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Large numbers of transients visit big cities, where they come into contact with many people at crowded
areas. However, epidemiological studies have not paid much attention to the role of this subpopulation in
disease spread. We evaluate the effect of transients on epidemics by extending a synthetic population model
for the Washington DC metro area to include leisure and business travelers. A synthetic population is
obtained by combining multiple data sources to build a detailed minute-by-minute simulation of
population interaction resulting in a contact network. We simulate an influenza-like illness over the contact
network to evaluate the effects of transients on the number of infected residents. We find that there are
significantly more infections when transients are considered. Since much population mixing happens at
major tourism locations, we evaluate two targeted interventions: closing museums and promoting healthy
behavior (such as the use of hand sanitizers, covering coughs, etc.) at museums. Surprisingly, closing
museums has no beneficial effect. However, promoting healthy behavior at the museums can both reduce
and delay the epidemic peak. We analytically derive the reproductive number and perform stability analysis
using an ODE-based model.

I
nfluenza places a huge annual burden on society. It is estimated that, in the US alone, the total annual economic
burden of influenza epidemics amounts to $87.1 billion1. In order to develop and implement effective inter-
ventions to reduce the spread of influenza, it is necessary to understand the interaction patterns within the

population and the consequences of interventions on these interactions.
Population mixing patterns can be very complex, especially in large cities, in part because the population itself

fluctuates significantly over time. Big cities attract a large number of transients, such as tourists and business
travelers. For example, Washington DC is estimated to have 50,000 transients each day on average. They usually
visit high traffic areas in the city and come into contact both with each other and also with area residents. Hence
they may reasonably be expected to play a significant role in spreading disease. However, most epidemiological
modeling studies have ignored the role of this subpopulation in epidemics. In the present work we explore the
impact of transient populations—tourists and business travelers—on influenza-like illnesses (ILI) in Washington
DC. We also evaluate intervention strategies targeted at major tourism locations where a lot of mixing happens.

Our approach uses two complementary techniques. In the first, we develop a synthetic population-based model
that we use to simulate resident and transient activities in detail in order to model their interactions. Synthetic
population-based models have been widely used to study epidemics and epidemic interventions, for example, to
study the vulnerability of individuals to contract the infection3,5 and to study the effect of interventions such as
social distancing and vaccination distribution6,7. In addition, given the synthetic population-based model and the
individual’s activity patterns, we can obtain a synthetic social network reflecting the dynamical contact patterns of
individuals during a time period. This approach is preferable to study the spread of infectious diseases than the
assumption of a static social network8.

Simulations with and without the transient population allow us to quantify the difference in epidemic char-
acteristics such as the attack rate and the day of the peak in the epidemic curve that are due to the transients. In the
second approach, we develop several ordinary differential equation (ODE) based models to derive quantities such
as the reproductive number and fixed points. Mixing rates required for these models are calibrated to contact
patterns induced by the synthetic population model. We also model interventions centered on four major tourist
destinations around the National Mall.

Very few studies have been done to understand the effect of transient populations on epidemics. Ferguson et al.9

have modeled air travel for the United States and Great Britain but they assumed that tourists stay at hotels and do
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not travel within the city. Hence in these models the only place
transients come in contact with residents is at hotels. However, in
big cities like Washington DC, there are some popular tourist desti-
nations that many tourists visit and are highly crowded. For example,
the National Air and Space Museum in Washington DC has more
than 80,000 visits every day. Tourists come into contact with many
people, including both residents and other tourists, at these places.
Intuitively, this can have a significant impact on an epidemic because
transient subpopulations serve as a constant reservoir of susceptible
people (as there is a constant flux of new transients).

In addition to9, there are many deterministic and stochastic
approaches addressed the effect of transients using metapopulation
networks17–26. A common assumption with these models is the
homogeneous mixing among subpopulations. However, it is not
necessary that every individual in a subpopulation has contacts with
individuals from other subpopulations. Through the individual-
based model, we will show that the mixing among subpopulations
is heterogeneous and the number of residents who are in contact with
the transient subpopulation is less than the total number of residents.

Here, we extend a synthetic population model for the Washington
DC Metro Area to include a transient population consisting of leisure
and business travelers. This population was constructed by combin-
ing data from Destination DC10, the Smithsonian Institution and
other geo-spatial data (detailed in the Supplementary Information).
We simulate an influenza-like illness (ILI) for the Washington DC
metro area both with and without transients to evaluate their effect.
Results show that transients do indeed have a significant impact on
disease dynamics of the city.

Since some tourist destinations attract very large numbers of visi-
tors each day, they present a natural target for interventions. We
evaluate two kinds of interventions: closing major tourist destina-
tions (the four most visited museums around the National Mall),
which is an attempt at social distancing; and a ‘‘healthy behavior’’
intervention, which represents a temporary, location-specific reduc-
tion in transmission rates, where we assume that promoting sanitary
habits at these locations, such as hand hygiene, covering your cough,
and other behavioral measures, can reduce the spread of the disease
at these locations. We find that, on the one hand, surprisingly, closing
the museums does not help. On the other hand, the healthy behavior
intervention, even applied temporarily to only half the visitors at
fairly low efficacy, can make a significant difference in the epidemic.
In addition to the agent-based simulation, we study the spread of the
epidemic analytically using a system of parameterized ODEs, by
assuming homogeneous mixing within and between resident and
transient populations. We extract the contact matrix and the dura-
tion of every contact from the synthetic social network and derive the
average number of contacts per day per individual (contact rate) and
the average duration per contact. These are used to calibrate the
ODEs’ mixing rate parameters, which are used to find the reproduct-
ive number analytically. This number reflects how far the system
resides from the epidemic-free scenario.

We also use the ODE model to perform stability analysis, deter-
mining the conditions for epidemic-free equilibrium, asymptotic
epidemic die-out and permanently endemic equilibrium. More-
over, the synthetic social network reveals the actual mixing between
residents and transients. For instance, not every resident has contact
with transients. Consequently, the ODE model is refined by dividing
the resident population into two subpopulations, which in turn leads
to a refinement for the reproductive number. A further refinement of
the ODE model is used to evaluate the impact of the two different
intervention strategies. Results obtained from the ODE model are
qualitatively similar to the agent-based simulation results.

Results
We summarize our results here, before describing them in detail
further below.

Our simulations show that the presence of transients has a stat-
istically significant impact on the number of resident infections at
peak (making them almost 23% higher), the number of resident
infections over the course of the epidemic (making them 9% higher),
and the time when the disease peaks (making it about 10 days earlier).

We model interventions aimed at the four most-visited locations
around the National Mall. Our simulations show that closing these
locations for a short period (we considered two scenarios, involving
closing these locations for 5 days or 14 days) does not help. This is
likely because the tourists who would have visited these locations go
to other, smaller, tourist destinations and residents who would have
visited these locations continue their other activities and hence there
is still considerable mixing among these populations.

On the other hand, the ‘‘healthy behavior’’ intervention can sig-
nificantly reduce the epidemic, depending on the efficacy of the
intervention at reducing transmission within those four locations.
We assume a compliance rate of 50%, i.e., only half the visitors to
these locations engage in healthy behavior. We find that if the inter-
vention has the effect of reducing infectivity and susceptibility within
these locations to 80%, 60%, 40% or 20% of the value without sani-
tizer use, it can delay the peak by 2 to 7 weeks. The number of
residents infections at peak is reduced by 6% to 37.5%, and the
cumulative number of resident infections over 120 days is reduced
by 3.6% to 34.6%.

We also develop three successively refined ODE models. The first
considers only two compartments, corresponding to residents and
transients. Since the transients only stay in the city for a short while (5
days on average), there is a birth-death process associated with this
compartment. We use this model to derive the effective reproductive
number for the system, as a function of the transmission rates of the
subpopulations. Surprisingly, even if the reproductive number for
each subpopulation is less than 1, the overall R0 can be greater than 1,
leading to an epidemic.

Since not all residents come into contact with transients, we refine
the model to create separate compartments for residents who do and
do not come into contact with transients. Since all transients come
into contact with residents, we do not need to split that compart-
ment. Analysis of this model shows that the most effective means of
reducing the reproductive number below 1 (thereby eliminating the
epidemic) is to reduce the contact rate between transients and resi-
dents. Reducing the contact rate between residents who do and do
not come into contact with transients is not enough to reduce the
reproductive number below 1.

Third, in order to analyze the healthy behavior intervention, we
further refine the ODE model to create compartments corresponding
to the people who go to the intervention locations and those who do
not. For compliance rate of 50%, if the transmissibility is reduced to
20% and 40% of its value without the practice of healthy behavior, the
reproductive number is reduced by 36% and 27%, respectively. We
also find that the largest reduction of reproductive number is 58%
when the compliance rate and the reduction of transmissibility are
100%. In addition, given higher compliance rates, the reduction of
reproductive number exhibits a nonlinear response with the efficacy
of healthy behavior.

Effect of transients. A synthetic population is a disaggregated
(‘‘agent-based’’) representation of the population of a region. It is
constructed by combining data from multiple sources, such as the
American Community Survey, the National Household Travel Sur-
vey, Navteq, Dun & Bradstreet, the National Center for Education
Statistics, and others. Together these datasets provide information
about demographics, activity times and durations, and activity
locations. A synthetic population, therefore, is a model of who
people are, where they go during the course of a day, and
consequently, with whom they come into contact. This allows the
induction of a synthetic social contact network, which is a model of
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the network over which disease propagation happens. This approach
has been used for computational epidemiology for more than a
decade11.

We simulate an influenza-like illness (ILI) over the synthetic social
contact network for the Washington DC metro area. We simulate the
disease spread for 120 days both with and without the transient
population. Initial infections are the same for all cases. Only residents
are initially infected. Transients are assumed not to bring disease to
the city, though they can get infected during their stay in the area and,
after an incubation period, pass the infection on to others. This is a
best-case scenario – if we assume that a (small) fraction of transients
are infected when they arrive, epidemic outcomes are worse. To
simplify the model, transients are assumed to stay in the city for
exactly five days, which is the average length of a trip according to
data from Destination DC. When they leave, they are assumed to be
replaced by new incoming susceptible transients with exactly the
same demographics and activity schedules. Though somewhat
unrealistic, this greatly simplifies the computational implementation
of the model.

As we are interested in the effect of transients on the number of
residents being infected, Figures 1, 2, and 3 show scatter plots for the
fraction of residents infected at peak, the fraction of residents
infected cumulatively over the simulation period (120 days), and
the day when the the disease peaks, respectively. This helps to show
the differences in the variances of different scenarios and motivates
our choice of statistical tests (see Supplementary information for
details on statistical tests). We also create box plots for the fraction
of the resident population currently infected at peak (Figure 4), the
fraction of the resident population infected cumulatively over 120

days (Figure 5), and the day of peak (Figure 6). The simulations show
that the disease peaks about 10 days earlier and there are about 23%
more resident infections on average at peak when the transients are
considered. Over the period of 120 days, 9% more residents are
infected. All these differences are statistically significant (t-test, a
5 0.05, Supplementary Information). Specifically the difference in
the number of the number of infections at peak is very important
from a public health perspective because it determines elements of
response such as the number of beds required in hospitals.

Analysis. We study a corresponding ODE (SEIR) model with two
compartments, residents and transients. As transients are assumed to
stay for 5 days in the city, there is a birth and death process for
transients with rate r 5 0.2. Given the synthetic social network
which is composed of contacts among individuals and the duration
of each contact, we can compute the average contact rate and the
average duration per contact between resident and transient
populations. These computed values are used to set the parameters
of the ODE model.

The average contact rate and duration per contact for a resident
individual with other residents are 99.7 contacts per day and
0.62 hours, respectively. On the other hand, the contact rate and
duration per contact for a resident individual with transients are
242.9 contacts per day and 0.11 hours, respectively. In addition,
the contact rate and duration per contact for a transient individual
with residents are 4010.8 contacts per day and 0.11 hours, respect-
ively. The contact rate between a transient individual and other
transients is 719.14 contacts per day and the average duration of each

Figure 1 | Scatter plots showing the fraction of residents infected at peak
vs. group where groups are defined as follows: 1 - No interventions
(residents only), 2 - Museums closed for 5 days (residents only), 3 -
Museums closed for 14 days (residents only), 4 - Healthy Behavior 80%
(residents only), 5 - Healthy Behavior 60% (residents only), 6 - Healthy
Behavior 40% (residents only), 7 - Healthy Behavior 20% (residents only),
8 - No interventions (residents 1 transients), 9 - Museums closed for 5
days (residents 1 transients), 10 - Museums closed for 14 days (residents
1 transients), 11 - Healthy Behavior 80% (residents 1 transients), 12 -
Healthy Behavior 60% (residents 1 transients), 13 - Healthy Behavior
40% (residents 1 transients), 14 - Healthy Behavior 20% (residents 1
transients). It gives an idea about the variances for each group. For

statistically comparing various groups (supplementary information), we

remove outliers from each group.

Figure 2 | Scatter plots showing the fraction of residents infected
cumulatively vs. group where groups are defined as follows: 1 - No
interventions (residents only), 2 - Museums closed for 5 days (residents
only), 3 - Museums closed for 14 days (residents only), 4 - Healthy
Behavior 80% (residents only), 5 - Healthy Behavior 60% (residents only),
6 - Healthy Behavior 40% (residents only), 7 - Healthy Behavior 20%
(residents only), 8 - No interventions (residents 1 transients), 9 -
Museums closed for 5 days (residents 1 transients), 10 - Museums closed
for 14 days (residents 1 transients), 11 - Healthy Behavior 80% (residents
1 transients), 12 - Healthy Behavior 60% (residents 1 transients), 13 -
Healthy Behavior 40% (residents 1 transients), 14 - Healthy Behavior
20% (residents 1 transients). It gives an idea about the variances for each

group. For statistically comparing various groups (supplementary

information), we remove outliers from each group.
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contact is 0.15 hours. Using the next generation method12,13, the
overall reproductive number (also reported by14) for the system is
given by,
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numbers for the resident and transient populations, respectively.

The rates brRr and btRt are the infection transmission rates within
resident and transient population, respectively. The rate brRt repre-
sents the infection rate from transients to a single resident, while the
rate btRr represents the infection rate from residents to a single
transient. Rates c and m are the rates at which an exposed individual
becomes infected and an infected individual recovers, respectively.

The term
bt?rbr?tc

m czrð Þ mzrð Þ is called the competing reproductive num-

ber (Rc
o), which represents the average number of secondary infected

cases in a susceptible population caused by an infected individual
from the other population.

Using the Jacobian matrix for the homogeneous mixing differ-
ential equations, we derive the competing reproductive number by
assuming that there is no mixing within each population, i.e. brRr 5

btRt 5 0. Details about the Jacobian matrix and the derivation can be
found in the Supplementary Information.

The system of differential equations has three equilibrium points:

1. Disease-free equilibrium point Ro , 1, where initially infected
cases recover without causing a cascade of new infections. In this
case, the two populations are susceptible at equilibrium.

2. Asymptotic epidemic die-out point Ro . 1 and Rt
ov1, where the

disease spreads in both populations. At equilibrium, residents
are either susceptible or recovered and transients are susceptible
because infected transients leave the city and are replaced by
susceptible transients, while the transient reproductive number
is below 1.

3. Transient endemic point Ro . 1 and Rt
ow1, where the disease

persists in the transient population. Due to the assumption that
every resident has contacts with transients, all residents even-
tually contract the infection and recover. However, the synthetic
social network reveals the fact that not all residents meet tran-
sients. Therefore, a more detailed model is introduced to distin-
guish between residents who have contacts with residents only
and residents who have contacts with residents and transients.

The visit time duration has an impact on the overall attack rate for
transients and residents. Thus, we study the sensitivity of the overall
attack rate with respect to the visit duration, and we find that the
attack rate increases nonlinearly as the visit duration becomes longer
as shown in the Supplementary Information. We study the sensitivity
of the overall reproductive number and the attack rate with respect to
all four infection transmission rates on which they depend. We
evaluate the overall reproductive number and the attack rate as a
function of two infection rates, while fixing the other two infection
rates at their estimated values for the following cases: Ro as a function
of Rr

o and Rt
o, Ro as a function of Rr

o and Rc
o br?tð Þ, Ro as a function of

Figure 3 | Scatter plots showing the day of peak vs. group where groups
are defined as follows: 1 - No interventions (residents only), 2 - Museums
closed for 5 days (residents only), 3 - Museums closed for 14 days
(residents only), 4 - Healthy Behavior 80% (residents only), 5 - Healthy
Behavior 60% (residents only), 6 - Healthy Behavior 40% (residents only),
7 - Healthy Behavior 20% (residents only), 8 - No interventions (residents
1 transients), 9 - Museums closed for 5 days (residents 1 transients), 10 -
Museums closed for 14 days (residents 1 transients), 11 - Healthy
Behavior 80% (residents 1 transients), 12 - Healthy Behavior 60%
(residents 1 transients), 13 - Healthy Behavior 40% (residents 1
transients), 14 - Healthy Behavior 20% (residents 1 transients). It gives an

idea about the variances for each group. For statistically comparing various

groups (supplementary information), we remove outliers from each group.

Figure 4 | Comparison of various scenarios (residents only, residents 1 transients, and two intervention strategies, closing museums (four most-
visited locations) and practice of healthy behavior (at these museums with the compliance rate of 50%), with 50 simulations for each case) in terms of
the fraction of residents infected at peak as shown in the box plot. Significantly more residents are infected at peak when transients are considered (see

Supplementary Information for the statistical significance of the differences). Closing four major tourism locations does not reduce the peak number

infected (in the presence or absence of transients). This might be because we assume that when museums are closed, transients go to other tourism places

and residents continue other activities and hence there is still considerable mixing. However, practice of healthy behavior at these museums could make a

significant difference (both in the presence and absence of transients), depending upon how much it reduces the person-person transmission rate.
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Rr
o and Rc

o bt?rð Þ, Ro as a function of Rt
o and Rc

o br?tð Þ and Ro as a
function of Rt

o and Rc
o bt?rð Þ.

The first case is shown in Figures 7 and 8 and the other four cases
are shown in the Supplementary Information. In Figure 7, even if the
reproductive numbers Rr

o and Rt
o are less than 1, the overall repro-

ductive number Ro can be greater than 1 and the epidemic spreads in
the two populations. This observation is consistent with the non-
endemic disease equilibrium point where there is no endemic equi-
librium for the transient population. The endemic equilibrium point
is observed for Rt

ow1 and the corresponding attack rate becomes
high (,0.45). Also the two figures show that the transient reproduct-
ive number changes slower than the resident reproductive number
when their infection rates are changed similarly between 0 and 2.

A more detailed model. The above model considers homogeneous
mixing between resident and transient populations. But not all
residents meet transients – in the synthetic population model, out
of 4.1 million residents, only ,734,000 residents meet transients.
Thus, we divided the two populations into four subpopulations:
residents who meet residents only (denoted by rr in the following),
residents who meet residents and transients (rt), transients who meet
transients only (tt), and transients who meet transients and residents
(tr).

In the synthetic population model, all transients come in contact
with residents. Therefore, the subpopulation of transients who only
meet transients is not considered, i.e., tt 5 0. The contact pattern and
the infection transmission rates among these four subpopulations are
as shown in Figure 9. There are ten infection transmission rates in the

model, of which three are zero because tt 5 0, as shown in Figure 9.
The remaining seven non-zero transmission rates are used to find a
new reproductive number Ro.

To study the effect of each infection transmission rate on the
reproductive number, we sweep the value of a single infection rate
between 0 and 2, while the other infection rates are kept constant at
their estimated values. In Figure 10, we show the reproductive num-
ber as a function of infection rates brrRrr, brtRtr, and btrRrt (the four-
letter subscripts indicate the two subpopulations that are coming into
contact). The figure shows that reducing the infection transmission
rates between residents who have contacts with transients (rt) and
transients (tr), brtRtr and btrRrt, is the most effective strategy to
reduce the reproductive number below 1. On the other hand, redu-
cing the infection rate among residents who only have contacts with
other residents brrRrr slightly reduces the reproductive number, but
it remains above 1. In the Supplementary Information, we also evalu-
ate the reproductive number as a function of brrRrt, brtRrr, brtRrt and
btrRtr. Epidemic results obtained from the ODE model using four
subpopulation, using contact rates obtained from the synthetic social
contact network, are qualitatively similar to the simulation results.

Intervention strategies. We study different intervention strategies
using both agent-based model and ODE model. Starting with the
agent-based model, to investigate the intuition that major tourist
locations like the National Air and Space Museum (NASM), the
National Museum of Natural History (NMNH), the National
Museum of American History (NMAH), and the National Gallery
of Art (NGA), which have about 40000 to 80000 visits (including
visits from residents and transients) per day, have a big impact on the

Figure 5 | Comparison of various scenarios (residents only, residents 1 transients, and two intervention strategies, closing museums (four most-
visited locations) and practice of healthy behavior (at these museums with the compliance rate of 50%), with 50 simulations for each case) in terms of
the fraction of residents infected cumulatively over 120 days as shown in the box plot. There are more residents infected over the period of 120 days when

transients are considered. Once again, closing museums does not help. Reducing person-person transmission rate at the same locations to 60% of its

nominal value for only half the visitors could be almost as good as removing transients entirely. Reducing transmission rates further to 40% or 20%, makes

an even bigger difference. The results in the absence of transients are similar to the results in the presence of transients.

Figure 6 | Comparison of various scenarios (residents only, residents 1 transients, and two intervention strategies, closing museums (four most-
visited locations) and practice of healthy behavior (at these museums with the compliance rate of 50%), with 50 simulations for each case) in terms of
the day of peak prevalence as shown in the box plot. The presence of a transient population in the city makes the outbreak peak earlier as compared to a

scenario with residents only. Closing major museums does not delay the peak (both in the presence and absence of transients). However, using promoting

healthy behavior at these museums could delay the outbreak considerably (2 to 5 weeks in the presence of transients and about 10 days to at least a couple

of months (disease does not reach peak during the simulation period of 12 days when efficacy is assumed to be 40% and 20%) in the absence of transients).
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epidemic, we looked at the infections which happen at these loca-
tions. In a simulation this is straightforward to track, though of
course, this cannot be determined in reality. We find that the num-
ber of infections at these four locations are approximately doubled
when transients are considered (Supplementary Information). Also,
as the transients stay for a short period of time and at the end of their
trips, new, uninfected, but susceptible transients replace them, there
is an almost constant number of susceptible and infected people at
these locations, making them prominent sites for infection. This
leads us to investigate interventions focused at these locations for
reducing the epidemic.

Closing museums. A commonly studied intervention to reduce
infections is to apply social distancing measures like closing
schools, work places etc., which reduces mixing and hence

infections. Here, as we are interested in reducing the impact of
transients, we model closing the four big museums for a few days
when the number of infections reaches a threshold. We assume that
when museums are closed tourists go to other tourist locations and
residents visiting these museums go back to their normal daily
schedules. We simulate two cases:

. When the current number of infections (residents 1 transients)
reaches 50,000, we close these museums the next day for 5 days.

. When the current number of resident infections reaches 50,000,
we close these museums the next day for 14 days.

There are about 12.5% and 14.5% more resident infections (stat-
istically significant, see supplementary information) at peak when
museums are closed for 5 days and 14 days, respectively. Over the
period of 120 days, there are 9% and 8.8% more residents infected

Figure 7 | Evaluation of the reproductive number Ro in eqn.1 as a function of the resident reproductive number Rr
o and transient reproductive number

Rt
o while the competing reproductive number Rc

o equals its estimated value 0.5359. The reproductive number is evaluated by sweeping the infection rates

values brRr and btRt between 0 and 2 and changing Rr
o and Rt

o accordingly.

Figure 8 | Evaluation of the attack rate as a function of the resident reproductive number Rr
o and transient reproductive number Rt

o while the competing
reproductive number Rc

o equals its estimated value 0.5359. The attack rate is evaluated by sweeping the infection rates values brRr and btRt between 0 and

2 and changing Rr
o and Rt

o accordingly and evaluate the final number of infected residents and transients.
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(though not statistically significant) when museums are closed for 5
days and 14 days, respectively. None of the cases make any difference
in terms of the day of peak as compared to the case with no inter-
vention. The fraction of infections that happen at the four big
museums are slightly smaller, as expected.

In order to understand these outcomes, we calculate the number of
contacts and duration per contact within and between these four
subpopulation when museums are closed. We find that when the
museums are closed, though the number of contacts within and
between rt and tr subpopulations decreases, duration per contact
in the population as a whole increases. This happens because people
are assumed to move from one room (exhibition) to another at an

interval of 5 to 15 minutes within the museums and hence the dura-
tion per contact within museums is less than at other locations. The
increase in duration of contact appears to be enough to compensate
for the decrease in number of contacts (infection rates are reported in
the Supplementary Information), and consequently, the number of
infections is not significantly affected.

We also perform similar experiments in the absence of transients
to see if closing museums helps if there are no transients visiting the
city. The simulation results suggest that closing museums does not
reduce number of infected individuals, even in the absence of the
transients (Figures 4, 5, and 6; also see supplementary information).
To confirm our findings for the closing museums intervention, the
contact rates and the average duration per contact are used to ana-
lytically study the spread of epidemic using the ODE model. Results
show that there is no reduction in the final number of infected
individuals comparing to the non-intervention scenario; see (supple-
mentary information). Thus, the closing museums intervention does
not reduce number of infected cases.

Healthy behavior intervention. Instead of closing locations where a
large amount of mixing occurs, we can view them as places where we
can promote healthy and cautious behaviors and hence reduce the
number of infections that happen within those locations. Hence, we
evaluate a scenario where people are encouraged to practice healthy
behaviors, such as the use of hand sanitizers, at the four big museums.
Multiple studies have shown that such non-pharmaceutical beha-
vioral interventions can have a significant impact15.

As it is unclear that how much infectivity and susceptibility are
reduced by the healthy behavior, we did a series of experiments
assuming that the practice of healthy behavior reduces infectivity
and susceptibility to 80%, 60%, 40%, and 20% of their original values
(effective only inside the four museums). We assume that 50% of the
people going to these places practice healthy behavior. Figures 4, 5
and 6 show the box-plots comparing the fraction of residents infected
at peak, the fraction of residents infected cumulatively over 120 days
of simulation period, and the day of peak. Simulations show that this
intervention delays the peak of the epidemic by about 2 to 5 weeks.
Under the least efficacious assumptions for healthy behavior (80%
and 60%), it reduces the resident number of infections at peak by 6%

Figure 9 | Contact pattern among four subpopulations. In general, babRcd represents the infection transmission rate due to the contact between

subpopulation ab to subpopulation cd. The infection rates brrRrr, brrRrt, brtRrr, brtRrt, brtRtr, btrRrt and btrRtr have positive values, while the infection

rates bttRtt, bttRtr and btrRtt equal 0 because all transients have contacts with both transients and residents. That is, the population tt represented by the red

oval in the lower left vanishes.

Figure 10 | Evaluation of reproductive number as a function of the
infection transmission rates. The circles represent the estimated infection

transmission rate values based on the synthetic social network. The thin

dash line represents the value of reproductive number Ro 5 1.375, while

the thick dash line represents reproductive number Ro 5 1 below which the

epidemic dies out. For every infection transmission rate, we sweep the

transmission rate value between 0 and 2 and we evaluate the reproductive

number Ro using eq. in the Supplementary Information, while the

remaining transmission rates are fixed at their estimated values.
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and 14.6% respectively, as compared to the case when no interven-
tion is applied. It also reduces the total number of residents infections
over the period of 120 days by 3.6% to 9%, respectively. Improving
efficacy further (40% and 20%) decreases the peak by 28.5% and
37.5% respectively. In these two cases, the cumulative number of
infections over 120 days is reduced by 26.6% and 34.6%, respectively.

We also perform similar experiments to evaluate the effect of
healthy behavior in the absence of transients (Figures 4, 5, and 6;
also see supplementary information). If efficacy of healthy behavior is
80% or 60%, the peak is delayed by 10 days or a month, respectively.
The percentage reduction in the fraction of residents infected at peak
and cumulatively over 120 days are similar to the results in the
presence of transients. However, as more residents are infected when
transients are considered, the actual benefit of the intervention is
more (as the reduction in number of resident infection is more) in
the presence of transients. If efficacy is further improved to 40% or
20%, the disease does not peak during the simulation period (120
days), which means peak is delayed by at least two months.

As healthy behavior interventions are assumed to be effective only
inside the museums, we further divide each of the four subpopula-
tions used for the ODE model into the people who go to the four
museums and those who don’t, resulting in six subpopulations.
However, the subpopulation of residents who visit museums but only
meet residents is very small, and so it is ignored. The contact pattern
among the subpopulations is as shown in Figure 11. Using the ODE
model and the next generation method, we numerically evaluate the
reproductive number for different compliance rates and reduced
transmissibility values as shown in Figure 12. The reduction of repro-
ductive number27 is nonlinearly proportional to the reduced trans-
missibility value. The nonlinearity is clearly observed for higher
compliance rate. For compliance rate of 50%, when the transmissi-
bility is reduced to 80% and 60% of its original value, the reproduct-
ive number is reduced by 9% and 18%, respectively. Significant
reduction in the reproductive number is observed when the trans-
missibility is reduced to 40% and 20% of its original value. We also
notice that the largest reduction of reproductive number is 58% for

compliance rate of 100% and reduced transmissibility value of 0
inside the museums.

Discussion
Individual-based model reveals detailed structure of human loca-
tion-based contacts among different subpopulations. Such detailed
contact patterns can not be captured through classical models
assuming homogeneous mixing among/within subpopulations. In
summary, including the transient population makes a significant
difference in epidemic estimation. However, a commonly recom-
mended non-pharmaceutical intervention–social distancing–sur-
prisingly does not show a statistically significant effect at reducing
the outbreak. In this case, it seems that locations where a lot of mixing
occurs are better thought of as presenting opportunities for reducing
disease spread by promoting healthy behavior such as the use of hand
sanitizers or covering cough. This intervention, under reasonable
assumptions about its efficacy, shows a significant difference to the
peak and the cumulative number of infections, as well as the day of
the peak.

Results obtained from the ODE model are qualitatively in agree-
ment with results obtained from the agent-based model. The epi-
demic spreads more when the transient population is introduced in
the agent-based model. The same conclusion is obtained through the
reproductive number that is found to be greater than 1 using the
ODE model. For closing museums intervention, results obtained
from both the agent-based model and the ODE model confirm that
such an intervention does not significantly reduce the total number
of infections. For healthy behavior intervention, both the agent-
based model and the ODE model confirm the significant influence
of promoting the usage of healthy behaviors at locations of high
mixing help to reduce the total number of infected individuals.
Therefore, we conclude that results obtained from both the agent-
based model and the ODE model are consistent and in agreement.

Models like these can also be used for policy recommendations, for
example to promote the use of hand sanitizers in museums. That in

Figure 11 | For healthy behavior interventions, resident and transient populations are further divided based on whether they visit one of four
museums. The Residents – Transients at museums subpopulation represents residents who visit the museums and meet both residents and transients.

Similarly, the Transients – Residents at museums subpopulation represents transients who visit the museums and meet both transients and residents. These

two subpopulations are denoted as rtm and trm and they have contacts inside the museums (red) and outside the museums (blue). The other three

subpopulations (rrnm, rtnm and trnm) represent subpopulations of individuals who do not visit museums.
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turn would offer the opportunity to conduct a field experiment to
validate our model against actual epidemic and intervention data.

Limitations: The model we have constructed is as detailed and
high-fidelity as we can make it, but it is important to note some
limitations as well. First, while we model museums as locations of
high mixing, these are not the only locations where high mixing
between transients and residents may occur. Places like public trans-
port (trains, train stations, airports) are also expected to have a
similar influence on epidemics due to the high degree of mixing
that happens at these locations. However, we do not expect that
qualitative results will change if we include those locations.
Second, we do not model the effects of transients bringing disease

into the region. We have assumed that they are all susceptible when
they arrive. We also do not model the possibility of outgoing
infected transients infecting incoming transients or residents at
the airports. Adding these factors would exacerbate the effects of
transients on the epidemic in the region. Third, we do not distin-
guish between different mechanisms of transmission (direct, drop-
let, fomite). We have assumed that our ‘‘healthy behavior’’ inter-
vention has an overall effect of reducing transmission by a certain
fraction. In practice, depending on the behaviors promoted (use of
hand sanitizer, covering coughs, etc.), the reduction in transmission
would vary. Again, however, we expect that our qualitative results
would hold.

Figure 12 | Significant reduction in the reproductive number is observed when the transmissibility is reduced to 20% and 40% of its value without
sanitizer for 50% compliance rate.

Figure 13 | Disease model used for simulation. Each node represents a state and transition probabilities are as shown on the edges. Each node label

consists of the state name, number of days for which an individual remains in this state, and the probability of him infecting others. The histogram in the

upper right corner shows the probability of being in the given state versus the number of days for symptom1, symptom2, symptom3, and asymptomatic

states.
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Methods
Synthetic population. We generated an augmented synthetic population for the
Washington DC Metro Area, which combines a previously generated resident
population (the ‘‘base population’’ consisting of 4.13 million people) with a transient
population (about 50000, 55% of which are tourists and the rest are business
travelers). Each synthetic individual is assigned demographics (e.g., age, income) and
a daily schedule of activities. Individuals are assigned activity schedules based on their
demographics. A daily schedule of activities is written as a list of (activity type, start
time, duration, activity location) tuples. Each activity location is subdivided into
sublocations (similar to rooms within a building). A person is assumed to come in
contact with all people present at the same sublocation at the same time, which thus
induces a social contact network.

The methodology for generating the transient population broadly follows that for
generating the base population. We first use demographic data to represent transient
individuals and transient parties (groups). Each transient party is placed in a hotel
which serves as their home for the period of the visit. Each transient individual is then
assigned activities to perform during the day like staying in the hotel, visiting
museums and other tourist destinations (or work activities, for business travelers),
going to restaurants, and various night life activities. Each activity is represented by
the type of activity, the time each activity begins and ends, and the location for the
activity. A location is chosen for each activity based on the type of activity using Dun
& Bradstreet data. The detailed process is described in Supplementary Information.

Simulation. We simulate a flu-like disease for Washington DC metro area using
EpiSimdemics, an interaction based high performance computing simulation
software for studying large scale epidemics16.

A 12-state Probabilistic Timed Transition System (PTTS) disease model, is a flu-
specific model developed in Models of Infectious Disease Agent Study MIDAS in
National Institutes of Health2, and it is used for the agent-based simulation. The PTTS
represents the progression of health state of every susceptible individual in case of
contracting the infection. A susceptible individual contracts the infection through
infectious contacts with probability pi

pi~1{P
j

1{jjaip
� �TCjj ð2Þ

where j is the set of infectivities of the infected individuals, ai is the susceptibility of
individual i, p is defined as the probability of disease transmission from a completely
infectious individual to a completely susceptible individual during one minute of
contact4, T is the total duration of contacts and Cjj

is the number of infectious
contacts with infectivity jj. The disease model used is as shown in Figure 13.

Differential equation based (SEIR) model. To compare simulation results with the
differential equation based model (SEIR), the 12-state disease model shown in
Figure 13 is collapsed into a 4-state SEIR model. Uninfected and recovered states in
Figure 13 correspond to susceptible and recovered states in SEIR model respectively.
Latent short, latent long, and incubating states correspond to exposed state for SEIR
model. A person is assumed to stay in the exposed state for approximately one day
(weighted average of the number of days a person stays in latent short or latent long
and incubating states). The remaining states in the 12-state model correspond to the
infectious state in the SEIR model. A person is assumed to stay in the infectious state
for 4.1 days (weighted average of the number of days a person stays in symptom1
circulating and symptom1, symptom2 circulating and symptom2, or symptom3
circulating and symptom3 states). In the ODE models, the infection rates are
proportional to the average contact rates and the average duration per contact. The
average contact rates and the average duration per contact among the populations are
computed from the synthetic social network. Therefore, we emphasis that these
computed values are used to set the parameters of the ODE models.
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