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Simple Summary: Treating cancer metastasis is the biggest challenge in clinical practice. It is largely
due to our limited understanding of the complex process, which involves not only the evolution
and/or selection of heterogeneous primary tumor cells to metastatic tumors, but also interaction
and/or adaption with various types of cells in different microenvironments, including temporally
in the circulation system. These limitations are currently resolved by single-cell technologies. This
review summarizes recent applications of single-cell technologies in metastatic studies, highlights
the unique findings, and discusses the future directions.

Abstract: Metastasis is the cause of most cancer deaths and continues to be the biggest challenge in
clinical practice and laboratory investigation. The challenge is largely due to the intrinsic hetero-
geneity of primary and metastatic tumor populations and the complex interactions among cancer
cells and cells in the tumor microenvironment. Therefore, it is important to determine the genotype
and phenotype of individual cells so that the metastasis-driving events can be precisely identified,
understood, and targeted in future therapies. Single-cell sequencing techniques have allowed the
direct comparison of the genomic and transcriptomic changes among different stages of metastatic
samples. Single-cell imaging approaches have enabled the live visualization of the heterogeneous
behaviors of malignant and non-malignant cells in the tumor microenvironment. By applying these
technologies, we are achieving a spatiotemporal precision understanding of cancer metastases and
clinical therapeutic translations.

Keywords: cancer metastasis; single-cell sequencing; single-cell imaging

1. Introduction

Metastasis is the leading cause of cancer death and has long been a major issue in
cancer research [1,2]. Although metastasis is usually found at later or advanced stages, it
might occur prior to or at the same time as primary tumor diagnosis [3]. Cancer metastasis
involves a series of events known as the metastatic cascade. Briefly, cancer cells detach
from the primary tumor mass and enter the circulation, i.e., intravasate primarily into
the bloodstream but may also enter the lymphatic system. These cancer cells are named
circulating tumor cells (CTCs). The CTCs extravasate, i.e., exit from the vessels when they
arrive at distant sites such as the bone, brain, lung, or liver. These cells are then named
disseminated tumor cells (DTCs). DTCs adhere and colonize at the distant organs. They
may keep proliferating to detectable micrometastases and macrometastases, or stay dor-
mant for years and even decades until being activated/reactivated for proliferation [1,4,5].
The phylogeny of metastasized tumors has been proposed through genetic studies; we
also know that many factors, including tumor-intrinsic factors and those from the host
microenvironment, control and regulate the metastasis [4]. Bulk metastatic tumor studies
helped us sketch the scenarios of metastasis and identify common molecular biomarkers
and therapeutic targets. However, genetic heterogeneity is diluted. On the one hand,
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druggable genomic and transcriptomic alterations are diverse and may represent only
small subsets of patients in certain tumor types, which limits their clinical readout in
biomarker-driven clinical trials [5]. On the other hand, we could have missed some cells
with low proportions which could escape therapy and grow into resistant or relapsed
tumors [6]. Moreover, macrometastases may have already undergone some essential but
transient events along the metastasis cascade from colonization to micrometastases. Due
to these unknown essentials, there is no precision therapy to specifically prevent or target
metastasis. Therefore, advanced technologies and approaches are needed to break the
limitations of our understanding of the biology of metastasis and to develop novel and
effective therapeutic strategies to prevent and cure metastasis.

The applications of single-cell techniques allow one to decipher how heterogeneous
cancer cells interact with various non-malignant cells in the tumor microenvironments
under different stresses such as irradiation or treatments. Single-cell analyses can be
carried out on both the cell behaviors and the intracellular changes, including the genome
transcriptome, proteome, and metabolome. This review will focus on the recent advances
in applications of single-cell sequencing and imaging, separately or in combination, in
studies of cancer metastases.

2. Single-Cell Sequencing
2.1. The Overall Experiment Flow

The high accuracy and specificity of next-generation sequencing (NGS) facilitate
the high-throughput characterization of RNA expression and DNA alteration. Single-
cell sequencing (SCS) is a collective term for sequencing methods on DNA and RNA
at the single-cell resolution. Such methods have been developed to amplify the input
with the lowest biases while maintaining the high-throughput coverage of genomic and
transcriptomic information. Currently, SCS can be performed to examine the status of
DNA, RNA, and proteins [7]. Various SCS platforms share a common workflow, as outlined
below.

2.1.1. Single-Cell Capture and Nucleic Acid Isolation

The first step for SCS is single cell isolation, which can be carried out through microma-
nipulation (capillary pipette), laser capture, flow cytometry sorting, or microfluidic devices,
depending on the type of starting materials (Figure 1). Recent technical advances also allow
CTC or DTC isolation via liquid biopsy including peripheral blood, bone marrow, and
cerebrospinal fluid [8–10]. The direct isolation of a single cell nucleus is preferred when
unprocessed mRNA or genomic information is to be collected. Nonetheless, the isolation
methods dictate the final output in terms of purity and detection capacity.
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Figure 1. The overall workflow of single-cell sequencing (SCS). Single cells are isolated from solid tissues or liquid biopsies 
via different approaches. Libraries generated from purified nucleic acids are sequenced on the 2nd or 3rd generation se-
quencing platforms. Raw reads are processed and visualized as shown in different applications in the Analysis section, 

Figure 1. The overall workflow of single-cell sequencing (SCS). Single cells are isolated from solid tissues or liquid biopsies
via different approaches. Libraries generated from purified nucleic acids are sequenced on the 2nd or 3rd generation
sequencing platforms. Raw reads are processed and visualized as shown in different applications in the Analysis section,
including marker gene selection by differential expression, pseudotime tracking by trajectory analysis and cell type cluster
to elucidate the population. Parts of the subplots are adapted from the figures in the reference literature [11–13]. CTC:
circulating tumor cell; DTC: disseminated tumor cell.
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For the isolation of CTCs, the epithelial cell adhesion molecule (EpCAM) is usually
adopted as a marker to capture CTCs and to minimize blood cell contamination. However,
it is only applicable for CTCs with a high expression of EpCAM. To capture CTCs with a
low expression of EpCAM, microfluidic devices and size-based selection approaches are
applied [14]. With size-based selection, more CTCs and their heterogeneities are captured,
but contamination from other types of cells is not excluded.

2.1.2. Library Preparation and Sequencing

The library preparation protocols vary on the downstream sequencing platforms.
DNA or cDNA from each cell can be labeled with barcodes and then pooled together for
sequencing. Most of the SCS methods are based on next-generation sequencing with typical
read lengths of 50–150 bp, while SCS approaches such as SMART-Seq and SMART-Seq2
that are powered by third-generation sequencing (also known as long-read sequencing)
can process longer reads of up to several kb. The extracted nucleic acids from single cells
have to be fragmented to a certain required size range by physical sheering or chemical
ion-based methods prior to the adaptor ligation. In addition, unique molecular identifiers
of 4–10 bp are introduced to each transcript during reverse transcription to distinguish the
reads between amplified copies of the same mRNA molecule and other mRNA molecules
transcribed from the same gene.

2.1.3. Data Processing

The workflow for SCS data processing can be simplified into three steps:

• File conversion. Convert the raw reads from any SCS machinery to a standardized
format, such as fastq.

• Demultiplexing, dataset quality control (QC), filtering, and alignment. Reads can be
aligned to a reference genome or transcriptome via typical aligners such as STAR or
HISAT2, or by pseudo-aligners such as Kallisto [15–17].

• Data visualization and interpretation. Multiple open-source software packages are
available for the visualization of cell clusters and subpopulation identification, i.e.,
Seurat, t-SNE, and UMAP [18–20].

The analysis pipeline used for SCS experiments is variable and can be customized
based on the research objectives. Those interested in getting into this growing field can
refer to two systematic reviews of bioinformatic tools for SCS [11,21]. To be noted, although
RNA sequencing is mostly used to assess gene expression, it can also give information
about genetic variants. Multiple packages have been developed, including inferCNV,
CONICSmat and CaSpER, to identify copy number variations (CNVs) from single-cell
RNA-Seq (scRNA-Seq) data to infer mutational phylogenies of cancer cell populations
across different samples [22–24].

2.2. Single-Cell RNA-Seq (scRNA-Seq) in Metastatic Studies

The first SCS study was reported in 2009, in which a single-cell whole transcriptome
sequencing protocol was developed to analyze transcriptome complexity in a single mouse
blastomere. 75% more gene expressions were detected compared to using the microar-
ray [25]. Since then, scRNA-seq has been advanced to easier cell isolation, higher cell
throughput, greater gene coverage, longer read length, and less bias. The advances of
scRNA-Seq also benefit metastatic studies.

2.2.1. Spatial Understanding: Mapping the Diversities of the Metastatic Microenvironment

ScRNA-seq allows for high-resolution analyses of the cellular constitution of metastatic
tumors in the tumor microenvironment, including fibroblasts, endothelia, various immune
cells, etc. As a result, the complexities and dynamics of the metastasis ecosystem can
be explored. Studies using this approach have been conducted on various metastases
of many cancer types, for example, transcriptome profiling the transcriptomes of nearly
6000 single cells of 18 head and neck squamous cell carcinoma patients, including five
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matched pairs of primary tumors and lymph node metastases. The stromal and immune
cells shared expression patterns across patients, but malignant cells varied within and
between tumors. Cells expressing the partial epithelial-to-mesenchymal transition program
spatially localized to the leading edge of primary tumors and this program served as an
independent predictor of nodal metastasis, grade, and adverse pathologic features [26]. A
single-cell transcriptome study in liver metastatic colorectal cancer tissues (2770 cells) and
adjacent normal liver tissues (2391 cells) from one patient revealed granulocyte enrichment
in the liver metastases and discovered a positive correlation between ferroptosis-mediated
cell death and hyperactivated Wnt signaling in the enriched granulocytes [27]. A study
comparing the cellular composition and transcriptional states in matched samples of
metastatic prostate cancer cells and adjacent bone marrow in the spinal cord, as well as bone
marrow from orthopedic patients without malignancy, identified that the metastatic tumors
had significant exhaustion of cytotoxic T lymphocytes but an increase in inflammatory
lymphocytes and macrophages [28]. This study also found that the increased chemokine
CCL20, produced by myeloid cells and its cognate CCR6 receptor on T-cells was associated
with repressed immune responses, suggesting this might be the cause of the poor response
to immune therapy by metastatic prostate cancer, as reported in recent clinical trials [29,30].
A study on myeloma found that CXCL12, a key molecule involved in CXCR4-dependent
cell retention in bone marrow, was upregulated in circulating plasma cells and potentially
induced myeloma cells’ intravasation [31].

Besides mapping the diversity of tumor microenvironment, scRNA-Seq is also helping
to identify new therapeutic targets for metastasis. A recent study on uveal melanoma,
which is highly metastatic, interrogated the tumor microenvironment (TME) at a single-
cell resolution using scRNA-seq of ~60k tumors and non-neoplastic cells from primary
and metastatic samples [32]. They found that among the tumor-infiltrating immune cells,
the CD8+ T cells had only minimal expressions of CTLA-4 and PD-1 but the strongest
expression of LAG3. This indicates T cell exhaustion and may partially explain the failure
of targeting CTLA-4 and/or PD-1 in uveal melanoma. LAG3 blockade could be a potential
effective immune therapy for these patients [32].

2.2.2. Temporal Understanding: Identifying Drivers of Metastasis

Beyond the established metastatic tumors, circulating tumor cells (CTCs) serve as the
bridges and messengers between primary tumors and metastatic tumors. Unlike the tran-
scriptomic gene expression profiling of bulk CTC samples, scRNA-seq is able to exclude the
contamination from nonmalignant cells and cover the full-spectrum of CTC heterogeneity.
The first scRNA-seq in CTC was conducted using SMART-Seq to characterize full-length
mRNA profiles from melanoma patient samples and identified distinct potential metastatic
biomarkers in CTC such as CDH1 and HLA1 [33]. By comparing the genome-wide ex-
pression profiles of CTCs with matched primary tumors in a mouse model of pancreatic
cancer, another study discovered that CTCs clustered separately from primary tumors
and tumor-derived cell lines, and they presented a low-proliferation signature [34]. The
aberrant expression of stromal extracellular matrix genes by CTCs revealed the relevance
of epithelial to mesenchymal transition (EMT) and contributions of microenvironmental
signals to metastasis [34]. Novel findings were made in CTCs. For example, the elevation
of noncanonical Wnt signaling (Wnt5a) was found to be associated with anti-androgen
resistance through scRNA-seq of 77 CTCs from 13 prostate cancer patients [35]. Markers of
cancer stem cells (CSCs) and of EMT were found in breast cancer through scRNA-seq of
666 CTCs from 21 breast cancer patient samples [36]. A consistent induction of β-globin
(HBB) was observed in CTCs across breast, prostate, and lung cancers [37]. HBB was
induced by KLF4 upon intracellular reactive oxygen species (ROS), and contributed to the
survival of tumor cells under ROS stress, suggesting a cytoprotective effect of the signaling
to suppress intracellular ROS during the circulation in the bloodstream [37].

These CTC profiling studies are snapshots of the metastatic cascade. A technical
breakthrough, however, is the longitudinal CTC profiling. Through an optofluidic system
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that continuously collects fluorescently labeled CTCs from a genetically engineered mouse
model, the researchers were able to use scRNA-Seq in profiling CTCs isolated longitudi-
nally from the mice over four-day treatments with JQ1, an inhibitor of the bromodomain
and extraterminal (BET) family of bromodomain proteins [38]. This is probably the first
time the dynamic drug responses in terms of CTCs have been revealed. The future of
translating this technology into clinical practice is very exciting. Furthermore, a recent
study characterized single-cell profiles of CTCs in the cerebrospinal fluid in lung ade-
nocarcinoma leptomeningeal metastases [9]. This advance provides the opportunity to
compare CTCs from blood and CTCs from more local metastatic environments and, thus,
the understanding of the site preference mechanisms in metastasis.

Altogether, these studies demonstrated the power of scRNA-seq in profiling CTCs,
which are believed to be one of the best candidates in diagnosis and prognosis in metastasis
prevention and treatment. The major challenges are capturing pure CTCs with high quality
and translating new technologies into clinic.

2.3. Single-Cell Whole Genomic Sequencing and Whole-Exome Sequencing in Metastatic Studies

The next-generation sequencing of bulk tumors suggested that metastasis is initiated
by a subclone of the primary tumor, based on their shared genomic alterations between
primary and respective metastatic tumors. However, metastatic tumors often have unique
mutations or genomic alterations that are not found in the primary tumors. The question
is whether the metastasis-exclusive mutations were present below the detection limit in
the primary tumor or whether they evolve after leaving the primary site. The single-cell
whole-genome sequencing (scWGS) in isolated single nuclei of breast cancer cells was
developed in order to answer these questions [39]. This was also the first SCS study
in metastasis. Flow-sorted single-nucleus sequencing was performed for a previously
identified genetically homogeneous breast duct carcinoma (52 nuclei) and its paired liver
metastasis (48 nuclei). It was found that a single clonal expansion from the primary tumor
evolved to metastasis. Following this study, single-cell whole-exome sequencing (scWES)
was developed in 2012, focusing on protein-coding genomic regions in the metastasis
study [40,41].

WGS and WES can profile the genomic landscapes in CTCs and metastatic tumors,
including single-nucleotide variants (SNVs), insertions/deletions (indels), copy number
alterations/variations (CNAs/CNVs), and the loss of heterozygosity (LOH). Similar to the
transcriptomic landscape of CTCs, the intrapatient and interpatient heterogeneity of CTCs
at the genomic level are frequently observed in prostate, lung, and breast cancer [42–46].
Using scWGS, androgen receptor (AR) gene positive or negative prostate cancer CTC
subpopulations were identified during the period of androgen deprivation therapy (ADT);
CNV evolution reflecting clinical response and disease progression was also observed in
CTCs [47]. In metastatic breast cancer patients, the majority of CTC mutations that were
detected at baseline disappeared; but some mutations were enriched and new mutations
emerged during standard treatment, suggesting the evolution or shifting of the CTC
population [48]. Other recent studies showed that genomic variations of CTCs represent
their competencies of intravasation and migration/motility, abilities of cell–cell interactions,
variations of energy metabolism, emergences of blood immune cells, and resistances to
anoikis or certain therapy [16,41,42].

Furthermore, genomic alterations including CNV can also be inferred from RNA-
sequecing data. While scRNA-Seq can provide useful information for characterizing the
CNV architecture of essential oncogenes and tumor-suppressor genes, copy numbers of
intergenic regions are not well represented. This limitation is also shared by scWES [49].
However, scWGS provides more coverage of genomic information [49]. Therefore, scWGS
is recommended to get a much broader spectrum of CNV landscape in metastatic cascade.
Recent studies that integrated genomic sequencing data and scRNA-Seq in CNV calling
have achieved better information of evolution [22,50].
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2.4. Single-Cell Epigenomic Sequencing and Emerging Multi-Omics

With the word “epigenome,” we refer to all genomic changes that do not alter the
primary DNA sequence but nonetheless could be hereditary. Such changes include DNA
methylation, histone modification, chromatin binding of structural and regulatory proteins,
and chromosome conformation (3D genome). The first methylome profiling for single cells
was achieved using single-cell reduced representation bisulfite sequencing (scRRBS) in
2013 [51]. The first single-cell chromosome conformation capture was conducted using
high-throughput sequencing (Hi-C) [52]. The first single-cell chromatin immunoprecipi-
tation sequencing (ChIP-seq) was conducted using a combination of microfluidics, DNA
barcoding, and next-generation sequencing [53]. These approaches acquired low-coverage
maps of H3 lysine-4 tri-methylation (H3K4me3) and di-methylation (H3K4me2) in mixed
populations of mouse embryonic stem cells, embryonic fibroblasts, and hematopoietic
progenitors.

The simultaneous profiling of genome, transcriptome, epigenome, proteome,
metabolome, or other emerging whole-genome scale information is known as multi-omics.
At single-cell level, the approaches (listed in Table 1) include scG&T-seq (single-cell genome
and transcriptome sequencing) and scMT-seq (single-cell methylome and transcriptome
sequencing). Combinations of various antibodies and massively parallel mRNA sequenc-
ing have also been developed recently to simultaneously monitor the transcriptome and a
limited panel of surface proteins at single-cell level, including CITE-Seq, REAP-Seq and
Ab-Seq (Table 1). Several studies have adopted single-cell epigenomics or multi-omics
logics to characterize CTCs or metastatic samples in a limited scale of throughput (only
methylation of several genes or certain metabolites, or limited proteins) [54–56]. For ex-
ample, quantitative methylation analysis of nine genes in metastatic breast cancer CTCs
isolated from 37 patients showed that patients with methylated CST6, ITIH5, and RASSF1
in CTCs had a significantly shorter progression-free survival relative to patients without
these methylations [54]. In a lipid profiling study of CTCs from colorectal cancer and
gastric cancer, colorectal cancer CTCs had higher amounts of sterol lipids and acylcarnitine,
while gastric cancer CTCs had higher amounts of fatty acids and glycerophospholipids [55].
Simultaneous detections of glucose uptake, key phosphoprotein levels, and EGFR/KRAS
mutations were performed on some rare CTCs from the blood sample of a female metastatic
lung adenocarcinoma patient [56]. These studies showed the feasibility of using SCS to
determine the whole landscape of tumor evolution in metastasis and identify novel vulner-
abilities for metastasis prevention and treatment.

Table 1. Summary of major types of SCS approaches used in current research applications.

Research Applications Representative Approaches References

Genomic DNA profiling (SNV, CNV, CNA, etc.) Typical SCS; single-cell exome sequencing [39–41]
Transcriptome Various scRNA-seq; Smart-Seq2 [25,57]

Newly synthesized and pre-existing RNAs NASC-Seq [58]
Non-coding RNA profiling SMALL-seq; Holo-Seq [59,60]
DNA methylome profiling scBS-seq; scPBAT-seq [61,62]

Histone modification scChIP-seq [53]
Chromatin structure (accessibility and interaction) scATAC-seq; scHi-C; scDNase-seq [48,59,60]

Genome and transcriptome DR-Seq; G&T-Seq [63,64]
Methylome and transcriptome scM&T-Seq; scMT-Seq; [65,66]

Genome, transcriptome and methylome scTrio-Seq [67]
Transcriptome and limited number of proteins CITE-Seq; REAP-Seq; Ab-Seq [68–70]

Transcriptome and chromatin accessibility Sci-CAR [71]

2.5. Summary and Future Perspectives

Single-cell sequencing has provided unprecedented advantages and resolution in
understanding cancer metastasis, including how individual cells of the metastatic tumor
evolve, how heterogeneity forms, and how the cells differ in their physiological behavior
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or responses to therapies, spatially and temporally. Although SCS is not being used as a
tool to make treatment decisions just yet, it is paving the way for precision medicine and
individualized treatment at a higher level with apparently improved detections at protein,
RNA and gene levels. The clinical effectiveness will further validate and improve the
models we constructed and interpreted from the single-cell data. While single-cell isolation
and low-level DNA/RNA sequencing are always the challenges due to the small inputs,
which may generate biases during processing, the technology in the SCS field is actively
evolving. The ever-increasing single cell datasets also significantly boost the deconvolution
of previously published bulk sequencing data. This enables more answers to the questions
that used to be elusive, thus facilitating further and deeper interpretation of the data and
translation from basic biology to the clinic. For example,

(1) Are the subpopulations identified in metastatic cancer samples indeed the driving
subsets of metastasis or only the endpoint adaptation to their destination microenvi-
ronment? This is a long-standing and challenging question. Longitudinal compar-
isons among samples from distinct metastatic sites of the same primary cancer type
or of the same patient, along with the CTCs, may help reconstruct the dynamics of
metastasis and elucidate this question.

(2) How are the cells organized spatially in metastatic samples? Spatial transcriptomic
methods (such as seqFISH and Slide-Seq) have been developed in recent years [72,73].
Developing these technologies at the single-cell level will allow for the spatial deci-
phering of metastatic tumors.

(3) How do we explore multi-omics from a single cell? Applying multi-omics technolo-
gies in one single cell to co-register information at multiple levels would strongly
broaden our understanding of metastasis and the toolbox to fight against it.

3. Single-Cell Imaging
3.1. Seeing Is Believing: Single-Cell Imaging Basics

Imaging approaches allow one to visualize metastasis in situ/in vivo and answer
the questions that are beyond the capability of SCS. For example, what and how do
different subtypes of cancer cells distribute spatially in a tumor mass? How do cancer
cells connect with adjacent cells in the microenvironment? What types of immune cells
were excluded from or infiltrate into the tumor, and when? In clinical practice, multiple
imaging tools have been applied in the diagnosis of cancer metastasis, such as positron
emission tomography (PET), magnetic resonance imaging (MRI), computed tomography
(CT), and the like. However, these imaging modalities are not at a single-cell resolution.
The single-cell imaging of cancer cells has been achieved in monolayer cultures with simple
microscopy. Current techniques in super-resolution microscopy can even distinguish
single-molecule dynamics at a nanometer resolution [74,75]. However, the acquisition
of single-cell resolution images in in vivo samples, live or fixed, is far more challenging.
Tissue status (live or fixed), label strategies (fluorescent, bioluminescent or others), signal-
collecting instruments (balancing between sensitivity and specificity), and post-acquisition
processing (3D deconvolution) are all limiting factors when applying the single-cell imaging
technique in studying cancer metastasis.

3.2. Know Your Samples: Keep It Live or Get It Fixed?

For fixed sample sections, including patient samples, multispectral imaging with mul-
tiple antibodies will create the partial atlas of single-cell protein expressions. For example,
the immune cell spatial distribution was charted using seven-plex immunofluorescence for
the liver and lung metastases of colorectal cancer and infiltrated lymphocytes were found
in the progressive metastatic clones [76]. Nucleic acid hybridization probes (ISH/FISH)
could also be applied in sections to determine the differences between samples at the DNA
or RNA levels [77,78]. The direct visualization of the deeper/inner parts of an intact tissue
or an organ is challenging, because the light or signals will be scattered and hampered.
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To tackle this issue, one can use either a transparentized tissue/model or an imaging
apparatus that can visualize more in-depth with higher penetrance.

3.2.1. Tissue Clearance

Post-mortem tissue clearance by removing the pigments to yield better transparency
allows for the cellular-level optical imaging of intact tissues [79]. For example, CUBIC
(clear, unobstructed brain/body imaging cocktails and computational analysis) applies
statistical analysis to create 3D maps of cancer cells throughout the body and organs of
a mouse after tissue-clearing and scanning them. Such maps allow one to visualize of
cancer metastasis and the determine of temporal metastatic events through different mice
at various time points [80]. Similarly, a deep-learning-based pipeline named DeepMACT
was developed for the automatic detection and quantification of micrometastases from
whole body scanning images and therapeutic antibody targeting [81].

3.2.2. Transparent Animal Model

The zebrafish, which has a transparent body, has been widely used for cancer metasta-
sis studies [82]. The zebrafish provides a feasible and cost-effective model to track tumor
metastasis at the single-cell level, which allows for long-term monitoring (up to two weeks)
to track the early events of metastasis [83]. Cancer cells can be implanted into the circu-
lation of a zebrafish or the perivitelline cavity of zebrafish larvae, allowing one to track
cells under microscopy, especially the intravasation and extravasation steps [84–86]. In
addition, the multiplex labeling and implanting of various cell types provided spatial
information on metastasis, and that cancer-associated fibroblasts (CAFs) were found to
hijack the dissemination of cancer cells [87]. However, the real challenge of metastasis
studies in zebrafish is the limitation in recapitulating metastasis of patients, for which
rodents such as rats and mice are more widely used.

3.3. Choose a Label—How to Track Metastatic Cancer Cells in Live Animals?

Intravital microscopy (IVM) imaging of live animals such as rats, mice and zebrafish
allows one to track the real-time dynamics of metastases. IVM can image exposed tissues,
or it can be carried out through optical windows or endomicroscopy. Imaging through
optical windows allows metastasis observations for a relatively long period in vital organs
such as the brain, liver, and lung [88–90]. Combining fluorescent protein tags or chemical
dyes with upgraded fluorescence microscopy can allow metastatic cells to be directly
observed in the organs of interest.

3.3.1. Fluorescent Proteins

Tagging cells with fluorescent proteins became available in the 1990s. Using this
approach, IVM imaging quickly evolved into an important tool for metastasis observation
in the genetic engineered animal models of cancer [91]. Multicolor imaging further enables
the comparison of the metastatic potential of multiple clones from the same tumor pop-
ulation [92,93]. Photoswitchable fluorescent proteins, such as Dendra2, which switches
from green to red under either visible blue or UV light, have demonstrated that cancer cells
were selected during certain steps of the metastatic cascade at a single-cell resolution [94].

3.3.2. Fluorescent Dyes

Fluorescent dyes and probes have also been applied in in vivo imaging. To circumvent
the interference of tissue autofluorescence and the tissue scattering of signals, far- and
near-infrared trackers (>700 nm) with better specificity and sensitivity are preferred. For
example, indocyanine green (~800 nm) tends to accumulate in tumor cells much more
readily than in normal cells, and can be applied in fluorescence-guided surgery [95]. In
addition, cancer-specific targeted fluorescent agents have been introduced. A targeted
tracer consists of a fluorophore conjugated to a targeting moiety, which specifically binds
to a marker of cancer cells; thus, the fluorescence will be observed only in cells with the
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expression of the marker [96]. For example, a fluorescein isothiocyanate (FITC) dye was
conjugated to folate, which binds to the folate receptors. Therefore, ovarian cancer cells
with high level folate receptors were specifically labeled in the study [97]. While the
targeted tracers are not able to track those cancer cells with extremely low or no expression
of the targeted proteins, these fluorescent dyes hold more clinical potential than fluorescent
proteins, since the latter need to be exogenously overexpressed, which is not feasible in
patients.

3.3.3. Bioluminescent Labeling

Bioluminescent imaging (BLI) has been widely applied in cancer metastasis stud-
ies [98]. Engineered luciferase and luciferin substrates have been developed to facilitate
deep-tissue imaging with fewer cells [99,100]. For example, Akaluc and AkaLumine have
been shown to emit significantly stronger and brighter signals than the conventional lu-
ciferase/luciferin pair, thus allowing for the detection of signals from as few as a single
breast cancer cell trapped in the mouse lung [101]. Furthermore, in combination with
genetic engineering, this technique enables the studies of the activation patterns in learning
behaviors and the video-rate bioluminescence recording of neurons in the striatum for
up to one year, implying future long-term metastasis monitoring [101]. This stands for a
substantial advance for small-animal BLI and the potential of studying cancer progression
and metastasis, such as CTCs and DTCs.

3.4. Signal Capture: The Choice of Microscopy in Single-Cell IVM Imaging

Confocal microscopy and multiphoton microscopy have been largely used in IVM
imaging for tumors that are labeled with fluorescent proteins or stained with specific
dyes. Confocal microscopy collects signals from excitation by single-photon absorbance
in the focal plane and collects signals only in the focal plane, thus permitting thin optical
sectioning, by either a pinhole in the laser scanning mode or a rotating disk with slits
or holes in the spinning disk mode. With the use of confocal laser scanning microscopy,
single cell metastases were observed in the lung from 3 to 10 weeks post injection of the
RCN-9 colon cancer cells labeled with green fluorescence protein (GFP) into the liver
parenchyma of male rats [102], as well as in the skull bone marrow on days 0, 3, 7, and 10
post intracardiac injections of the bone-metastatic derivative prostate cancer cell, PC-3-GFP-
BM6, into transgenic nude mice with red fluorescence protein (RFP) [103]. However, the
cons of this approach are: (1) fluorescence is generated via the excitation of light throughout
the sample, and thus, the specimen can be bleached or damaged; and (2) a compromise
of tissue penetration is the result of photons spreading from deep within the specimen
experience scattering and rejection.

In contrast to single-photon confocal microscopy, multiphoton microscopy applies
photons with longer wavelengths (and, thus, with lower energy); fluorophores are only
excited by absorbing the energy of two or more photons simultaneously. Only the area
proximal to the focal plane with a high photon density can be excited, so no more pinholes
are needed to exclude non-focal signals. Additionally, the longer wavelength lights in
multiphoton microscopy penetrate deeper, typically up to 2 mm below the tissue surface,
and scatter less, thus there is less phototoxicity and photobleaching, allowing imaging for
a longer time [91]. The responses of liver metastatic tumor cells and host stromal cells
to chemotherapeutics in living mice were observed at the single-cell level after the red
fluorescent protein-expressing human colorectal cancer cells (HT29) were inoculated into
the spleen of green fluorescent protein-expressing nude mice [104]. GFP- or RFP-labeled
T-cell lymphoma infiltration into the colon blood vessels of black C57BJ/6 mice was also
observed using similar approaches [105]. Furthermore, the long-wavelength lights can
produce second-harmonic generation (SHG) to image collagen fibers and allow the imaging
of extracellular matrix changes (such as collagen stiffness) which is one of the hallmarks in
cancer metastasis [106]. The amount and condition of the extracellular matrix adjacent to
carcinoma cells can be directly observed and relatively quantified via the SHG results [107].
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While multiphoton microscopy provides single-cell images with more tissue depth
and less phototoxicity, the resolution at the focal plane is slightly lower than that of confocal
microscopy, and pigmented samples may suffer from physical cellular damage through
heating. Selective/single plane illumination microscopy (SPIM, also known as light sheet
fluorescence microscopy, LSFM) is an alternative optical-sectioning approach used for
imaging thick samples [108]. Light sheet microscopy uses a thin sheet (plane) of light for
sample excitation (in contrast to a single-photon in confocal) and a second, separate light
path for image detection to sidestep image blur created by traditional epi-illumination
techniques. The result is an optically sectioned image without the need for a confocal
pinhole. In addition, the sheet of light used for sample excitation dramatically reduces
sample photo damage.

3.5. Specific Applications in the Near Future

Single-cell imaging is challenging at any depth of a specimen, and there is no single
perfect approach for every situation. Various single-cell imaging approaches introduced
above collectively enable the direct observation of metastatic cells intravasating, extravasat-
ing, and seeding into secondary sites. Multidimensional atlases of metastasis cancers
include x, y, z, time course and different markers by multiplex labeling. Given the inspiring
achievement of single-cell imaging techniques, future directions for single-cell imaging in
metastatic studies are suggested below:

3.5.1. Noninvasive Single-Cell-Resolution Clinical Tools

Clinical tools such as CT, PET, and MRI are capable of providing noninvasive images,
but they lack the resolution necessary to visualize the earliest seeding events, because a
single pixel may encompass hundreds or thousands of cells. However, these tools hold
the capacity to detect signals from a single cell. A brain-seeking clone of MDA-MB-231BR
human breast cancer cells was magnetically labeled with fluorescent magnetic particles
and injected into the left ventricles of mice, and MRI signals were able to be acquired
multiple times from day 0 to day 33 post injection and provided the longitudinal tracking
of individual cell fates [109]. A “cellular GPS” via PET/CT was reported in tracking a single
breast cancer cell with radioisotope nanoparticle incorporation from tail vein injection to
lung arrest [110]. Single-cell tracking using these methods could be applied to determine
the kinetics of cell trafficking and arrest in the metastatic cascade, although it remains to be
validated whether the signals from the later metastatic foci are too strong to distinguish
the signals from single cells. Nonetheless, once these methods can be readily applied in
patients as a single-cell resolution, we will get direct dynamics of cancer metastasis.

3.5.2. Simultaneous Monitoring of Cellular Status during Imaging

Within a tumor population, different cells likely display various states of metabolism
and proliferation, which determine tumor progression and therapeutic responses. The
time-lapse monitoring of the behaviors of cancer cells engineered with fluorescence ubiqui-
tination cell cycle indicator (FUCCI) in mice via IVM, allow us to determine the cellular
status of cancer cells during the interactions with infiltrating blood vessels and the pro-
gression to chemotherapy resistance [111]. More bio- and chemical-sensors of biological
processes beyond the cell cycle, need to be developed and implemented into metastatic
imaging.

3.5.3. Drug Bio-Distribution and -Action in Tumors

The evaluation of the drug–target engagement is essential in characterizing the re-
sponse and administrating to those best responsive patients. Recently, an accumulation
of HER2-targeting mAb trastuzumab (Herceptin) in tumor-associated phagocytes was
observed when the AlexFluor647-conjugated mAb was injected into female mice bearing
HER2-GFP breast cancer subcutaneous xenografts. Intravital multiphoton microscopy was
used in this study to monitor tumor uptake of the mAb [112]. Compared to the conven-
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tional isotope labeling and mass spectrometry approach in pharmacodynamics, imaging
tools offer more convenience and more layers of information in inter- and intratumor
heterogeneity. More feasible imaging tools to evaluate the drug efficacy and distribution in
terms of metastatic cancers need to be developed or adopted in the near future.

3.5.4. Emerging Imaging Techniques

Several emerging multiplex imaging techniques have also been applied in cancer
studies. Distinct from typical multispectral immunofluorescence with limited spectrum,
multiplex imaging techniques acquire information on more proteins on the same tissue
section, frozen or fixed. These approaches include CyCIF (CyClic ImmunoFluorescence),
CODEX (CO-Detection by indEXing), IBEX (Iterative Bleaching Extends Multiplexity) and
MIBI (Multiplexed ion beam imaging) [113–115]. CyCIF and IBEX use similar logic of
consecutive staining and quenching to repeatedly acquire images with antibody staining on
the same section, resulting in imaging of up to 65 proteins; CODEX uses antibodies tagged
with unique DNA oligonucleotides for subsequent staining, rather than direct labelling
of fluorophores or rare metal elements, to acquire information on 40 targets; MIBI use
metal-isotope-labeled antibodies in combination with time-of-flight mass spectrometry to
simultaneously track up to 100 targets and can reach a sub-cellular resolution [116–120].
Although these techniques have not been widely applied in metastatic tumor samples yet,
their potentials are highly expected.

3.5.5. Integrated Approaches of Imaging and Sequencing

An early example is SCOPE-Seq, which combined single-cell imaging and barcoded
single-cell sequencing in a microwell assay, although it was not able to provide spatial infor-
mation or the physiological state of cell phenotype [121]. A recent study integrated droplet
scRNA-Seq, spatial transcriptomics, and MIBI to compare primary cutaneous squamous
cell carcinoma and matched normal skin [122]. The authors identified three keratinocyte
populations that were similar to the normal skin and a tumor-specific keratinocyte popula-
tion that resided within a fibrovascular niche at leading edges of the tumors [122]. These
specialized keratinocytes interacted as a hub with basal and adjacent stromal and immune
cell types to exhibit invasive and immunosuppressive features, with the enrichment of
integrin signaling genes ITGB1, FERMT1, and CD151 [122]. These integrated approaches
and beyond are expected to be applied in metastatic studies in the near future.

4. Summary and Perspective

Here, we reviewed the major applications of single-cell techniques in cancer metastatic
studies. SCS and imaging techniques have been significantly advanced in the recent
20 years. These approaches provide us with multiscale, multi-omic information on the
metastatic cascade and allow for advances in basic knowledge and clinical translation for
the detection, tracking, and treatment of metastasis. Multidimensional atlases of metas-
tasis are being achieved through co-applications of single-cell techniques with multiple
approaches such as epigenomes and metabolomes. The success of these technologies
in solving biomedical questions needs more outstanding co-operations of experts from
the various disciplines, including physics and mechanics for the devices, chemists for the
labeling and probing, bioinformatics and biostatistics for data analyses, as well as biologists
for data interpretation. Furthermore, the recent incorporation of machine learning and AI
are offering new directions and are believed to advance cancer research in its translational
directions further.
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