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Abstract: In this paper, nano-montmorillonite (nano-MMT) was introduced into the microbial
mineralization system of strontium carbonate (SrCO3). By changing the nano-MMT concentration
and the mineralization time, the mechanism of mineralization was studied. SrCO3 superstructures
with complex forms were acquired in the presence of nano-MMT as a crystal growth regulator.
At low concentrations of nano-MMT, a cross-shaped SrCO3 superstructure was obtained. As the
concentration increased, flower-like SrCO3 crystals formed via the dissolution and recrystallization
processes. An emerging self-assembly process and crystal polymerization mechanism have been
proposed by forming complex flower-like SrCO3 superstructures in high concentrations of nano-MMT.
The above research indicated that unique bionic synthesis strategies in microbial systems could not
only provide a useful route for the production of inorganic or inorganic/organic composites with a
novel morphology and unique structure but also provide new ideas for the treatment of radionuclides.
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1. Introduction

Biomineralization refers to the process that an organism constructs a hierarchical structure based
on inorganic minerals under certain environmental conditions [1–5]. This process is highly regulated
by the biological environments that guide mineral nucleation and growth, including solution states,
biomacromolecules, and substrates [6–8]. Although the main components of many mineralized tissues
are the inorganic phases regulated by the upper biological environment during crystallization and
growth. The inorganic–organic advanced hybrid materials formed by the biomineralization process
have unmatched physical and chemical properties compared with synthetic materials. Inspired
by biomineralization in nature, some artificial mineralizations using bio-excitation techniques have
attracted considerable attention.

Strontium carbonate (SrCO3) is an important industrial raw material commonly used in the
preparation of electronic components, spectroscopic reagents, pyrotechnic materials, rainbow glass
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and other barium salts. At present, studies on the control of particle size and morphology of SrCO3

particles have become a hot topic. Commonly used preparation methods of SrCO3 mainly include
the supergravity method, solid-phase synthesis method, liquid-phase precipitation method, and
microemulsion method [9–13], etc. These methods have successfully prepared SrCO3 in the form of
needles, spindles, flakes, dumbbells, olives, and other similar morphologies.

Soil mineral–microbial interactions are the most basic biogeochemical system [4,14–18]. As an
important clay mineral, montmorillonite (MMT) often interacts with microorganisms at the cellular
level, participating in adsorption, aggregation, nucleation and mineralization. Dong et al. [19] used
Sheva bacteria to directly act on iron-rich clay minerals to reduce Fe3+ into Fe2+ in the clay minerals,
and used the valence transition of the process to treat variable-valent uranium pollution. Recent
advances in the understanding of the role and application of microorganisms for the remediation of
toxic metal and radionuclide-contaminated sites have also been reported. These advances include the
use of natural bacteria or genetically engineered bacteria to immobilize metal ions and radionuclides
using microbial enrichment and mineralization effects [20–23].

Previous research has concentrated on the use of microbial mineralization to achieve the purpose
of mineralizing radionuclides, and few researchers have utilized microbial mineralization techniques
to achieve regulation of the SrCO3 morphology. Herein, we used carbonate mineralized bacteria
(Bacillus pasteurii) as research objects to study the effect of nano-montmorillonite (nano-MMT) on the
morphology of SrCO3 by changing the amount of nano-MMT and mineralization time. The results
show that nano-MMT played a pivotal role in the dissolution and recrystallization of SrCO3. In this
process, with the increase in the amount of nano-MMT, nano-MMT regulated the transformation of
SrCO3 from cross-shaped to flower-like. In addition, we have found that the mineralization capacity
of microorganisms for Sr2+ can reach more than 95% in the presence of nano-MMT. This work not
only provides some theoretical references for understanding the biomineralization mechanism but also
provides some experiences for microbial mineralization and consolidation of radionuclides.

2. Materials and Methods

2.1. Materials

Strontium nitrate, peptone, NaCl, glucose, MMT and anhydrous ethanol were purchased from
Aladdin (Chengdu, China). All chemicals were not purified prior to use. And water was deionized.

2.2. Strain Culture

The liquid mediums were prepared by adding sodium chloride (10 g), glucose (20 g), and peptone
(10 g) to 1 L of deionized water (DIW) and the pH was regulated to 8.0 with HCl and NaOH. The
Bacillus pasteurii (ATCC 11859) was further inoculated into as-prepared liquid medium and cultured
in the thermostatic biochemical incubator at 30 ◦C for 24 h. The morphology of Bacillus pasteurii is
shown in Supporting Information, Figure S1.

2.3. Preparation of Nano-MMT Solution

A quantity of 1 g MMT was added to 1 L deionized water and then stirred at 500 r min−1 for one
week. The above solutions were then centrifuged at 3000 rpm for 3 min and the supernatant was the
desired single layer of nano-MMT solution.

2.4. Preparation of Strontium Carbonate Nanocrystals by Microbial Mineralization in the Presence of
Nano-MMT

The as-prepared liquid mediums were further placed in the high-pressure steam sterilization
pot at 120 ◦C for 20 min, then taken out on the clean bench for natural cooling. Then, 0.03 mol/L
urea/Sr(NO3)2 was further added to the as-prepared liquid medium via the microporous membrane.
Next, 0 mL, 3 mL, 6 mL, 9 mL and 12 mL nano-MMT solution were respectively injected into a the
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as-prepared liquid medium using a pipette. Finally, 3 mL of the concentrated bacterial liquid was
injected into the as-prepared liquid medium and then placed in the thermostatic biochemical incubator
for 6 h, 12 h, and 18 h, respectively. The obtained strontium carbonate nanocrystals were further
washed three times with absolute ethanol and pure water, respectively.

2.5. Characterization

The morphology and lattice of strontium carbonate were observed using SEM (Zeiss, Germany)
and TEM (Zeiss, Germany), respectively. The functional groups of strontium carbonate were examined
using X-ray photoelectron spectroscopy (XPS, Kratos Analytical, Kratos Tech, Manchester, UK) and
FT-IR (Thermo Nicolet,Waltham, MA, USA), respectively. The crystalline state of strontium carbonate
was examined using XRD (X Pert pro, PANalytical, Almelo, The Netherlands).

3. Results and Discussion

3.1. Effects of Mineralization Time on the Morphology of Strontium Carbonate in the Absence of Nano-MMT

Crystallization processes of SrCO3 nanocrystals were typically observed in the absence of
nano-MMT in a range of times. During different periods, different morphologies of SrCO3 were
obtained through microbial mineralization. Figure 1a shows a representative scanning electron
microscopy (SEM) image of SrCO3 particles which have a slightly spherical shape, obtained after a
mineralization time of 6 h. Figure 1b shows dumbbell-like SrCO3 obtained after a mineralization time
of 12 h. Interestingly, with the increase of the mineralization time, the dumbbell-like SrCO3 turned into
popcorn-like SrCO3 via the process of dissolution and recrystallization, see Figure 1c. By magnifying
Figure 1c, we can clearly see that there are many voids left by the death of the bacteria on the surface of
the SrCO3 crystal, indicating that the microorganism acts as a nucleation site for SrCO3 crystallization,
which is consistent with the experimental results of Chen et al. [24–26]. The change in the surface
morphology could reflect the dissolution and recrystallization process of nano-spherical SrCO3.
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Figure 1. Typical SEM images of SrCO3 nanocrystals obtained in the absence of nano-montmorillonite
(nano-MMT) when the mineralization time were 6 h (a), 12 h (b), 18 h (c,d), respectively.

The SrCO3 crystal collected in the absence of nano-MMT over different periods of time were
further examined using X-ray diffraction (XRD). The different diffraction angle position 2θ of 24.9◦,
29.3◦, 31.5◦, 36.1◦, 40.9◦, 43.9◦, 47.9◦ and 50.1◦ approximately correspond to (111), (002), (012), (130),
(220), (221), (132) and (023) of SrCO3 (PDF#05-0418), respectively, indicating that the mineralized
samples were orthorhombic SrCO3, see Figure 2a [27]. The XRD diffraction peaks are approximately
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the same under different time conditions, indicating that the crystallized properties of the mineralized
SrCO3 crystals are superior.
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Figure 2. (a) XRD patterns and (b) Fourier-transform infrared (FT-IR) spectrum of strontium carbonate
obtained in the absence of nano-MMT when the mineralization time was 6 h, 12 h, and 18 h, respectively.

As an effective and convenient means of distinguishing different crystal phases of strontium
carbonate, Fourier-transform infrared spectroscopy (FT-IR) was adopted. The typical characteristic
peak of 3438.1 cm−1 was attributed to the -O-H bond asymmetric stretching vibration and symmetric
stretching vibration, which is due to the water present on the surface of the SrCO3 crystals, see Figure 2a.
The absorption peaks at 703.4/854.1 cm−1 were characteristic vibrations of the CO3

2− out-of-plane and
in-plane bending vibration. Absorption bands at 1077.7 and 1476.1 cm−1 could be ascribed to the
asymmetric and symmetric stretching vibration peaks of CO3

2−. The characteristic peak of the amide
group appearing at 1643.3 cm−1 indicates that the soluble protein produced by bacterial metabolism
participated in the mineralization process of SrCO3.

3.2. Effects of Mineralization Time on Morphology of Strontium Carbonate in the Presence of Nano-MMT

The physicochemical characterization of single-layer nano-MMT is shown in Supporting
Information, Figure S2. The morphology of the SrCO3 could be successfully regulated by the
effect of nano-MMT. Figure 3 shows, in detail, the SEM images of SrCO3 collected from the microbial
mineralization system of nano-MMT as additives under the concentration of nano-MMT is 2 mL/L.
A novel bone-like SrCO3 crystal was obtained after the mineralization time of 6 h, see Figure 3a.
Interestingly, the bone-like SrCO3 crystals gradually transformed into rod-like SrCO3 crystals when the
mineralization time increased to 12 h, see Figure 3b. As the mineralization time increased, the bone-like
SrCO3 crystals were transformed into cross-shaped SrCO3 crystals via dissolution and recrystallization,
see Figure 3c. The above results indicate that the single layer nano-MMT has a certain regulation effect
on the morphology of SrCO3 nanocrystals.

Figure 4a shows that the diffraction peaks of the (111) and (112) crystal faces of the SrCO3

gradually increase as the mineralization time increased, indicating that the crystallinity was increased.
Furthermore, the analysis results of the FT-IR spectrum are consistent with the XRD pattern, see
Figure 4b. High-resolution transmission electron microscopy (HRTEM) and selected area electron
diffraction (SAED) were applied to characterize the SrCO3 crystal after reaction, see Figure 4c–e. The
SAED analysis of a number of nano-SrCO3 nanocrystals confirmed the polycrystalline nature, see
Figure 4d [28,29]. As shown in Figure 4e, the lattice fringes of SrCO3 nanocrystals display interplanar
spacings of 0.353 nm in the block, which are consistent with those of the (111) plane of the SrCO3

nanocrystals. These observations were further confirmed by the XRD and FT-IR results.
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Figure 4. (a) XRD patterns and (b) FT-IR spectrum of SrCO3 obtained over a range of times with a
nano-MMT concentration of 2 mL/L, (c) TEM image of a SrCO3, (d) selected area electron diffraction
(SAED) pattern shows that this block is polycrystalline SrCO3; (e) high-resolution transmission electron
microscopy (HRTEM) image of the SrCO3 showing continuous (111) lattice fringes.

3.3. Effects of Nano-MMT Concentrations on Morphology of Strontium Carbonate

To further explore the formation mechanism of cross-shaped SrCO3 in the presence of Nano-MMT,
varied amounts of nano-MMT were injected into the microbial mineralization system. When the amount
of nano-MMT was kept at 4 mL, the SrCO3 crystals possessed two morphologies, namely, spherical and
flower-like fusiform, see Figure 5b. When the amounts of nano-MMT increased to 6 mL, the flower-like
fusiform SrCO3 crystals were the predominant form, see Figure 5c. Further, when the amounts of
nano-MMT increased to 8 mL, unique flower-like SrCO3 crystals were obtained in the microbial
mineralization system, see Figure 5d. In the formation process of a flower-like superstructure, rod-like



Materials 2019, 12, 1392 6 of 11

SrCO3 crystals aggregated and slowly transformed into flower-like SrCO3 crystals via dissolution
and recrystallization. The concentration of nano-MMT has a significant influence on the formation
of SrCO3 crystals with unique morphologies because nano-MMT determined the supersaturation
of SrCO3 in mineralized systems. The formation of flower-like SrCO3 crystals may be attributed to
the high concentration of nano-MMT which led to excessive accumulation of rod-like SrCO3 crystals
around the monolayer nano-MMT [26].
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Figure 5. Typical SEM images of SrCO3 obtained at the mineralization time of 6 h with a Nano-MMT
concentration of 2 mL/L (a), 4 mL/L (b), 6 mL/L (c) and 8 mL/L (d), respectively.

Different amounts of nano-MMT could lead to the formation of varying phases of SrCO3 as
proven by observation of the XRD patterns, see Supporting Information, Figure S3a. As the amount of
nano-MMT increases, the characteristic peaks of (111) and (112) in the XRD pattern are significantly
enhanced. In addition, the intensity of the remaining characteristic peaks is relatively increased. The
above results indicated that the concentration of nano-MMT has a certain degree of influence on the
crystallization of SrCO3. Moreover, the results of FT-IR spectrum can further confirm the results of
XRD patterns, see Supporting Information, Figure S3b.

X-ray photoelectron spectroscopy (XPS) is used to analyze the chemical functional groups and
surface atoms of SrCO3. The C1s in SrCO3 mainly exist in three chemical states, see Figure 6c,d.
Compared with the SrCO3 obtained in the absence of nano-MMT, the three chemical states of C1s
did not change significantly, indicating that the addition of nano-MMT did not significantly change
the crystalline phase of SrCO3. The Sr3d spectrum was mainly attributed to the 3d3/2 and 3d5/2
(generated by spin-orbit splitting) at 346.9 and 350.4 eV, respectively, which could be assigned to
SrCO3, see Figure 6e,f. Energy dispersive spectrometery (EDS) was utilized to further comprehend
the composition of various elements in SrCO3 crystals. The EDS element mapping showed that the
Sr, C, O and N elements were evenly distributed on the surface of SrCO3 crystals obtained in the
microbial mineralization system, see Figure 6g Supporting Information Figure S4. Among them, the N
elements in the SrCO3 crystals were derived from bacterial secretions. Moreover, thermal analysis (TA)
data further verified the result that bacterial and nano-MMT took part in the crystallization process
of SrCO3 crystals, see Supporting Information, Figure S5. In addition, see Supporting Information,
Figure S6, shows that the morphology of the SrCO3 prepared by the chemical method was significantly
different from the microbial method.
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Figure 6. X-ray photoelectron spectroscopy (XPS) spectrum of SrCO3 obtained in the absence of
nano-MMT (a) and the presence of nano-MMT (b), respectively. C1s in the absence of nano-MMT (c)
and the presence of nano-MMT (d), respectively. Sr3d in the absence of nano-MMT (e) and the presence
of nano-MMT (f), respectively. (g) The EDS element mapping of the SrCO3 obtained in the presence
of nano-MMT.

In addition, conductivity changes are used to further characterize the concentration of free ions
in the solution. The decrease in the conductivity of the solution before and after the test reflects a
process in which the positive and negative ions in the solution combine to form a non-conductive
substance [30,31]. The conductivity of the mineralized solution in the presence of nano-MMT was
significantly lower than that of the mineralized solution in the absence of nano-MMT. However, with
the prolongation of the mineralization time, the conductivity showed a trend of increasing sharply
first and then, more gradually, see Supporting Information, Figure S7. The main reason for the
decrease in conductivity is attributed to the sufficient contact reaction between Sr2+ and CO3

2− in
the mineralized solution. In addition, there is a strong interaction between the Sr2+ cation and the
organic macromolecule, neutralizing the charged surface of the macromolecule [32]. Eventually, the
molecules form agglomerates, or the metal chelate compound Sr2+ is formed to slow the change in
the conductivity of the solution. However, the difference in the final conductivity values between
the two systems was small, further indicating that nano-MMT was involved in the crystallization of
SrCO3 crystals.

3.4. Mineralization Mechanism

Bacillus pasteuris decomposes urea as an energy source by secreted urease to produce CO3
2− in

the microbial mineralization system. The CO3
2− formed by the hydrolysis of urea combined with the

surrounding Sr2+ to form the amorphous strontium carbonate precursor, see Supporting Information,
Figure S8. The extremely unstable amorphous strontium carbonate precursor rapidly transforms
into SrCO3 crystals via dissolution and recrystallization. The spherical SrCO3 crystals gradually
aggregated together via dissolution and recrystallization under the action of microbial secretion to
form popcorn-like SrCO3 crystals. Because of its negative charge, Bacillus pasteuris itself acted as a
nucleation site to attract strontium ions and the popcorn-like SrCO3 crystals are formed under the
secretion of microorganisms during the dissolution and recrystallization [24].

Based on the above experimental results, we have proposed the formation mechanism of the
SrCO3 crystal with superstructures, as shown in Scheme 1. First, amorphous strontium carbonate
precursor was formed at the initial stage of mineralization and then aggregated to form the original
spherical SrCO3 crystals. With the mineralization time increasing, the nanostructured spherical
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morphology did not change significantly in the aggregated state and crystallization. Therefore, the
ordered arrangement of spherical SrCO3 nanocrystals aggregated primary building blocks (rod-like
SrCO3) formed via the van der Waals force and electrostatic interaction, and then gradually formed
cross-shaped SrCO3 aggregates via the dissolution and recrystallization process under the attraction
of nano-MMT [25,26]. With the increasing concentration of nano-MMT, a second nucleation process
occurs on the as-prepared cross-shaped surface. Then, the primary building blocks form a flower-like
SrCO3 crystal via a self-assembly process. This is consistent with the results proposed by Yu et al.
that nano-blocky calcium carbonate forms a complex ellipsoidal calcium carbonate superstructure
through both lattice geometric matching and the soft epitaxy effect [25]. These so-called intermediate
crystallites interact and align in some form by dipole and electrostatic interactions, and then the
intermediate crystallites were fused to each other to achieve the minimum total surface energy, and
finally, a flower-like superstructure of SrCO3 crystals was produced [28].
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3.5. Mineralization of Strontium Ions under Microbial Mineralization Systems

Based on the previous research, we further investigated the mineralization efficiency of microbial
synergistic nano-MMT to simulated radionuclide strontium. Figure 7 displayed the mineralization
capacity of strontium ions by Bacillus pasteurii and Bacillus pasteurii-nano-MMT under different
periods of time. With the extension of the mineralization time, the mineralization capacity of Bacillus
pasteurii to strontium ions can reach more than 90%, regardless of the presence or absence of nano-MMT.
However, the mineralization rate of Bacillus pasteurii to strontium ions was faster in the presence of
nano-MMT, which may be attributed to the adsorption of strontium ions onto the surface of nano-MMT,
thereby reducing the toxic effects of strontium ions on microorganisms [33].

Materials 2019, 10, x FOR PEER REVIEW  8 of 11 

 

so-called intermediate crystallites interact and align in some form by dipole and electrostatic 

interactions, and then the intermediate crystallites were fused to each other to achieve the minimum 

total surface energy, and finally, a flower-like superstructure of SrCO3 crystals was produced [28]. 

 

Scheme 1. Formation of flower-like with superstructure SrCO3 in the presence of nano-MMT. 

3.5. Mineralization of Strontium Ions under Microbial Mineralization Systems. 

Based on the previous research, we further investigated the mineralization efficiency of 

microbial synergistic nano-MMT to simulated radionuclide strontium. Figure 7 displayed the 

mineralization capacity of strontium ions by Bacillus pasteurii and Bacillus pasteurii-nano-MMT 

under different periods of time. With the extension of the mineralization time, the mineralization 

capacity of Bacillus pasteurii to strontium ions can reach more than 90%, regardless of the presence 

or absence of nano-MMT. However, the mineralization rate of Bacillus pasteurii to strontium ions 

was faster in the presence of nano-MMT, which may be attributed to the adsorption of strontium 

ions onto the surface of nano-MMT, thereby reducing the toxic effects of strontium ions on 

microorganisms [33,34]. 

In order to explore the effect of different pH values on the production of SrCO3, Figure S9, see 

Supporting Information, shows the effect of the pH value on the amount of SrCO3 produced by 

microorganisms. It can be seen from Figure S9 that a different pH value has a great influence on the 

production of SrCO3, and the yield of SrCO3 reaches the maximum at pH = 8. Interestingly, the yield 

of SrCO3 in the presence of nano-MMT was significantly higher than that of the control group, which 

may be attributed to the fact that nano-MMT can buffer the pH value of the mineralization system. 

The above results also demonstrate that pH value has a greater impact on biomineralization. 

10 20 30 40 50 60 70
0

20

40

60

80

100

Bacillus pasteurii

M
in

e
ra

liz
a

ti
o

n
 C

a
p

a
c
it
y
(%

)

Time (h)

Bacillus pasteurii-Nano MMT

 

Figure 7. Mineralization efficiency of strontium ions in microbial mineralization systems. 

4. Conclusions 

In summary, nano-MMT was used as a crystal growth regulator to prepare SrCO3 with a 

complex flower-like superstructure in a microbial mineralization system. The effects of nano-MMT 

Figure 7. Mineralization efficiency of strontium ions in microbial mineralization systems.



Materials 2019, 12, 1392 9 of 11

In order to explore the effect of different pH values on the production of SrCO3, Figure S9, see
Supporting Information, shows the effect of the pH value on the amount of SrCO3 produced by
microorganisms. It can be seen from Figure S9 that a different pH value has a great influence on the
production of SrCO3, and the yield of SrCO3 reaches the maximum at pH = 8. Interestingly, the yield
of SrCO3 in the presence of nano-MMT was significantly higher than that of the control group, which
may be attributed to the fact that nano-MMT can buffer the pH value of the mineralization system.
The above results also demonstrate that pH value has a greater impact on biomineralization.

4. Conclusions

In summary, nano-MMT was used as a crystal growth regulator to prepare SrCO3 with a complex
flower-like superstructure in a microbial mineralization system. The effects of nano-MMT concentration
and mineralization time on the phase transition and morphology of SrCO3 were systematically studied.
An emerging self-assembly process and crystal polymerization mechanism have been proposed by
forming complex flower-like SrCO3 superstructures in high concentrations of nano-MMT. These results
indicated that unique bionic synthesis strategies provide a useful route for the production of inorganic
or inorganic/organic composites with distinctive morphologies and unique structures in microbial
mineralization systems but also provide new ideas for the treatment of radionuclides.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/12/9/1392/s1,
Figure S1: (a) Bacillus pasteurii colony, (b) SEM of bacillus pasteurii mycelium, Figure S2: (a) TEM images of
nano-MMT, where the inset shows pictures of nano-MMT suspension, (b) XRD patterns of nano-MMT, Figure S3:
(a) XRD patterns and (b) FT-IR spectrum of strontium carbonate obtained using varying amounts of nano-MMT,
Figure S4: EDS spectrum of strontium carbonate, Figure S5: TGA spectra of mineralized samples in the absence of
additives and the presence of nano-MMT, respectively, Figure S6: Typical SEM images of SrCO3 were obtained by
chemical method. (a) SrCO3 were obtained in pure water, (b) mineralized samples were obtained in the presence
of nano-MMT, Figure S7: SEM of amorphous SrCO3 precursor in the early stage of microbial mineralization,
Figure S8: Relationship of conductivity with time in different mineralized solutions, Figure S9: The effect of pH
values on the yield of SrCO3.
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