
Citation: Chen, Y.-N.; Kao, W.M.-W.;

Lee, S.-C.; Wu, J.-M.; Ho, Y.-S.;

Hsieh, M.-K. Antiviral Properties of

Pennisetum purpureum Extract against

Coronaviruses and Enteroviruses.

Pathogens 2022, 11, 1371. https://

doi.org/10.3390/pathogens11111371

Academic Editor: Cristiano Salata

Received: 17 October 2022

Accepted: 16 November 2022

Published: 17 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pathogens

Article

Antiviral Properties of Pennisetum purpureum Extract against
Coronaviruses and Enteroviruses
Yi-Ning Chen 1,* , Wenny Mei-Wen Kao 2 , Shu-Chi Lee 1, Jaw-Min Wu 1, Yi-Sheng Ho 1 and Ming-Kun Hsieh 3

1 Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan
2 Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
3 Graduate Institute of Microbiology and Public Health, National Chung Hsing University,

Taichung City 40227, Taiwan
* Correspondence: yining@cycu.edu.tw; Tel.: +886-3-265-3538

Abstract: Many severe epidemics are caused by enteroviruses (EVs) and coronaviruses (CoVs),
including feline coronavirus (FCoV) in cats, epidemic diarrhea disease virus (PEDV) in pigs, infectious
bronchitis virus (IBV) in chickens, and EV71 in human. Vaccines and antiviral drugs are used to
prevent and treat the infection of EVs and CoVs, but the effectiveness is affected due to rapidly
changing RNA viruses. Many plant extracts have been proven to have antiviral properties despite
the continuous mutations of viruses. Napier grass (Pennisetum purpureum) has high phenolic content
and has been used as healthy food materials, livestock feed, biofuels, and more. This study tested the
antiviral properties of P. purpureum extract against FCoV, PEDV, IBV, and EV71 by in vitro cytotoxicity
assay, TCID50 virus infection assay, and chicken embryo infection assay. The findings showed that
P. purpureum extract has the potential of being disinfectant to limit the spread of CoVs and EVs
because the extract can inhibit the infection of EV71, FCoV, and PEDV in cells, and significantly
reduce the severity of symptoms caused by IBV in chicken embryos.

Keywords: enterovirus 71; feline coronavirus; infectious bronchitis virus; epidemic diarrhea disease
virus; Pennisetum purpureum; antiviral activity

1. Introduction

Coronaviruses (CoVs) and enteroviruses (EVs) have caused severe diseases with high
morbidity and mortality in humans and animals [1–4]. The ongoing COVID-19 pandemic is
the most recent outbreak of severe acute respiratory syndrome coronavirus (SARS-CoV)-2.
As of August 2022, more than 500 million confirmed cases and 6 million deaths associated
with COVID-19 have been confirmed worldwide, and in Taiwan, more than 4 million
cases and 9000 deaths associated with COVID-19 have been confirmed. The first COVID-
19 outbreak in Taiwan occurred in May 2021, and the second and most severe outbreak
occurred in April 2022 [5]. Animal CoVs, such as feline CoV (FCoV), porcine epidemic
diarrhea virus (PEDV), and infectious bronchitis virus (IBV), also cause severe diseases
with high morbidity and mortality in cats, pigs, and chickens, respectively [6–10]. Feline
infectious peritonitis (FIP), which is caused by a virulent strain of FCoV, can lead to high
fatality and progressive multi-system disorders in young cat populations [6]. PEDV causes
enteric diseases in pigs of all ages, and its clinical manifestations include acute watery
diarrhea, dehydration, and vomiting; it leads to high mortality among nursey piglets,
which causes tremendous losses in the swine industry worldwide [7,8]. IBV, which was
discovered in the 1930s, causes respiratory, reproductive, and renal diseases in chickens of
all ages, and has resulted in significant economic losses in the poultry industry [9,10]. Cases
of EV infection occur throughout the year in Taiwan. Young children infected with EV may
experience complications such as severe neurological diseases or death. The mortality rate
is between 1.3% and 33.3%. In Taiwan, the major species in the genus Enterovirus most
likely to be accompanied by severe complications is enterovirus 71 (EV71) [3,4].
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CoVs have a positive-sense, single-stranded RNA genome that is tightly packed
and has a nucleocapsid (N) protein at the center and an outer lipid envelope. Spike (S),
membrane (M), and envelope (E) proteins are inserted into the outer lipid envelope. The
life cycle of CoVs begins with the binding of the S proteins of CoVs to the receptors on the
surfaces of susceptible cells and the subsequent fusion of the viral and cellular membranes.
After the entry of CoVs, new viral RNA and proteins are transcribed, translated, and
processed by cellular and viral enzymes, including RNA-dependent RNA polymerase
(RdRp), 3-chymotrypsin-like protease (3CLpro), and papain-like protease (PLpro) [11].
EV71 is a nonenveloped virus with a positive-sense, single-stranded RNA genome enclosed
within a pentameric icosahedral capsid, which encodes a polyprotein that is processed
into structural proteins (VP1–VP4) and nonstructural proteins (2A–2C and 3A–3D) by
viral proteases (2Apro, 3Cpro, and 3CDpro) [12]. CoVs and EVs are RNA viruses that
mutate rapidly. Vaccines and antiviral drugs that are effective against a specific variant
may be ineffective against other variants [7,13–15]. Herbal extracts are based on antiviral
mechanisms different from those of vaccines and antiviral drugs and may be more effective
against CoV s and EV constantly emerging variants; thus, herbal extracts are considered
viable prophylactic and therapeutic options to reduce the severity of viral diseases [16–18].
In addition, the cost of using antiviral drugs in economic animals is too high, and the
demand for adding them to feed and drinking water to improve the resistance of animals
to CoVs has become increasingly important.

Napier grass Taishigrass (Pennisetum purpureum Schumach) is highly efficient in its
use of water and nitrogen, and its conversion of light into biomass energy; in addition,
it has a high tolerance to a variety of adverse soil conditions, including high salinity and
waterlogging; these properties allow the grass to grow in the marginal zone of agriculture
cultivation land and yield large quantities of biomass, even in environments with limited
resources [19]. The Agriculture Committee of the Executive Yuan has promoted the culti-
vation of P. purpureum as an energy crop [20]. P. purpureum is also a food source and can
be used in knitting, medicine, papermaking, and biofuel production [21,22]. P. purpureum
is known for its health benefits and has been used in beverages and food production
processing. Studies of feeding, toxicity, gene mutation, hematology, serum chemistry, and
pathology in mice have demonstrated that P. purpureum is non-toxic. P. purpureum extract
is rich in polyphenolic compounds, which can help to scavenge free radicals and inhibits
peroxidation [23]. Polyphenolic compounds, which are promising inhibitors of viruses in
herbal extracts, are small molecules with conjugated fused ring structures and are catego-
rized into flavonoids (flavanols, catechins, anthocyanins) and non-flavonoids (phenolic
acids, tannins, stilbenes) [24]. Dietary polyphenols display immunomodulatory capabilities
involving inflammation control and immune responses [25]. In vitro experiments have
shown that epigallocatechin (EGC), belonging to one of the catechins in the flavonoids of
polyphenols in green tea, inhibits the infection of PEDV in Vero cells [26]. The addition
of green tea byproducts to the feed and drinking water of chickens is associated with a
significant antiviral effect against the H1N1 influenza virus [27]. P. purpureum, like green
tea, contains a high level of polyphenols and may also have antiviral effects. However,
P. purpureum can be grown without the use of pesticides and contains only a small amount
of caffeine. In addition, as a poultry feed, P. purpureum is cheaper than green tea.

We investigated the antiviral properties of the pulverized extract of P. purpureum
against FCoV, PEDV, IBV, and EV71 to determine whether it could act on both CoVs, which
have a lipid envelope, and EVs, which do not have a lipid envelope. The findings may be
useful in determining whether P. purpureum extract is useful in COVID-19 prevention as
the disinfectant of drinking water, feed, and the environment for limiting the spread of
viruses in the human disease control, company animal, poultry and swine industries.
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2. Materials and Methods

2.1. Preparation of Pennisetum purpureum Extract (Heyiya®)

The anaerobic decomposition reaction method was performed at 600 ◦C to 700 ◦C for
1 h to prepare a pulverized crude extract from the fresh fibers separated from the stems
and leaves of P. purpureum. The P. purpureum extract was prepared by HerbRay™ Biotech,
Ltd. (Taipei City, Taiwan) and named Heyiya®. The pH of diluted extract (1×, 1/2×, 1/4×,
1/8×, 1/10×, 1/100×, 1/200×, 1/300×, and 1/600×) was measured by a pH-009(I) pen
type meter (RongZhan).

2.2. Determination of Total Phenolic Content

Folin–Cicalteu’s (F-C) phenol reagent (Sigma-Aldrich, St. Louis, MO, USA) was used
to determine the total phenolic content (TPC) of the P. purpureum extract in the dilution of
1×, 1/2×, 1/4×, 1/8×, 1/10×, 1/100×, 1/200×, 1/300×, and 1/600× according to the
method described previously [28]. Briefly, an aliquot of 20 µL samples was incubated with
100 µL of F-C reagent and 80 µL of a 3% Na2CO3 solution for 20 min. The absorbance values
of optical density (OD) were measured at 765 nm using BioTek Synergy multi-detection
microplate reader (BioTek, Winoosk, VT, USA), and the concentrations of TPC, which were
expressed as mg/L gallic acid equivalent (GAE), were determined by a calibration curve
graph (R2 = 0.9993).

2.3. Cell Lines and Viruses

To test the antiviral properties of the P. purpureum extract on the enveloped CoVs and
non-enveloped EVs, FCoV serotype II FIPV strain NTU156, PEDV strain Pingtung 52, IBV
strain TW-2, and EV-A71 strain 2231 (TW/2231/98) are chosen. Felis catus whole fetus-4
(fcwf-4) cells for FCoV were maintained in Minimum Essential Media (MEM). Vero cells
for PEDV and Rhabdomyosarcoma (RD) cells for EV71 were maintained in Dulbecco’s
Modified Eagle Medium (DMEM). Both media were cultured with 10% fetal bovine serum
(FBS), 100 IU/mL penicillin, and 100 IU/mL streptomycin solution in 5% CO2 at 37 ◦C.
IBV was propagated in 10-day-old embryonated specific pathogen-free (SPE) chicken eggs
(JD-SPF Biotech Co., Ltd., Miaoli, Taiwan) by inoculating the virus into the chorioallantoic
sac of eggs. After the propagation and harvest, the extracellular viruses were collected
by centrifuging at 500×g for 5 min and the intracellular viruses were released via three
frozen-thawed cycles. The virus titer was determined with a 50% tissue culture infectious
dose (TCID50) assay.

2.4. In Vitro Cytotoxicity Assay

Cytotoxicity of the P. purpureum extract was determined by using an MTS assay
(CellTiter 96® AQueous One Solution Cell Proliferation Assay, Promega, Madison, WI,
USA) for measuring the activity of cellular enzymes that reduce the tetrazolium dye to
its insoluble formazan. The assays measured cellular metabolic activity via NAD(P)H-
dependent cellular oxidoreductase enzymes and reflect the number of viable cells present.
The extract was first adjusted to pH 7 using sterile 1N NaOH and then 10-fold serially
diluted to incubate with Fcwf-4 cells or RD cells for 24 h at 37 ◦C. Three hours after the
addition of lysis enzymes into the treated cells to release the color from the cells, OD
at 500 nm was measured (BioTek, Winooski, VT, USA). All assays were performed in
triplicates. Cell viability percentage was calculated as (1 − (ODtest-ODmedia)/(ODDMSO-
ODmedia)) × 100%. Cells treated with 100% DMSO were used as the positive control
(0% reference), and the cells inoculated with DMEM only served as the negative control
(100% reference).

2.5. TCID50 Assay

RD cells, Fcwf-4 cells, and Vero cells were inoculated to 96-well plates in the concen-
tration of 4 × 104 cells in 100 µL per well and reached a confluent monolayer after 24 h of
incubation. Each virus specimen was serially ten-fold diluted into several dilutions. Each
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dilution was put into 8 wells, and in each well, 100 µL of the diluted virus solution was
added. All tests were performed in duplicates. After 3 days of incubation at 37 ◦C with 5%
CO2, the infectivity of viruses was determined by observing the formation of cytopathic
effects (CPE) and the staining of viable cells by 0.5% crystal violet. The cells were fixed first
with methanol for 30 min and then stained with 0.5% crystal violet in methanol for 15 min.
The cells stained with 0.5% crystal violet were not infected with viruses, and the infected
cells were washed away after the staining. The infectivity percentage was calculated as
follows: infectivity% = (number of wells with virus-infected cells/number of wells with
virus-inoculated cells) × 100%. The dilution of virus specimen made the cells in four out
of eight wells infected is TCID50/100 µL, which was calculated as follows: ((infectivity%
at the dilution immediately above 50%) – 50%)/(infectivity% at the dilution immediately
above 50%) – (infectivity% at the dilution immediately below 50%)).

2.6. Virus Inhibition Assay

To determine the antiviral properties of the P. purpureum extract, 20 µL of FCoV, PEDV,
or EV71 was pretreated with 50 µL of 10-fold, 100-fold, or 1000-fold diluted extract at
room temperature for 1 h, 6 h or 12 h. After the designed incubation time, 950 µL of MEM
or DMEM cell media was added to each well. Each reaction mixture was adjusted to
pH 7 by using sterile 1N NaOH and serially 10-fold diluted and each dilution was put
into 8 wells (100 µL/well). All tests were performed in duplicates or triplicates. After
3 days of incubation at 37 ◦C with 5% CO2, the infectivity of viruses was determined by
TCID50/100 µL. Cells treated with viruses without pretreatment of P. purpureum extract
were used as the positive control (PC). Relative TCID50/100 µL of the virus pretreated
with the extract was calculated as follows: log10 (TCID50/100 µL of the virus without
pretreatment of the extract) – log10 (TCID50/100 µL of virus pretreated with the extract).
The inhibition efficacy (inhibition%) was calculated as follows: ((TCID50/100 µL of the
virus without pretreatment of the extract) – (TCID50/100 µL of virus pretreated with the
extract))/(TCID50/100 µL of the virus without pretreatment of the extract) × 100%.

2.7. Antiviral Effect of the P. purpureum Extract against IBV

One-day-old embryonated SPF chicken eggs (JD-SPF Biotech, Miaoli, Taiwan) were
kept in an incubator at 38 ◦C for 9 days, and their viability was checked through candling
before tests. To test the toxicity of the P. purpureum extract, the extract diluted in 1×,
1/10×, 1/100×, and 1/1000× was inoculated into 10-day-old embryonated eggs, and no
concentrations of the extract were toxic to chicken embryos. Briefly, 20 µL of IBV was
pretreated with 50 µL of 10-fold or 100-fold diluted extracts at room temperature for 1 h
or 6 h, and then 950 µL of sterile PBS was added to stop the pretreatment. Three-to-
five embryonated eggs were inoculated with 100 µL of each reaction mixture (1/10–1 h,
1/10–6 h, 1/100–1 h, 1/100–6 h). Eggs inoculated with IBV without the pretreatment of
extract were the IBV control group and the embryos infected with IBV would show the
typical symptoms of stunted growth, hemorrhage, or death. Eggs receiving sterile PBS
were served as negative control (NC). After 3 days of incubation, all eggs were candled
to check embryo viability and then chilled to 4 ◦C for the necropsy examination of the
embryo’s body length and lesions.

2.8. Statistical Analysis

Comparisons of results between the two groups were analyzed using an unpaired
t-test in the GraphPad Prism 8.0.1 program. The results are expressed as mean ± standard
deviation (SD). The p-values of <0.05 were regarded as statistically significance, expressed
as *, p < 0.05; **, p < 0.005; ***, p < 0.001; and ##, p < 0.005.



Pathogens 2022, 11, 1371 5 of 13

3. Results
3.1. Characterization of Pennisetum purpureum Extract

About 300 g of the pulverized crude extract can be acquired from 2 kg of fresh fiber
separated from 10 kg of stems and leaves of P. purpureum. The extract is acidic and
the pH ranged from 5.0 to 5.3. The mean and standard deviation values of TPC were
12,950 ± 755 mg/L GAE calculated in 100-fold to 600-fold dilutions (Table 1).

Table 1. The pH and total phenolic content of Pennisetum purpureum extract.

Extract Dilution pH Total Phenolic Content (TPC)
mg/L Gallic Acid Equivalent (GAE)

1× 5.3 1413.708
2× 5.3 1328.513
4× 5.3 1315.921
8× 5.0 984.228

10× 5.1 916.995
100× 5.1 128.490
200× 5.1 66.128
300× 5.1 39.936
600× 5.0 23.188

The concentrations of TPC were determined by a calibration curve (y = 2.3374 × + 0.0767, R2 = 0.9993) using
Folin–Ciocalteu’s phenol reagent, expressed as mg/L GAE.

3.2. Cytotoxicity of Pennisetum purpureum Extract (Heyiya®)

The toxicity of the P. purpureum extract to RD cells and Fcwf-4 cells, which were
used to maintain EV71 and FCoV, respectively, was determined by MTS assay. Before pH
adjustment, the 100-fold and 1000-fold dilutions of extract were toxic to RD cells and Fcwf-4
cells (Figures 1a and 2a). The low pH of the extract contributed to its cytotoxicity. After the
pH of the extract was adjusted to 7, cytotoxicity was observed only in RD cells treated with
the 100-fold dilution of extract (Figures 1b and 2b). Thus, the P. purpureum extract exhibited
stronger cytotoxicity in RD cells than in Fcwf-4 cells.
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assay: (a) Fcwf-4 cells were treated with 10-fold serial dilutions of original extract (pH 5–5.3). (b) Fcwf-
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Cell viability percentage was calculated as (1 − (ODtest − ODmedia)/(ODDMSO − ODmedia)) × 100%.
Cells treated with 100% DMSO were used as the positive control (0% reference) and cells inoculated
with medium MEM only were served as the negative control (100% reference).

3.3. Antiviral Effect of Pennisetum purpureum Extract (Heyiya®) against EV71

After pretreatment of EV71 with 10-fold serial dilutions (10−2–10−4, log10 dilution
from 2 to 4) of P. purpureum extract for 1 or 6 h at room temperature, RD cells were inoculated
with treated EV71 and the antiviral effect of the extract against EV71 was determined by
TCID50 assay. The 100-fold dilution of P. purpureum extract with 6 h of incubation with
EV71 achieved the highest virus inhibition rate, reaching 99.96% (***, p < 0.001) compared
with no treatment of extract and the extract with 1 h of incubation (Figure 3a). Significantly
reduced EV71 titer was observed in the EV71 pretreated with 100-fold diluted extract for
6 h compared with the EV71 without pretreatment of the extract (*, p < 0.05; Figure 3a). The
relative TCID50/100 µL was calculated by subtracting Log10 TCID50/100 µL of the EV71
without the pretreatment of the extract from Log10 TCID50/100 µL of the EV71 pretreated
with the extract. The largest reduction in viral titer was detected in the EV71 pretreated
with 100-fold diluted extract for 6 h (Figure 3b). Individual values are presented in Table S1
in “Supplementary Materials”.

3.4. Antiviral Effect of Pennisetum purpureum Extract (Heyiya®) against FCoV

After pretreatment of FCoV with 10-fold serial dilutions (10−1–10−3, log10 dilution
from 1 to 3) of P. purpureum extract for 1 or 6 h at room temperature, Fcwf-4 cells were
inoculated with treated FCoV and the antiviral effect of the extract against FCoV was deter-
mined by TCID50 assay. As compared with the viral titer of FCoV without pretreatment of
the extract, a significant reduction in viral titers was observed in the FCoV pretreated with
10-fold and 100-fold diluted extract for 1 h (**, p < 0.005) or 6 h (##, p < 0.005, Figure 4a,
Table S1). The relative TCID50/100 µL was calculated by subtracting Log10 TCID50/100 µL
of the FCoV without the pretreatment of the extract from Log10 TCID50/100 µL of the
FCoV pretreated with the extract. A concentration-dependent reduction in the relative
TCID50/100 µL was exhibited from the FCoV pretreated with the extract from 10-fold to
the 1000-fold dilution (Figure 4b). Individual values are presented in Table S1 in “Supple-
mentary Materials”.
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(EV71). Bars indicate means and error bars indicate standard deviation of triplicate experimental
data. Comparisons were performed through unpaired t-tests in GraphPad Prism 8.0.1. The p-values
of <0.05 were regarded as statistically significant, expressed as *, p < 0.05; ***, p < 0.001. (b) Relative
TCID50/100 µL of EV71 pretreated with the extract was calculated as follows: log10 (TCID50/100 µL
of the EV71 without pretreatment of the extract)-log10 (TCID50/100 µL of the EV71 pretreated with
the extract), plotted against the log10 dilutions from 2 to 4 of the extract. The largest reduction in viral
titer was detected in the EV71 pretreated with 100-fold diluted extract for 6 h.
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Figure 4. Antiviral effect of Pennisetum purpureum extract (Heyiya®) against feline coronavirus
(FCoV): (a) Titers (TCID50/100 µL) of the FCoV pretreated with 10-fold serial dilutions of the extract
starting from 10−1 to 10−3 (log10 dilution from 1 to 3) for 1 h (black) and 6 h (grey) were determined
by TCID50 assay. The FCoV without pretreatment of the extract was used as the positive control
(FCoV). Bars indicate means and error bars indicate standard deviation of triplicate experimental
data. Comparisons were performed through unpaired t-tests in GraphPad Prism 8.0.1. Statistical
significance was indicated by a p-value of <0.05. “**, p < 0.005” indicated the comparisons were
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between the FCoV without pretreatment of the extract and the FCoV pretreated with 10-fold or 100-
fold of the extract for 6 h. “##, p < 0.005” indicated the comparisons were between the FCoV without
pretreatment of the extract for 1 h and the FCoV pretreated with 10-fold or 100-fold of the extract
for 6 h. (b) Relative TCID50/100 µL of FCoV pretreated with the extract was calculated as follows:
log10 (TCID50/100 µL of the FCoV without pretreatment of the extract)-log10 (TCID50/100 µL of the
FCoV pretreated with the extract), plotted against the log10 dilutions from 1 to 3 of the extract. The
reduction in viral titer was in concentration-dependent manner.

3.5. Antiviral Effect of Pennisetum purpureum Extract (Heyiya®) against PEDV

After pretreatment of PEDV with 10-fold serial dilutions (10−1–10−3, log10 dilution
from 1 to 3) of P. purpureum extract for 1 or 6 h at room temperature, Vero cells were
inoculated with treated PEDV and the antiviral effect of the extract against PEDV was
determined by TCID50 assay. As shown in Figure 5, the infection of the PEDV pretreated
with the 10-fold dilution of P. purpureum extract for 6 h was completely (100%) inhibited in
VERO cells (p < 0.005). Furthermore, the infection of the PEDV pretreated with a 10-fold
dilution of extract for 1 h was inhibited by 90% in VERO cells (p < 0.05). After 6 h of pretreat-
ment with the 1000-fold dilution of extract, the viral titer of PEDV significantly decreased
(p < 0.05). Individual values are presented in Table S1 in “Supplementary Materials”.
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Figure 5. Antiviral effect of Pennisetum purpureum extract (Heyiya®) against porcine epidemic
diarrhea virus (PEDV): (a) Titers (TCID50/100 µL) of the PEDV pretreated with 10-fold serial dilutions
of the extract starting from 10 −1 to 10 −3 (log10 dilution from 1 to 3) for 1 h (black) and 6 h (grey)
were determined by TCID50 assay. The PEDV without pretreatment of the extract was used as the
positive control (PEDV). Bars indicate means and error bars indicate standard deviation of duplicate
experimental data. Comparisons were performed through unpaired t-tests in GraphPad Prism 8.0.1.
Statistical significance was indicated by a p-value of <0.05. “*, p < 0.05” indicated the comparisons
were between the PEDV without pretreatment of the extract for 1 h and the PEDV pretreated with
the 10-fold dilution of extract for 1 h, or the PEDV pretreated with the 1000-fold dilution of extract
for 6 h. “**, p < 0.005” indicated the comparisons were between the PEDV without pretreatment of
the extract for 1 h and the PEDV pretreated with 10-fold dilution of extract for 6 h. “##, p < 0.005”
indicated the comparisons were between the PEDV without pretreatment of the extract for 6 h and
the PEDV pretreated with 10-fold dilution of extract for 6 h. (b) Relative TCID50/100 µL of PEDV
pretreated with the extract was calculated as follows: log10 (TCID50/100 µL of the PEDV without
pretreatment of the extract)-log10 (TCID50/100 µL of the PEDV pretreated with the extract), plotted
against the log10 dilutions from 1 to 3 of the extract.
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3.6. Antiviral Effect of Pennisetum purpureum Extract (Heyiya®) against IBV

After chicken eggs inoculated with IBV pretreated with 10-fold and 100-fold dilutions
of P. alopecuroides extract for 1 or 6 h, the antiviral effect of the extract against the IBV
TW2 strain was determined on the basis of the severity of clinical signs caused. The typical
symptoms of IBV infection in 10-day-old chicken embryos included death, hemorrhage,
and stunted growth (Figure 6a). The body lengths of the chicken embryos were measured
to ascertain the severity of stunted growth. The pretreatment of P. purpureum extract
can reduce the severity of IBV disease because the body lengths of the chicken embryos
inoculated with IBV pretreated with the 10-fold or 100-fold dilution of P. purpureum extract
for 1 h or 6 h were significantly greater than those of the embryos inoculated with IBV
without pretreatment of the extract (Figure 6b). Individual values are presented in Table
S2 in “Supplementary Materials”. The effects of P. purpureum extract were concentration
and time-dependent because the chicken embryos inoculated with IBV pretreated with
the 10-fold diluted extract for 6 h had the greatest body length in addition to the chicken
embryo without the inoculation of IBV (NC).
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Figure 6. Antiviral effect of Pennisetum purpureum extract (Heyiya®) against infectious bronchitis virus
(IBV): (a) Chicken embryos inoculated with IBV (A) had symptoms of hemorrhage (black arrow)
and stunted growth with a lesser body length by comparing to the body length of chicken embryos
without IBV inoculation (B). (b) The body lengths of chicken embryos without IBV inoculation (NC),
inoculated with IBV without the pretreatment of P. purpureum extract (IBV), and inoculated with
IBV pretreated with 10-fold or 100-fold diluted extract for 1 h or 6 h at room temperature (1/10–6 h,
1/10–1 h, 1/100–6 h, 1/100–1 h) were measured and compared through unpaired t-tests in GraphPad
Prism 8.0.1. Statistical significance was indicated by a p-value of <0.05. “*, p < 0.05; **, p < 0.005;
***, p < 0.001” indicated the comparisons between NC to other groups, respectively.

4. Discussion

The use of disinfectants has become commonplace worldwide because of the COVID-19
pandemic. Alcohol and other chemical-based sanitizers recommended by the World Health
Organization and United States Food and Drug Administration limit the spread of SARS-
CoV-2, other CoVs, EVs, and many other viruses [29,30], but prolonged and excessive use
of these sanitizers cause skin damage that facilitates the entry of harmful microbes [31,32].
Many plant-derived compounds have antimicrobial properties and are biodegradable and
non-toxic; therefore, they may be useful as disinfectants [33]. Herbal extracts with antiviral
properties can be added to feed and drinking water to reduce the spread of viruses as well
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as morbidity and disease severity [27]. In this study, pretreatment with the pulverized
crude extract of P. purpureum at room temperature significantly reduced the infectivity
of EV71, FCoV, and PEDV and the severity of symptoms caused by IBV in embryonated
chickens, demonstrating the potential of the extract as an environmental disinfectant and
sterilizing feed additive.

The most salient difference between the structures of CoVs and EVs is the outer
membrane of the lipid envelope, which is derived from the cell membranes of previously
infected cells. Alcohol-based disinfectants and many chemical-based disinfectants have
amphiphilic properties that facilitate access to the viral lipid membrane through protein
denaturation and disruption of the lipid envelope [33–35]. Such disinfectants are inef-
fective against EVs because EVs do not have a lipid envelope. However, P. purpureum
extract was effective against both enveloped CoVs and non-enveloped EVs. The high
TPC of the P. purpureum extract may explain its antiviral properties because polyphenols
can use a variety of antiviral mechanisms in addition to disrupting the structure of the
viral lipid envelope. According to the report on the website maintained by the Livestock
Research Institute of the Agricultural Committee of the Executive Yuan (Taiwan), the
P. purpureum extract contained 51 mg/g of flavonoids out of 120 mg/g of total phenols
(42%) [21]. The phytochemical screening test conducted by the University of Port Harcourt,
Nigeria, revealed that P. purpureum contained high levels of tannins, flavonoids, saponins,
and alkaloids, known for their antimicrobial activities [36]. Many bioactive compounds
categorized as flavonoids and non-flavonoids of polyphenols have been shown potent
antiviral activity against CoVs and EVs in vitro, in vivo, and in silico findings [16–18], such
as catechins of flavonoids against SARS-CoV [37] and PEDV [26], resveratrol (subclass
stilbenes of non-flavonoids) against MERS-CoV [38] and EV71 [39], quercetin (subclass
flavonols of flavonoids) against SARS-CoV-2 [40] and EV71 [41], and rosmarinic acid (sub-
class phenolic acids of non-flavonoids) as a pan-coronaviral main proteinase inhibitor [42]
and an inhibitor against EV71 [43,44]. A recent study also showed that tannic acid-chelated
zinc supplementation in the diet of newborn piglets could alleviate PEDV-induced damage
of the intestinal mucosa and improve the absorptive function and growth in piglets [45].
Experimentally validated studies have found polyphenols can prevent the entry of viruses
by reducing the levels of viral surface proteins to interfere with the binding of viruses
with their cellular receptors [39,40,44,46]; interfere with the release of viral genomes into
the host cells by inhibiting the production in viral enzymes associated with membrane
fusion and viral uncoating [46–49] or interacting with viral proteins related to viral disas-
sembly [41,43]; prevent viral replication and transcription by inhibiting the production of
viral nucleocapsid proteins [37,38,50], and RNA polymerase [51,52]. Further studies are
required to clarify the anti-viral mechanisms used by the P. purpureum extract to inhibit the
infection of enveloped CoVs and non-enveloped EVs.

P. purpureum is the highest yielding forage species in Taiwan according to the Agri-
culture Committee of the Executive Yuan and is used as livestock feed, an alternative to
coal and wood chip fuels, raw material for pulp, soil for mushroom cultivation, and energy
biomass with high CO2 fixation capacity [22]. The Animal Testing Institute and Nuclear
Research Institute have developed cellulosic alcohol with an alcohol–gasoline blend ratio
of 3%, which can be used directly by most vehicles [20]. In addition, P. purpureum can be
fermented with lactic acid bacteria to produce fibrous lactic acid, which can be used as
industrial raw material and further synthesized into polylactic acid (PLA) particles for use
in bioplastics. PLA is widely used in high-quality biomedical materials, packaging, films,
fibers, plastic components of electronic goods, and 3D printing [20,22]. The P. purpureum
extract (Heyiya®) tested in this study was obtained from the solid waste byproducts of
such applications. Our results demonstrate the antiviral potential of P. purpureum extract
(Heyiya®) and its applicability to the fields of animal husbandry, agriculture, veterinary
medicine, and biomedicine for the control and prevention of the spread of viruses.
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5. Conclusions

The infectivity of FCoV, PEDV, IBV, and EV71 significantly declined after the pretreat-
ment of P. purpureum extract (Heyiya®) (Figure 7).
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