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Causal variants for rare genetic diseases are often rare in the general population.

Rare variants may also contribute to common complex traits and can have

much larger per-allele effect sizes than common variants, although power to

detect these associations can be limited. Sequencing costs have steadily

declined with technological advancements, making it feasible to adopt

whole-exome and whole-genome profiling for large biobank-scale sample

sizes. These large amounts of sequencing data provide both opportunities and

challenges for rare-variant association analysis. Herein, we review the basic

concepts of rare-variant analysis methods, the current state-of-the-art

methods in utilizing variant annotations or external controls to improve the

statistical power, and particular challenges facing rare variant analysis such as

accounting for population structure, extremely unbalanced case-control

design. We also review recent advances and challenges in rare variant

analysis for familial sequencing data and for more complex phenotypes such

as survival data. Finally, we discuss other potential directions for further

methodology investigation.
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Introduction

High-throughput next-generation sequencing (NGS) technologies, including whole-

exome sequencing (WES) and whole-genome sequencing (WGS), are increasingly being

applied in studies of both rare diseases and common complex traits. In contrast to the

array-based genotyping commonly applied in genome-wide association studies (GWAS),

WES/WGS can directly capture relevant variation not interrogated by common

genotyping platform designs, including rare variants (RVs). Identifying rare variants

is important because pathogenic rare germline mutations can cause many human

diseases. For example, many SOD1 mutations can cause amyotrophic lateral sclerosis

(ALS) (Sau et al., 2007), NF1 mutations can cause pediatric brain tumors (Campian and
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Gutmann, 2017), RB1 mutations can cause retinoblastoma (Yun

et al., 2011), and ETV6 mutations can cause pediatric acute

lymphoblastic leukemia (Hock and Shimamura, 2017). For adult

cancers, mutations in BRCA1/BRCA2 can cause breast and

ovarian cancer (Mavaddat et al., 2013), mutations in TP53 are

responsible for many pediatric or adult cancers or syndromes

(Olivier et al., 2010). Mutations in APP, PSEN1, PSNE2 can

increase the risk of early onset Alzheimer disease (Lanoiselee

et al., 2017). Therefore, sequencing technologies have often been

prioritized for studying both somatic and germline DNA

mutations in cancers (Consortium, 2020), and germline

pathogenic mutations in rare Mendelian diseases (Gilissen

et al., 2011).

There is also increasing interest in exploring the

contributions of RVs to variability in common complex

traits, driven in large part by the phenomenon of “missing

heritability” (Manolio et al., 2009). This missing heritability is

defined by the commonly observed gap between complex trait

heritability estimates from family-based studies and trait

variation explained by common single-nucleotide

polymorphisms (SNPs) discovered by large-scale GWAS,

leading to the common-disease/rare-variant (CD-RV)

hypothesis (Schork et al., 2009). The CD-RV genetic model

postulates that common complex traits may be the result of

multiple RVs that impact one or multiple genes that would not

be tagged by conventional GWAS SNPs. RVs have also largely

remained unexplored in the GWAS era of genetic association

analysis, and the vast majority of human genetic variation is

rare. Technology and sample sizes have started to bear this

hypothesis out, as RVs have recently been shown to account for

unexplained heritability in highly polygenic traits, such as

height and BMI (Wainschtein et al., 2022). Given the

increasing empirical evidence that RVs play a role in various

complex traits, cancers and rare diseases, such as results from

WES profiling of the United Kingdom Biobank (Wang et al.,

2021), NGS is increasingly being used to investigate RV

associations in risk of human disease.

Unlike common variants (CVs), application of traditional

single-variant analysis methods on RVs is often underpowered

for typical NGS study sample sizes due to low minor allele

frequencies (MAFs). The multiple testing burden for single

RV analysis also increases as a function of sample size due to

the fact that more unique RV positions will be detected.

Consequently, adequate power for single-variant RV analyses

requires extremely large sample sizes that often are practically

and/or economically unfeasible. Moreover, it is possible via allelic

heterogeneity that multiple RVs within a gene may affect the

same trait. Therefore, RV analysis using NGS data is typically

performed using “aggregative” testing, whereby identified

variants are tested collectively in some fashion based on

physical overlap with pre-defined genomic regions. Table 1

shows a comparison between CV and RV association analysis.

In this review, we discuss emerging challenges and

methodological advancements in RV association analysis,

covering topics related to variant filtering and annotation,

population structure, implications of study design and use of

externally-sequenced control samples, and adaptation of existing

methods to different phenotypes.With the growing availability of

DNA sequencing datasets with sufficiently large sample sizes for

well-powered RV association analyses, the content of this review

is particularly topical as investigators focus their attention on the

role of RVs in human traits.

Background on RV association testing
methodology

While many RV testing methods have been available for over

a decade, they may still largely be considered niche even among

genetic epidemiologists given the only recent emergence of DNA

sequencing datasets with sufficiently large sample sizes. In this

section, we briefly review a basic background of RV association

analysis, orienting the reader to core concepts that contextualize

modern methodological challenges and advancements.

TABLE 1 Comparison between CV and RV association analysis.

Considerations CV association analysis RV association analysis

Assays Typically captured using inexpensive genotyping
microarrays

Often requires NGS, especially for detecting extremely rare/novel variants

Number of variants tested Often single variant based (e.g., GWAS) Often multiple variants based due to low power of single-variant methods

Population structure Confounding can be adequately controlled using PCA
or mixed models

Rare variants are likely more recent and reflect finer subpopulations. May need
either more PCs or specifically designed methods

Null distributions of test
statistics

Ordinary asymptotic distributions work well Null distributions are often complex mixtures and more sophisticated methods may
be necessary

Use of annotations Statistical test for each variant is often performed
without relying on annotations

Due to the large number of rare variants in a region, annotations are often used to
filter rare variants

Interpretation Due to potential LD, single-variant associations may be
tag-SNPs

May be unclear which RVs are “driving” a significant RV association result using
aggregative testing, especially those considering both directions
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What is “rare”?

No formal threshold is defined for what qualifies a variant

as an RV. For GWAS, minimum MAF thresholds are

often applied to exclude SNPs that are underpowered for

single-variant association analysis - typically in the range of

0.5%–5.0%, depending on available sample size.

Current convention partitions variants into ultra-rare,

rare, low-frequency, and common, with respective

population MAF thresholds of 0.05%, 1% and 5% often

observed in the literature. For RV association testing, this

definition is more readily important, as it defines which

variants are eligible for analysis. While this threshold is

left to the investigator, 1% and 5% thresholds are

commonly applied in practice for common complex traits,

while even lower MAF (e.g., 0.1% or 0.05%) have been

used for cancer predisposition variants or rare Mendelian

diseases.

Defining variant sets

Conducting aggregative testing naturally requires defining

eligible variant sets for analysis, which generally is akin to

defining genomic region(s) by which overlapping RVs are

grouped. Such regions should be defined a priori, as they 1)

enumerate the anticipated multiple testing burden and 2) prevent

overfitting via selection of genomic regions that correspond to

chance RV enrichment. The most commonly applied region-

based testing unit is a gene (Figure 1), particularly for large-scale

agnostic scans (e.g., WES/WGS). More focused candidate gene

studies may examine a finer regional granularity, such as

individual exons or protein functional domains. Alternative

approaches to standard region-based testing include scan-type

statistics (Ionita-Laza et al., 2012; Schaid et al., 2013b), where the

testing unit is a sliding genomic window, and pathway/gene-set

testing (Wu and Zhi, 2013), where gene-level results may be

further combined across biologically-related sets of genes.

FIGURE 1
A diagram illustrating different rare variant types defined from annotations for aggregated rare variant association analysis.

Frontiers in Genetics frontiersin.org03

Chen et al. 10.3389/fgene.2022.1014947

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1014947


Types of RV tests

Many aggregative RV analysis methods have been proposed

in the literature, with the majority falling into two broad classes:

1) burden tests and 2) variance-component, or “kernel”, tests. For

the latter, the set-based Sequence Kernel Association Test

(SKAT) (Wu et al., 2011) and its variations (e.g., SKAT-O

(Lee et al., 2012)) are most widely applied, although other

competing approaches and modifications have been developed.

First, we must define some relevant notation for RV testing.

Specifically, let us consider a sequencing-based genetic

association study of N samples on some phenotype of

interest, defined by vector YN×1. For our purposes, we assume

Y to be continuous or binary in nature, as these phenotype classes

are broadly supported by most statistical methods for RV

association analysis. We define available genotype allelic

dosage data on M identified variants, GN×M, such that

Gij ∈ {0, 1, 2}. Some methods also allow for covariate

adjustment (e.g., age and sex), and we define the set of P

additional adjusting covariates by the matrix XN×P.

The first class of RV tests is a burden test. Generally, a

burden test generates a test statistic based upon a (potentially

weighted) sum of observed RVs, which implicitly assumes that

causal variants share effect directionality (e.g., benign vs

deleterious). The RV burden for subject i may then be

calculated as Bi � ∑M
j�1wjGi,j, where optional variant

weights are defined as w � (w1, . . . , wM)′. These weights

should be defined to reflect relative confidence in causal

status and/or anticipated magnitude of effect on the

phenotype of interest, and well-informed weight definitions

can substantially impact analysis results. One of the simplest

burden testing procedures is the collapsing and sum test

(CAST) (Morgenthaler and Thilly, 2007), which is a 2 ×

2 Fisher’s Exact Test for a binary RV carrier status for

case-control studies. In this test, burden is further reduced

to an indicator variable B*
i � I(Bi > 0) and samples are

classified in the contingency table by burden status. The

concept of variant burden has been generalized to a large

number of testing frameworks where a univariate exposure is

compared to an outcome of interest (e.g., combined

multivariate and collapsing test, weighted-sum statistic

test). Burden measures can also be used as predictors in

regression analysis if additional covariate adjustment is

desired. Adaptive burden testing approaches were

developed to incorporate data-driven approaches to

weighting and filtering of variants, including the variable

threshold test (Price et al., 2010) (Han and Pan, 2010).

Many of these adaptive burden tests employed

permutations to compute p-values, which can be

computationally burdensome. The burden test can also be

framed as a score test to derive analytical p-values, such that

the statistic QB � (∑N
i�1(Yi − Ŷi )Bi)2 follows a scaled χ21

distribution, where Ŷi is the predicted value of Yi under a

null model Yi � β0 +Xiβ + ϵi, X represents non-genetic

variables with effects β, and the genetic effects

corresponding to G are all fixed at zero.

In contrast to burden tests, kernel tests are robust to the

presence of non-causal variation and heterogeneity of

effect directionality. These tests are based upon measures of

genetic similarity in the form of a kernel matrix KN×N, where

Ki,j � κ(Gi, Gj) for some kernel function κ(·, ·) describing the
similarity between genotype vector Gi of subject i and

genotype vector Gj of subject j. A common kernel

function is the weighted linear kernel, such that

K � GWWG′, where W � diag( ���
w1

√
, . . . ,

���
wM

√ ) for the

vector of marker weights w. The score test statistic is then

given by the equation Q � (Y − Ŷ)′K(Y − Ŷ) where Ŷ is the

predicted value of Y under the null model. The null

distribution for Q then follows a mixture of χ2

distributions, which can be well-approximated by a variety

of methods or exactly computed.

SKAT was later extended to a generalized framework that

includes formulation of a kernel function for the burden test

score statistic, QB. SKAT-O, aka “Optimal SKAT” (Lee et al.,

2012), is a type of hybrid approach to RV testing that optimally

combines both burden and kernel statistics, QB and QS,

respectively, into a weighted average, such that

Qρ � ρQB + (1 − ρ)QS. Selection of ρ is conducted by SKAT-O

using a simple grid search over the unit interval. Also known as

omnibus tests, methods like SKAT-O are data-adaptive and

consider a broad spectrum of potential genetic architectures

rather than selecting one over the other. In general, there is

no uniformly most powerful test across all potential conditions,

since factors such as magnitude and direction of effect sizes,

relationships between effect size and MAF, and proportion of

causal variation all influence the relative power for a given test.

While the robust property of kernel tests has great appeal, a

burden test will be more powerful under conditions of high

causal variant proportion. For large agnostic scans (e.g., WES/

WGS studies), flexible omnibus tests like SKAT-O are often

recommended.

Many other RVmethods have been proposed that are neither

burden tests nor variance component tests, such as the

replication-based test (RBT) or p-value combination methods.

The RBT instead tests for enrichment of rare alleles in cases and

controls (Ionita-Laza et al., 2011). Alternatively, p-value

combination methods combine the group of RV p-values in a

given gene using either Fisher-like Method such as Fisher

(Derkach et al., 2013), TFisher (Zhang et al., 2020), GFisher

(Zhang and Wu, 2022), or some other transformation. These

methods include the Aggregated Cauchy Association Test

(ACAT) (Liu et al., 2019) which transforms p-values to the

Cauchy distribution, the Higher Criticism (HC) or generalized

HC test which combines ordered p-values using the HC statistic

(Xuan et al., 2014) (Barnett et al., 2017), and the Generalized

Berk-Jones (GBJ) test (Liu et al., 2021).
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Recent advances and challenges in
RV association analysis

RV association studies present a number of unique

challenges that have driven methodological development in

the last decade; however, many challenges remain outstanding.

We summarize our review of recent advances and challenges of

RV association analysis in Table 2. The essential themes in these

topics align with fundamentals of hypothesis testing: type I error

control, maximizing the statistical power, and how to model

different data types in a statistical test. For example, accounting

for population structure and extremely unbalanced case-control

designs address the challenge of inflated type I error in RV

association tests. Incorporating variant annotations and using

external controls aim to increase the statistical power of RV

association tests. Analysis of familial sequencing data needs to

model the inheritance patterns of genotypes and genotype

correlations among family members, treating related samples

as unrelated will lead to inflated type I error. Analysis with more

complex phenotypes requires modeling the additional

complexities in phenotypes in order to achieve well controlled

type I error and powerful test results. We provide a more detailed

review of each topic in the following sections.

Incorporating variant annotations in RV
analysis

The statistical power of most aggregative RV testing methods

is highly dependent on the proportion of truly causal variants

included in the RV set. Given that the functional relevance status

of individual variants is generally not known a priori, variant

filtering and/or weighting is common practice to leverage

biological knowledge and improve power, and many RV

testing methods are designed to flexibly accommodate variant

weights in the testing procedure. For burden tests, it has been

shown that the optimal weights will be proportional to the true

absolute variant effect sizes (King and Nicolae, 2014). Absent any

relevant functional annotation, weighting schemes based on

MAF, such as the Madsen-Browning weights (Madsen and

Browning, 2009) or beta density function weights (Wu et al.,

2011), are commonly employed. This is motivated by an assumed

inverse relationship between allele frequency and functional

impact imposed by strong purifying selection pressure on

highly damaging variants.

For gene-based RV testing, the simplest strategies

incorporating annotation involve variant filtering based on the

likely functional impact on the resulting protein product.

Standard bioinformatics annotation tools (Wang et al., 2010)

(Cingolani et al., 2012) (Mclaren et al., 2016) can rapidly assign

basic qualitative functional variant effects based on the open

reading frame of protein-coding gene transcript(s), and

prioritization of loss-of-function variants (i.e., nonsense,

splice-site disrupting, frame-shift indels) is commonly applied

given the severity of the effects on the resultant protein structure.

Variants that impose more modest changes to the amino acid

sequence (i.e., missense, in-frame indels) may be more likely

tolerated in relation to protein function, and a vast array of

functional impact prediction tools have been developed to

provide quantitative functional prediction scores to reflect the

likelihood of deleteriousness (Livesey and Marsh, 2020).

Synonymous and non-coding RVs may also impact a given

gene through other mechanisms beyond direct alteration of

the amino acid sequence, including disruption of regulatory

TABLE 2 Outline of advances and challenges of RV association analysis.

Topic Motivation/Challenges

Incorporating variant annotations There is growing knowledge available on potential variant impact on protein structure and function, and annotations
may provide useful information in selecting functional variants. However, relevant annotation may vary by gene and
phenotype, and annotation-informed filtering/weighting of variants may lead to improved or decreased statistical
power

Accounting for population structure Population structure is a primary confounding factor in genetic association analysis, and properly controlling for
these confounding effects may differ relative to common variants

Accounting for extremely unbalanced case-control
designs

Large biobanks with rare outcomes have led to extremely unbalanced case-control designs. This inflates type I error of
standard RV methods relying on large sample theory based asymptotic distributions

Increasing power using external controls To reduce the sequencing cost, often only cases and few controls are sequenced. In order to perform RV association
analysis, external controls are used. One main challenge of this design is the potential confounding batch effect from
different sequencing and processing platforms between cases and controls

Analysis of familial sequencing data Family based design has the advantage of being robust from population structure, it is also the standard way for
heritability estimation. It is important that RV association analysis methods can accommodate studies using the
family based design

Allowing for more complex phenotypes While case-control studies and analyses of quantitative traits are most common in RV analysis, RVmethods have also
been developed for multivariate phenotypes and time-to-event outcomes
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sequences as well as epigenomic impacts. Many such annotations

may also be cell-type specific, requiring consideration for the

phenotype under study. Appropriate consideration for variant

filtering and weighting may substantially improve statistical

power for RV association discovery (Byrnes et al., 2013);

conversely, misspecification of variant weights could lead to

loss of power by inadvertently removing and/or down-

weighting key disease-related functional RVs (Minica et al.,

2017).

Given the number and heterogeneity of available variant

annotations along with the uncertainty as to which annotations

are most relevant to a particular gene-phenotype relationship,

various methods have recently been proposed to dynamically

accommodate and combine multiple annotations. For example,

Wu et al. (Wu et al., 2013) proposed a multi-kernel approach

using perturbation to perform kernel-based testing while

simultaneously considering multiple candidate kernels, which

could be defined by various competing weighting schemes. Due

to the computational considerations of permutation/

perturbation-based strategies, He et al. (He et al., 2017a)

proposed the functional score test (FST), which similarly

accommodates multiple candidate variant weighting schemes

by partitioning the overall genetic effect attributable to the

various annotation sources. The authors then apply a minP

approach for combining test results across weight sets, and

derive a computationally efficient resampling-based procedure

for p-value calculation. More recently, Li et al. (2020) developed

STAAR, which applies principal components analysis to

matrices of various candidate annotation classes in order to

reduce the annotation dimensionality. For gene-based testing,

STAAR also considers testing stratified by variant classes, and

all tests are then combined under an omnibus using the ACAT

method.

Accounting for population structure in RV
analysis

The primary confounding factor in genetic association

analysis of both common SNPs and RVs is population

stratification, which is the systematic difference in allele

frequencies across sub-populations due to non-random

mating and genetic drift. Various statistical methods have

been successfully developed to address confounding by

population stratification for common SNP association testing

in genome-wide association studies. The most popular of these

approaches include principal component analysis (PCA) (Price

et al., 2006) and (generalized) linear mixed models (GLMMs)

(Kang et al., 2010). PCA-basedmethods often address population

stratification by adjusting for the leading PCs derived from the

genotype-dosage matrix as covariates in a regression-based

analysis. In contrast, GLMMs can simultaneously account for

population stratification and cryptic relatedness by modeling a

random effect whose covariance structure is defined by an

estimated genetic relatedness matrix (GRM).

Since most modern RV association testing methods are also

regression-based, both PC adjustment and GLMM-based

strategies can be readily accommodated to address population

stratification in RV analyses. However, it has been less clear

whether the same methods applied for common SNPs can be

similarly effective for RV association testing. From a population

genetics perspective, it has been argued that RV associations are

more prone to confounding effects of population stratification, as

RVs are likely to be more recent and thus will reflect finer

population substructure (e.g., regional geographic differences)

(Mcclellan and King, 2010) (O’connor et al., 2015). To this end, a

larger number of leading PCs could be required when performing

RV testing to account for more nuanced population stratification

(Mathieson and Mcvean, 2012). However, it has been shown that

this may not be sufficient, as additional PCs derived from

common SNPs may not capture fine-scale population

stratification (Persyn et al., 2018). This is commensurate with

other findings that demonstrate that common and RVs can

reflect systematically different patterns of structure (Mathieson

and Mcvean, 2012; Ma and Shi, 2020). Similarly, substantially

different PCs may be obtained when derived from genotype

matrices that are composed of common variants, RVs, and both

(Liu et al., 2013; Ma and Shi, 2020).

Given the uncertainty as to how to properly account for

population stratification in a regression-based analysis

framework for RVs, alternative strategies based on sample

matching have also been proposed. Matching based on genetic

ancestry typically involves the use of leading PCs and makes less

assumptions about the functional relationship of the PCs

confounding the association between RV genotypes and

outcome. Cheng et al. (2022) proposed a family of RV tests

based on conditional logistic regression (CLoMAT), along with a

matching algorithm based on PCA output. Another recently

developed method used local permutations (LocPerm) to

account for the population structure in the association test

(Bouaziz et al., 2021; Mullaert et al., 2021). LocPerm first

defines the K-nearest neighborhoods of each sample based on

top PCs calculated from common variants. Then it selects

permutations such that each phenotype is drawn from the

K-nearest neighbors. Simulation results by the authors showed

that LocPerm can control type I error rates under a variety of

study conditions. However, the permutation procedure may

require high computation cost when the sample size becomes

large.

Accounting for extremely unbalanced
case control design in RV analysis

The decrease in sequencing costs and the increase in large

biobanks established around the world now enable researchers to
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identify the role of RVs in complex and sometimes rare outcomes

(Backman et al., 2021). Many of these samples contain rich

phenotypic data through surveys and questionnaires as well as

linking to the electronic health record, which allows for

investigation of RV associations phenome-wide. Barring any

concerns of selection bias, it is generally optimal under these

study conditions to include all genotyped samples in an

association analysis. Since most diseases have a low prevalence

in these biobanks, this leads to association tests with extremely

unbalanced case-control samples. Many of the single RV and

multiple RV tests mentioned above, such as SKAT and weighted

versions of SKAT, take advantage of the score test framework to

dramatically increase computational efficiency of RV tests by

avoiding calculation of the likelihood or maximum-likelihood

estimator under the full model. In the case of severe imbalance,

violation of the large sample theory assumptions used to derive

the asymptotic distribution leads to inflated type I error rates of

the score test (Zhang et al., 2019). Recent methods have

addressed this by applying either Firth regression (Wang,

2014) or a saddle-point approximation (SPA) (Zhou et al.,

2018) to both single RV and multiple RV tests.

Firth regression uses a penalized likelihood approach to

remove bias from the maximum-likelihood estimates. As the

sample size increases, this penalization shrinks to zero; however,

in the instance of extreme imbalance, this term helps maintain

control of the type I error rate (Wang, 2014). A limitation of this

approach involves requiring the calculation of the maximum

likelihood under both the null and the full model for a likelihood

ratio test, which is computationally expensive in large biobank-

scale datasets and becomes impractical when considering RV

testing across the genome. Alternatively, instead of assuming a

normal approximation for the score test, application of SPA

estimates the null distribution using all the cumulants hence all

the moments in the case of severe imbalance and controls the

type I error rates well (Dey et al., 2017).

The SPA approach is implemented in SAIGE (Zhou et al.,

2018) and in REGENIE (Mbatchou et al., 2021) for testing single-

variant association across the genome in the case of extreme

imbalance. The SPA approach has also been used to extend

SKAT and SKAT-O testing of multiple RVs and avoid the

inflated type I error of those tests in the case of severe case-

control imbalance (Zhao et al., 2020). REGENIE also

alternatively implements approximate Firth regression to allow

for usable SNP effect sizes because the SPA approach can

sometimes fail to produce good estimates of SNP effect sizes

and standard errors. A comparison of these methods in the

United Kingdom Biobank testing for association in rare diseases

found that SAIGE and REGENIE (SPA and Firth) appropriately

controlled the type I error, but the SAIGE and REGENIE-SPA

had inflated effect-size estimates (Mbatchou et al., 2021).

Furthermore, REGENIE was 4.4 times faster than SAIGE in

terms of CPU time (Mbatchou et al., 2021). Finally, the SPA

approach has also been implemented in SPAGE to allow for

scalable genome-wide single-variant gene-environment

interaction analyses, which are well calibrated for severe case-

control imbalance (Bi et al., 2019).

Using external controls in RV analysis

Because RV analysis often requires tens of thousands of

samples to reach adequate statistical power, using available

external sequencing data as a source of controls is a cost-

effective approach for case-control RV association studies

(Wojcik et al., 2022). One major challenge of using external

controls is the potential confounding batch effect due to different

sequencing platforms and genotype calling bioinformatics

pipelines. For example, the sequencing depth between cases

and controls can vary considerably if cases are WES samples

(average depth 80x) and controls are low read depth WGS

samples from the 1,000 Genomes Project (average depth 7x)

(Genomes Project et al., 2015).

Several computational methods have been developed to

address these challenges (Table 3). When individual

sequencing data are available, statistical models have been

developed to incorporate the read depth or genotype

likelihood into the association test. Derkach et al. (2014)

developed a score statistic that uses the expected genotype

instead of the called genotype to account for the differences in

read depth. Hu et al. (2016) developed a likelihood-based

approach incorporating the sequencing reads depth directly

without calling the genotypes; however, due to the direct use

of raw sequencing reads, the computational cost might be high.

Chen and Lin (2020) proposed regression calibration (RC)-based

and maximum likelihood (ML)-based methods to incorporate

the genotype likelihood in the association test and also allow

inclusion of covariates to adjust for confounding, such as

population structure. When internal controls are available, Li

and Lee (2021) developed a weighted sum of score statistics to

allow inclusion of both the internal and external controls by

assessing the existence of batch effects between the internal and

external controls for each variant.

Methods have also been developed using publicly available

summary genotype counts of external controls, such as gnomAD

(Karczewski et al., 2020). Since summary counts have less

information than individual sequencing data, it is even more

challenging to correct for batch effects between cases and external

controls. When both internal controls and external summary

counts are available, Lee et al. developed a method iECAT-O (Lee

et al., 2017) that can use external summary counts when batch

effects between internal and external controls cannot be detected.

There are other methods developed that do not assume the

existence of internal controls and aim to adjust for the batch

effects between cases and external controls. ProxECAT

(Hendricks et al., 2018) assumes the non-functional variants

within a gene can be used as a proxy of how the variants are
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sequenced and called. The total number of rare alleles from

functional variants and non-functional variants are then

compared between cases and controls. TRAPD (Guo et al.,

2018) uses coverage summary statistics to keep high quality

positions and then uses synonymous variants to tune variant

filtering parameters between cases and controls. A burden test is

used assuming RVs are independent from each other and thus

can be pooled together from summary counts of individual

variants. RV-EXCALIBER (Lali et al., 2021) also uses coverage

summary statistics to keep high quality positions, instead of using

the raw summary counts from public controls, it adjusts them

using gene-wise and sample-wise correction factors and then

compares the corrected values from public controls with

observed values in cases. In addition to using coverage

summary statistics to filter variants, a recently developed

method CoCoRV (Chen et al., 2022) can provide consistent

filtering between cases and controls. It also uses a blacklist to filter

out potential problematic variants that show large discrepancies

between theWES andWGS cohort. CoCoRV also provides a way

to handle RVs in high linkage disequilibrium (LD) and can

perform ethnicity-stratified association analysis which

ameliorates potential confounding due to population structure.

A notable limitation of methods using summary counts is

that they cannot adjust for covariates, given that only the

summary information is available for controls. Therefore,

adjusting for the confounding due to population structure in

these methods remains challenging. Careful matching of race/

ethnicity between cases and controls is critical in these analyses.

Given that high-coverage WES (~80x) and WGS (~30x) external

control data are becoming more and more common, evaluating

the performance of methods modeling sequencing depth directly

or using simple read-depth based filtering criterion would

provide guidance on how to combine sequencing data sets in

association tests.

RV analysis of familial sequencing data

Familial or pedigree-based design has the advantage of being

robust to population stratification when using proper analysis

methods. It is also indispensable if the interest is to study the

effect of pathogenic de novo variation on risk of the disease. In

addition, pedigree data from previous linkage mapping efforts

might be sequenced for additional analysis (Ott et al., 2015).

TABLE 3 Summary of methods using external controls for improvement of statistical power.

Method External
control
data

Require
internal
control?

Require
sequencing
depth for
cases and
controls?

Method correcting
for batch
differences between
case controls

Can the
method
adjust
for
covariates?

Test

RVS (Derkach et al.,
2014)

Individual
genotype
likelihood

N N Modeling the effect of
sequencing depth

N Single variant based test, burden
test and variance component
based test

TASER (Hu et al.,
2016)

Individual Bam
files

N N Modeling the effect of
sequencing depth

N Burden test

Chen and Lin (Chen
and Lin, 2020)

Individual
genotype
likelihood

N N Modeling the effect of
sequencing depth

Y Single common variant based test

iECAT-Score (Li and
Lee, 2021)

Individual
genotypes

Y N Only use the external control
if no batch effect exists

Y Single variant based test for
common and rare

iECAT-O (Lee et al.,
2017)

Summary counts Y N Only use the external control
if no batch effect exists

N A combination of burden test and
variance component based test

ProxECAT
(Hendricks et al.,
2018)

Summary counts N N Use non-functional variants
as a baseline in the test

N Burden test based on rare allele
counts

TRAPD (Guo et al.,
2018)

Summary counts N ≥ 10 in 90% of
samples

Adjusting filtering criteria N Burden test based on sample
counts

RV- EXCALIBER
(Lali et al., 2021)

Summary counts Preferred ≥ 20 in 90% of
samples

Adjust the expected counts
sample-wise and gene-wise

N Burden test based on rare allele
counts

CoCoRV (Chen et al.,
2022)

Summary counts N ≥10 in 90% of
samples

Consistent filtering to keep
high quality variants

N Burden test based on sample
counts
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Recent advances in RV association analysis for pedigree data in

general can be summarized into two categories. The first category

includes methods developed to analyze RVs based on the

transmission disequilibrium test (TDT) or family-based

association test (FBAT) (Laird and Lange, 2006). The second

category includes the association test methods that adjust for

relatedness and population structure using mixed models.

RV association analysis for unrelated individuals has been

introduced to FBAT, which is robust to the presence of

population structure. For example, the burden test was

introduced to FBAT by De et al. (2013). Ionita-Laza later

introduced the SKAT-type test to FBAT (Ionita-Laza et al.,

2013) and showed that the statistical power for dichotomous

traits was comparable between a family-based study for 500 trios

and population-based study of 500 cases and 500 controls.

Hecker et al. (2020) recently proposed a general framework

for RV association tests including the burden test, SKAT-type

test, and higher criticism based test, which was more powerful

when the signal was sparse. By combining the p-values from

different RV association tests using ACAT (Liu et al., 2019),

Hecker et al. (2020) demonstrated the proposed method had

robust and more powerful performance than other TDT

extensions, such as RV-TDT (He et al., 2014), RV-GDT (He

et al., 2017b), and gTDT (Chen et al., 2015). Under the FBAT

model, the phenotype is treated as fixed and the genotypes as

random variables. Because FBAT conditions on the phenotype, it

is robust to different ascertainment schemes based on

phenotypes, such as selecting pedigrees enriched with cases

(Schaid et al., 2013a; Hecker et al., 2019). One disadvantage of

FBAT is that it conditions on the parental genotypes and does not

use between-family information (Schaid et al., 2013a; Ionita-Laza

et al., 2013), which can result in loss of power compared with the

association tests adjusting for relatedness using regression

models.

The second category of association methods account for the

relatedness in a regressionmodel. Schifano et al. (2012) and Chen

et al. (2013) developed similar RV association tests for a

quantitative trait using a linear mixed model. These methods

extend the SKAT method to handle pedigree data by including a

random variable to account for the correlation between

individuals within the same pedigree. The correlation matrix

between individuals within a pedigree can be defined using twice

the kinship coefficient (Sinnwell et al., 2014). If the pedigree

information is not explicitly available, often the GRM estimated

using genome-wide common variants is used. For binary traits,

the logistic mixed model approach GMMAT was developed by

Chen et al. (2016). To account for unbalanced case-control ratios

using the saddlepoint approximation and efficient resampling as

used in SAIGE (Zhou et al., 2018), Zhou et al. developed SAIGE-

GENE (Zhou et al., 2020) using the generalized linear mixed

model which can handle both binary and quantitative traits. For

the mixed model methods, they regard the genotype as fixed and

the phenotype as random. The relatedness within each pedigree

is then included in the covariance matrix of the phenotype.

Besides the mixed models, two similar retrospective likelihood-

based methods, PedGene (Schaid et al., 2013a) and FARVAT

(Choi et al., 2014) were also developed. As in FBAT, both

methods treat the phenotype as fixed, and the genotype as

random variables. The covariance matrix of genotypes

incorporates both the LD information and the pedigree

information, and a score statistic is derived. Power evaluations

have shown that for quantitative traits, based on a recent review

(Choi et al., 2014) (Larson et al., 2019), PedGene had similar

power to the mixed model based methods developed by Schifano

et al. (2012) and Chen et al. (2013). In addition to burden and

SKAT-like tests, a robust SKAT-O-like method was also

developed in FARVAT. FARVAT was written in C++ and has

a speed advantage over PedGene. Evaluations (Wang et al., 2016;

Fernandez et al., 2018) have shown that PedGene and FARVAT

are usually more powerful than TDT based methods such as RV-

TDT (He et al., 2014) or RV-GDT (He et al., 2017b). Even though

the regression model based methods that account for the

relatedness are likely more powerful than TDT based

methods, how well they can account for the population

structure might need further investigation (Mathieson and

Mcvean, 2012).

For RV association analysis using pedigree data, because the

two categories of methods have their own advantages and

potential disadvantages, it might be a good idea to try

methods in both categories and summarize their results for a

robust interpretation of the data.

Allowing for more complex phenotypes in
RV analysis

Many RV tests were developed to accommodate single binary

and/or continuous outcomes. However, a given study may collect

multiple and potentially highly related outcome measures. One

extension of the above described methods is to consider these

multiple correlated outcomes in order to increase statistical

power and reveal potential pleiotropy. As is the case for

testing association of multiple RVs with a single phenotype,

testing for association of RVs with a multivariate outcome

primarily uses either burden-like (Zhao and Thalamuthu,

2011; Zhu et al., 2015; Kaakinen et al., 2017) or SKAT-like

(Ray et al., 2016; Liu and Lin, 2018; Dutta et al., 2019; Liu

and Lin, 2019; Luo et al., 2020) approaches. Additional methods

used are a standard MANOVA approach (Ferreira and Purcell,

2009) and a regression approach that flips the outcomes and RV

predictor using proportional odds regression (MultiPhen) to test

for association of a group of phenotypes with the RV as an

outcome (O’reilly et al., 2012). However, no test among these is

uniformly most powerful and many of these methods are

sensitive to deviations from normality in the case of

multivariate quantitative phenotypes (Ray and Chatterjee, 2020).
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Another type of outcome that is especially common to

biobanks is time-to-event data. Cox proportional hazards

(PH) regression models are heavily used in this context, but

fitting the maximum partial likelihood for these models is often

not scalable to large GWAS. For that reason, kernel statistics

using martingale residuals in place of residuals from a

generalized linear model (e.g. SKAT) have been initially

proposed for gene- or region-based RV testing across the

genome (Chen et al., 2014; Larson et al., 2019), such as the

method implemented in rareSurvival software (Syed et al., 2021).

In the case of extremely unbalanced case-control designs,

SPACox has been proposed to correct the inflated type I error

rates in GWAS of RVs (Bi et al., 2020). This approach scales well

by first fitting a Cox PH regression model only once across the

genome-wide analysis and then using the SPA approach to

calibrate the score statistics.

Discussion

In this review, we have covered the basic background on RV

association testing using sequencing data, and outlined leading

areas of methodological development in RV association

analysis. The growth in availability of large datasets with

RVs measured will finally allow researchers to assess the

impact that RVs have on rare and common diseases. This

growing availability of large sequencing data not only makes

RV analyses feasible, but may yield novel analytical issues. For

example, many analytical issues may occur when trying to

coordinate RV analyses across multi-site/biobank studies

where incorporating all datasets into one conglomerated

analysis is near impossible due to data sharing concerns and

patient privacy. This means that RV analyses will likely require

federated analyses with each site performing the analysis at

their respective site for which results are combined afterward.

Given the large number of potential rare variants that may be

involved in a significant result, questions also remain as to how

to optimally validate rare variant findings and how to design

large-scale functional validation assays of the findings.

Regardless of these potential challenges, the methodological

advancements we have highlighted in this review demonstrate a

very active scientific community dedicated to tackling these

issues.
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Nomenclature

GLMM: Generalized linear mixed model

GRM: Genetic relatedness matrix

GWAS: Genome-wide association study

PCA: Principal components analysis

RV: Rare variant

CV: Common variant

SNP: Single-nucleotide polymorphism

Frontiers in Genetics frontiersin.org14

Chen et al. 10.3389/fgene.2022.1014947

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1014947

	Recent advances and challenges of rare variant association analysis in the biobank sequencing era
	Introduction
	Background on RV association testing methodology
	What is “rare”?
	Defining variant sets
	Types of RV tests

	Recent advances and challenges in RV association analysis
	Incorporating variant annotations in RV analysis
	Accounting for population structure in RV analysis
	Accounting for extremely unbalanced case control design in RV analysis
	Using external controls in RV analysis
	RV analysis of familial sequencing data
	Allowing for more complex phenotypes in RV analysis

	Discussion
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References
	Nomenclature


