, only two pairs were found with three copies
and 6 each pair were identified for subgroup D and F with
two copies, whereas the remaining did not show any copy
variation and group F also shows the most number (25) of
genes based on subgenomes comparison (Figures 3(a) and
3(b)). Our findings also revealed that gene retention exhibited
almost with varied results, 15/15 subgroup A, 7/8 subgroup B,

9/9 subgroup C, 16/17 subgroup D, 24/25 subgroup E, 24/25
subgroup F, 9/9 subgroup G, 6/6 subgroup H, 4/4 subgroup
I, 1/1 subgroup J, 6/7 subgroup K, 4/4 subgroup L, and 3/3
unclassified, respectively (Table S4).

3.4. Expression Pattern of BraPP2C in Various Tissues and
the Correlation Networking Analysis of Paralogous Pairs. To
address the divergence and possible involvement of BraPP2C
genes in B. rapa reflected in their growth and development.
The trends of transcriptional profiles across five various
tissues (roots, stems, leaves, flowers, and siliques) were deter-
mined based on previously published RNA-sequence data
[45]. In this study, FPKM values were selected to represent
BraPP2C genes expression and heat maps were constructed
to demonstrate the relative transcriptional profiling of 131
BraPP2C genes in various tissues. The results displayed high
alterations in expression profiling among various subgroups
members of PP2C in B. rapa. Among 131 BraPP2C genes,
BraPP2C1, BraPP2C15, BraPP2C16, BraPP2C17, BraPP2C69,
BraPP2C76, BraPP2C85, and BraPP2C98 showed no expres-
sion and BraPP2C, BraPP2C18-19, BraPP2C27, BraPP2C51,
BraPP2C59-60, BraPP2C91, BraPP2C97, and BraPP2C118
showed slight expression in one of any tissues (Figure 4(a);
Table S5). The rest of the PP2C were expressed in at least two
or more organs. However, few members of BraPP2C were
specifically observed to be selectively expressed in tissue-
specific clustering (Figure 4(b)), such that four of each gene
in flowers and siliques were found and two of them were
observed in the stem. Intriguingly, these genes indicated a
possible role in organ development of B. rapa.

We next investigated the expression trends among 29
paralogous pairs for PP2C genes along with calculated
their Pearson’s correlation coefficient values (Figure S12A;
Table S6). These paralogous pairs exhibited significant
variation in various tissues. The results showed that more
than 20 pairs were highly expressed in all tissues and 13
pairs with higher PCC values (>0.6). Meanwhile, four pairs
(BraPP2C2 BraPP2C1, BraPP2C77 BraPP2C76, BraPP2C85
BraPP2C86, and BraPP2C104 BraPP2C102) showed no cor-
relation values, and four pairs (BraPP2C42 BraPP2C41,
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Figure 4: (a) and (b) Heatmap of expression profiles (in log
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-based FPKM) for PP2C in the five various tissues: root, stem, leaf, flower, and

silique. The expression levels are indicated by the color bar. (b). Venn diagram analysis of the tissue expression of PP2C.
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Figure 5: The ratios of different cis-elements.

BraPP2C60 BraPP2C61, BraPP2C66 BraPP2C67, and
BraPP2C72 BraPP2C71) exhibited a negative correlation.
Also, the clustering image did not show any variability
among various tissues (Figure S12B). Intriguingly, these
results indicated that a possible involvement of BraPP2C
genes during growth by showing an overlapping in expression
patternmight be the basis of crosstalk for signal transductions
pathways and plant improvements. Despite the divergence
in the expression profiles for BraPP2C between paralogous
pairs, suggesting that after duplication in the evolutionary
process, some of these pairs may acquire new functions.

3.5. Analysis of Putative Regulatory Cis-Element in BraPP2C
and Coregulatory Expression Network Analysis. The cis-
elements in promoter regions are closely associated with
gene transcription, and their response to stress as gene
expression is mediated through interaction between cis-
regulatory elements and its cognate transcription factors [46].
Therefore, 2.0 kb upstream sequences were downloaded from
B. rapa database and analyzed using the PlantCARE database
[37]. In the promoter regions of BraPP2C, we identified a
total of 7 common cis-regulatory elements (Figure 5 and
Table S7). The skn-1 motif was responsive for endosperm
expression. MBS is deliberated as an MYB binding site,
which is involved in drought-inducibility. DRE and LTR
are cis-acting elements that are known to control functions
during adverse conditions, such as dehydration, chilling,
and salt stress. Few of the cis-regulatory elements were
actively receptive against hormonal stresses, such as ethylene,
gibberellin, auxin, and salicylic acid. Circadian cis-regulatory
element regulates the circadian rhythm of the plant system.
As shown in Figure 5, the participation of hormones, light,
essential elements, enhancers, stress factors, circadian, and
other regulatory stress factors was higher in BraPP2C genes.
As a consequence, the data suggests the presence of a large
number of conserved cis-regulatory elements that are crucial
in mediating responses to adverse environmental stresses or
stress-related hormones.Though, to prove such assumptions,
a further validation step is required. Moreover, these results

highlighted the stress-responsive disposition of BraPP2C
genes.

For functional studies, gene expression profiling pro-
vides valuable clues, many PP2C have been implicated in
plants against abiotic stress conditions, and the presence of
stress-responsive cis-elements in the promoter region further
suggests their possible involvement in B. rapa response to
different environmental stimuli. Therefore, we investigated
the transcriptional profiles of 15 PP2C paralogous gene pairs
of B. rapa subjected to cold, heat, PEG, and ABA treatments
using qRT-PCR analysis (Figure 6; Table S8). Our results
indicated that the BraPP2C genes showed diversity in their
expression level against four various treatments. Interestingly,
the expression patterns of some genes induced rapidly when
exposed to ABA and drought application. In contrary, some
genes were highly upregulated or downregulated by either
of one or two stresses. Under heat treatment, a dominant
portion of the BraPP2C genes showed highly fluctuated
transcriptional profiling levels, including 30% upregulated
and 70% downregulated genes. The exposure of B. rapa to
cold stress resulted in approximately 54% of upregulated
genes. The transcriptional level was significantly increased
under ABA and drought treatments; most of the genes
were highly 57% and 64% expressed, respectively. Taken
together, the diverse expression pattern of BraPP2C genes
may suggest various roles after exposure to abiotic and
hormone stress conditions. To understand the correlation
and coregulatory network among these paralogous pairs,
we calculated Pearson’s correlation coefficient (PCC) values
based on their relative expression data. For the correlation
network, we make three categories concerning PCC values,
such as more than 0.6 (Highly Positive), less than 0.5 but
greater than 0 (Mild Positive), and negative values with
(Negative) correlation (Figure 7 and Table S9). Heat and
drought stress showed highly positive and closer relationship
by showing (11) PCC values each, while cold stress was found
with a high number of negative (6) PCC values, suggesting
its different nature among the paralogous pairs of BraPP2C
genes.
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Figure 6: Expression analysis of PP2C genes under heat, cold, ABA, and drought stress treatments in B. rapa.

Moreover, we examined the interaction network of
BraPP2C proteins with the help of STRING software. The
BraPP2C proteins were highly correlated with each other in
the interaction network. As shown in Figure S13, most of
the subgroups of BraPP2C exhibited a dense network when
compared with each other. Most of the proteins were highly
located in the center and only a few of them did not interact
with others, which indicated the complexity of the interaction
network. Therefore, this PP2C may involve in the regulation
of many downstream/upstream gene factors by playing a
crucial role in fundamental molecular mechanisms of plants.

4. Discussion

In the plant kingdom, the PP2C gene family is considered
as one of the largest families and has been characterized
in several crop species by utilizing bioinformatics strategies.

Previously, various members of PP2C genes were identi-
fied in maize [47], rice [48], Arabidopsis [49], hot pep-
per [50], banana [51], and Brachypodium distachyon [3].
In this study, a comprehensive genome-wide analysis was
performed, including gene identification, phylogenetic rela-
tionships, evolutionary analysis, chromosomal localizations,
conserved domain motifs, and gene structure organization
analysis. In addition, gene expression patterns of some key
BraPP2C genes were also determined under heat, cold, ABA,
and drought stresses. Herein, a total of 131 BraPP2C genes
were identified. The PP2C genes were further categorized
into 11, 12, or 13 subfamilies depending on the plant species
according to evolutionary analysis. The proportion of PP2C
members was much higher as compared to lower plants.
For this reason, we further isolated the PP2C genes in ten
various species and calculated their number as well, such
as Amborella trichopoda which contains 31 PP2C genes,
Vitis vinifera (48), Populus trichocarpa (155), Capsella rubella
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Figure 8: The proportion of PP2C genes among various species.

(88), Citrus sinensis (127), Carica papaya (38), Solanum
lycopersicum (63), Fragaria vesca (47), Arabidopsis lyrata (73),
and Physcomitrella patens (65) as shown in Figure 8 and
Table S10. As a consequence, a high degree of divergence
was observed between PP2C genes from lower plants to
higher plants, suggesting that it may be correlated with the
complex adaptation to environmental stimuli [52]. Overall,
the number of PP2C genes has remained distinct in each
investigated species, proposing that variation in evolutionary
patterns is occurring, due to gradual changes in rounds
of whole-genome duplication (WGD) and subsequent gene
losses/gains by natural selection constraints.

Notably, gene duplication, being the predominant influ-
encing force for broad expansion of the gene family, upgrades
its biological function and evolutionary processes [53]. Thus,
to study gene family fractionation, a linkage between them
and their morphotypes, B. rapa is an excellent model plant
because it has experienced WGD and an additional WGT
event [26, 27]. Considering the importance of evolutionary
analysis, most of the angiosperms have undergone either
one or multiple polyploidization events [54–56]. As a result,
for duplicated genes, it provides opportunities to diverge in
various evolutionary ways. Subsequently, each of these genes
experienced one of the following three evolutionary fates:

subfunctionalization (the ancestral function is subdivided
between copies), neofunctionalization (one copy acquires a
new function), or nonfunctionalization (one copy becomes
unexpressed or functionless) [57]. Furthermore, we pre-
dicted the pressure of natural selection by calculating the
synonymous (Ks) and nonsynonymous substitution rates
(Ka) and were identified by the MEGA7.0 program. Also,
during evolutionary processes and expansion of genes family,
these indicators are used for the selection history. If the
value of Ka/Ks is lower than 1.00, it represents purifying
selection, Ka/Ks = 1 means neutral selection, and Ka/Ks> 1
means positive selection [7]. In our work, we estimated the
divergence time among the 29 paralogous pairs of BraPP2C
genes. Majority of the BraPP2C paralogous pairs showed less
than 1.00 Ka/Ks ratios, speculating the purifying selection of
these paralogous pairs. On the other hand, only three pairs
show more than 1.00 values, suggesting positive selection.
Moreover, the divergence time of these paralogous pairs of
the BraPP2C genes ranged from 0.03 to 0.84 (Ks values) with
an average mean divergence of 12.37 (MYA). Notably, the
divergence time of BraPP2C paralogous gene pairs was 12.37
MYA, which further intimates that their divergence occurred
during the Brassica and Arabidopsis duplication (9.6–16.1
MYA) [7].
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Plants productivity encounters a severe threat by main-
taining the optimum crop production, due to a wide range of
environmental challenges. Surrounded by various stress fac-
tors, such as heat, cold, ABA, and drought represent themajor
constraint for agricultural crop production. In regulating
plant’ tolerance to multiple abiotic stress factor a well-known
hormone, ABA plays a crucial role. However, in B. rapa, the
role of the core components of ABA signaling against PP2C
genes in responding to various stress conditions is mainly
obscure. Specifically, various members of PP2C group A
(ABI1, ABI2, HAB1, HAB2, AHG1, and PP2CA) resulted into
increase the ABA sensitivity after double and triple mutation,
suggesting the diverse outcome in ABA signaling [17, 58–
61]. Previous studies reported that PP2C regulates positively
against salt tolerance in Arabidopsis and drought in peach
[62, 63] to modulate the stress severity. In Arabidopsis, two
members of PP2C genes were responded differently, such as
AP2C1 expression was strongly induced by cold, drought,
and wounding, but AP2C2 was slightly influenced by these
treatments [64]. These findings highlighted the significance
of critical members of the PP2C gene family in the model
plant Arabidopsis, but their specific functions may be signif-
icantly varied in B. rapa. In the present study, various PP2C
genes showed high striking transcriptional changes followed
by heat, cold, ABA, and drought stresses, indicating that some
of these genes might be pivotal to stress tolerance in B. rapa.
Some of the recent advances in the functional dissection of
PP2C candidate genes uncovered their importance in the
life cycle of Arabidopsis and rice [48, 65], although their
associated roles in B. rapa are mostly unnoticed. Aiming
for achieving gene expression patterns in various growth
phases of BraPP2C, we utilized the previously reported RNA-
sequence data and analyzed the expression profile of PP2C
genes in various tissues (root, stem, leaf, flower, and silique).
Results demonstrated thatmost of theBraPP2C genes showed
a varying response to multiple tissues and some of the genes
were highly expressed in all the tissues or in some cases; it
was negative. However, few genes have shown tissue-specific
expression, such that four genes were commonly identified in
roots and flower and two of them were expressed in the stem
as well, intimating their importance in plant development. In
addition, gene family expansion and the duplication types in
the neofunctionalization or subfunctionalization models are
mainly associated with tissue expression divergence [66–68].
In BraPP2C genes, we also explored the promoter regions for
identification of common conserved cis-regulatory elements.
As to further elucidate the predicated and the possible
functions of BraPP2C genes in transcriptional regulation,
the result represented significant variation among BraPP2C
genes andwasmostly responsive to both biotic-abiotic factors
and plant hormones stresses.

It is indispensable to perceive the fundamental molecular
mechanisms of plants for the adaptability of stress tolerance
and enhancement in crop yield under adverse stress condi-
tions. Therefore, our outcome of the study provides valuable
insight and will serve as a basis for exploring the pivotal role
of BraPP2C genes in the plant against abiotic stresses. It may
also assist to reveal the potential functions of BraPP2C genes
in response to both abiotic and hormone stress conditions.

5. Conclusions

In this study, we identified a total of 131 BraPP2C gene family
members by genome-wide analysis in Brassica rapa genome.
A comprehensive analysis was carried out to study the phy-
logenetic relationships, evolutionary analysis, exon-intron
organization, chromosomal localization, protein structural
features, interaction network analysis, and conserved motifs.
According to the phylogenetic relationships, the BraPP2C
were classified into thirteen subgroups. Moreover, transcrip-
tional profiling revealed BraPP2C candidate genesmight have
participated in the plant stress tolerance particularly to heat,
cold, ABA, and drought stress. These BraPP2C genes can
be utilized to facilitate by functionally characterize them,
laying the foundation for elucidating their specific regulatory
mechanisms and ultimately applying them in molecular
breeding programs of this important vegetable crop. In
summary, the integration of our findings has provided a novel
insight and unique features of BraPP2C genes that may play a
potential role in mediating regulation of signal transduction
and particularly under various stress conditions.
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